Multi-type Resource Allocation with Partial Preferences

*Peking University, **Washington University in St. Louis, Rensselaer Polytechnic Institute, #Guangzhou University

Multi-type Resource Allocation (MTRA)

\[\pi \text{ agents} \]
\[\sigma \text{ types of items} \] (n of each type)
\[\begin{array}{c}
\text{S :} \\
\text{C :}
\end{array} \]

Assignments: Each agents' allocation is a collection of fractional bundles

Partial Preferences

\[\text{Acyclic CP-net} \rightarrow \text{Partial Preference} \]

Compute an assignment that is fair and economically efficient

Upper Contour Set @ bundle \(x \) w.r.t. \(> \) is \(U(\succ, x) = \{y : y \succ x \text{ or } y = x\} \)

Allocation \(p \) stochastically dominates \(q \) w.r.t. \(> \), if @ every bundle \(x \),
\[\Sigma_{y \in U(\succ, x)} p_y \geq \Sigma_{y \in U(\succ, x)} q_y \]

Assignment \(P \) stochastically dominates \(Q \) if \(p_j \succ^d q_j \text{ for every agent } j \)

Fairness, Efficiency, Strategyproofness, and Indivisibility

A fractional assignment \(P \) satisfies:
- decomposability: it is a probability distribution over discrete assignments
- equal treatment of equals: agents with identical preferences receive identical allocations
- sd-envy-freeness: if for every pair of agents \(j, j', P_j >^d P_{j'} \)
- sd-efficiency: no assignment \(Q \) s.t. for every agent \(j, Q_j >^d P_j \)
- ordinal fairness: if for every pair of agents \(j, j' \), and every bundle \(x \), s.t. \(P_j x > 0 \), we have \(\Sigma_{y \in U(\succ, x)} P_j y \leq \Sigma_{y \in U(\succ, x)} Q_j y \)
- weak-sd-envy-freeness: if for every pair of agents \(j, j' \), \(P_j >^d P_{j'} \Rightarrow P_j = P_{j'} \)
- ex-post-efficiency: a probability distribution over sd-efficient discrete assignments

A mechanism \(f \) satisfies:
- sd-strategyproofness: if \(f(\succ) >^d f(\succ') \), for every agent \(j \), every misreport
- sd-weak-strategyproofness: if \(f(\succ') >^d f(\succ) \Rightarrow f(\succ') = f(\succ') \)

In general, mechanism \(f \) satisfies property \(X \) if \(f(\succ) \) satisfies \(X \) for every profile \(\succ \)

Assignments are NOT guaranteed to be decomposable when there are multiple types of items

NO mechanism is sd-efficient AND sd-envy-free under general partial preferences

Multi-type Random Priority (MRP)

Extends the Random Priority (RP) mechanism [Abdulkadioglu and Sonmez, 1998]
- Topologically sort partial order \(\succ_j \) to linear order \(\succ_j' \)
- Pick priority ordering \(\sigma \) over agents uniformly at random
- Agents arrive according to \(\sigma \), and are allocated their favorite remaining bundle
- Remove agent and all items in bundle

Multi-type Probabilistic Serial (MPS)

Extends Probabilistic Serial (PS) mechanism [Bogomolnaia and Moulin, 2001]
- Topologically sort partial order \(\succ_j \) to linear order \(\succ_j' \)
- While there is a remaining item:
- ALL agents simultaneously consume their favorite remaining bundle (per \(\succ_j' \)) at an equal, uniform rate until supply of any item being consumed is exhausted

Multi-type General Dictatorship (MDG)

Hybrid of MRP and MPS
- Topologically sort partial order \(\succ_j \) to linear order \(\succ_j' \)
- For \(j = 1, \ldots, \pi \) do:
- Agent \(j \) invites all other agents \(j' \) s.t. \(\succ_j'^{j} \) to simultaneously consume their favorite remaining bundle until some item being consumed is exhausted

Fairness, Efficiency, and Non-Manipulability

<table>
<thead>
<tr>
<th>Mechanism and Preference Domain</th>
<th>SE</th>
<th>PE</th>
<th>OF</th>
<th>SEF</th>
<th>SWEF</th>
<th>EXE</th>
<th>UI</th>
<th>UIE</th>
<th>U(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General partial preferences</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>MRP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>MPS</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>MGD</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Results annotated with \dagger are due to [Bogomolnaia and Moulin, 2001], and those annotated \ddagger are due to [Hashimoto et al., 2014]

Future Work

- Characterizing MRP and MPS
- Stronger properties under natural restrictions on the domain of preferences

Assignments are NOT guaranteed to be decomposable when there are multiple types of items

NO mechanism is sd-efficient AND sd-envy-free under general partial preferences