Windows Programming
with MFC

MFC Programming

« MFC: The Microsoft Foundation Class
Library

= Additional Notes:
http://www.cs.binghamton.edu/~reckert/360/class14.htm

http://www.cs.binghamton.edu/~reckert/360/class15.htm

http://www.cs.binghamton.edu/~reckert/360/10.html

MFC

=« The Microsoft Foundation Class (MFC)
Library--

— A Hierarchy of C++ classes designed to
facilitate Windows programming

— An alternative to using Win32 API functions

— A Visual C++ Windows app can use either
Win32 API, MFC, or both

C++ Windows Application

|

MFC Library

|

Win32 APT

Computer Hardware

The Relationship between Windows
MFC and Win32 API Programming

Some Characteristics of MFC

= Offers convenience of REUSABLE CODE

— Many tasks in Windows apps are provided by MFC

— Programs can inherit and modify this functionality as
needed

— MFC handles many clerical details in Windows pgms
— Functionality encapsulated in MFC Classes

=« Produce smaller executables

= Can lead to faster program development

= MFC Programs must be written in C++ and
require the use of classes
— Programmer must have good grasp of OO concepts

Help on MFC Classes

= See Online Help (Index) on:
“MEC”
“Hierarchy”
“Hierarchy Chart”
“MFC Reference’
= Onthe Web:

http://msdn.microsoft.com/en-us/library/d06h2x6e(VS.80).aspx

Base MFC Class

= CObject: At top of hierarchy ("Mother” of amost
all MFC classes)

= Provides features like:
— Seridlization
— Runtime class information
— Diagnostic & Debugging support
— Some important macros

= All its functionality is inherited by any classes
derived from it

Some Important Derived Classes

« CFile

= CDC

= CGdiObject
= CMenu

= CCmdTarget: Encapsul ates message passing
process and is parent of:

— CWnd
» Base class from which all windows are derived

* Encapsulates many important windows functions and
data members

» Examples:
— m_hWnd stores the window’s handle
— Create(...) creates awindow

— Most common subclasses:
* CFrameWindow
* CView
» CDialog

«=CCmdTarget also parent of:

— CWinThread: Defines athread of execution and
IS the parent of:
* CWinApp
— Encapsulates an MFC application
— Controls following aspects of Windows programs:
— Startup, initialization, execution, the message
loop, shutdown
— An application should have one CWinApp
object
— When instantiated, application begins to run
— CDocument

Primary task in writing an MFC
program

= To create/modify classes

— Most will be derived from MFC library
classes

« Call class functions to perform tasks

MFC Class Member Functions

= Most functions called by an application will
be members of an MFC class
= Examples:
— ShowWindow()--a member of CWnd class
— TextOut()--a member of CDC
— LoadBitmap()--a member of CBitmap

« Applications can also call API functions
directly
— Use “global scope resolution” operator
* Example ::UpdateWindow(hwWnd);

MFC Global Functions

= Not members of any MFC class

& Independent of or span MFC class
hierarchy

= Example:
— AfxMessageBox()

M essage Processing under MFC

=« APl mechanism: switch/case statement in app’s WndProc
= Under MFC, WndProc is buried in MFC framework

=« Message handling mechanism: “M essage M aps”
— lookup tables the MFC WndProc searches

= A Message Map contains:
— A Message number
— A Pointer to a message-processing function
* These are members of CWnd
 You override the ones you want your app to respond to
 Likevirtual functions
— “Message-mapping macros’ set these up

User Moves Mouse User Mowves Mouse

generates: generates:
WM_MOUSEMOVE WM MOUSEMOYE
message message
Delivered to: Delivered to:
Program's WndProc() MFC's Window Procedure
switch (message) search message maps for
{ ON WM MOUSEMOVE ()
case WHM_MOUSEMOVE: - -

Handler for message
} calls:

CWnd: : OnMouseMove ()

Win32 API Message Handling MFC Message Handling

M FC Windows Programming
(App/Window Approach)

= Simplest MFC programs must contain two classes
derived from the hierarchy:
— 1. An application class derived from CWinApp
* Defines the application
* provides the message loop

— 2. A window class usualy derived from
CWnd or CFrameWnd

* Defines the application's main window

&« To usethese & other MFC classes you must have:
#include <Afxwin.h> in the .cpp file

MFC Windows Programming
(Document/View Approach)

« Frequently need to have different views
of same data

= Doc/View approach achieves this
separation:

— Encapsulates data in a CDocument class
object

— Encapsulates data display mechanism &
user interaction in a CView class object

Relationship between Documents,
Views, and Windows

Document

Frame Window

I — Viewl
[
-\-\-\-H-H-"\-\.

Data

S

WViews

Documents, Views, & Frames

Document/View Programs
« Almost always have at least four classes derived
from:
— CFrameWnd
— CDocument
— CView
— CWinApp

= Usually put into separate declaration (.h) and
implementation (.cpp) files

= Lots of initialization code

= Could be done by hand, but nobody does it that
way

Microsoft Developer Studio
AppWizard and ClassWizard
Tools

AppWizard

= Tool that generates a Doc/View MFC program
framework automatically

=« Can be built on and customized by programmer
= Fast, efficient way of producing Windows Apps

= Creates functional CFrameWnd, CView,
CDocument, CWinApp classes

« After AppWizard does it's thing:

— Application can be built and run

— Full-fledged window with all common menu items,
tools, etc.

Other Visual Studio Wizards

= Dialog boxes that assist in generating code

— Generate skeleton message handler functions
» Set up the message map

— Connect resources & user-generated events to
program response code

— Insert code into appropriate places in program
e Code then can then be customized by hand

— Create new classes or derive classes from MFC base
classes

— Add new member variables/functions to classes

=« In .NET many wizards available through
‘Properties window'

SKETCH Application

= Example of Using AppWizard and
ClassWizard

= User can use mouse as a drawing pencil
Left mouse button down:

— lines in window follow mouse motion
= Left mouse button up:
— sketching stops
= User clicks "Clear" menu item
—window client area is erased

= Sketch data (points) won't be saved

— So leave document (CSketchDoc) class
created by AppWizard alone

« Base functionality of application (CSketchApp)
and frame window (CMainFrame) classes are
adequate

— Leave them alone

= Use ClassWizard to add sketching to
CSketchView class

Sketching Requirements

« Each time mouse moves:

— If left mouse button is down:
*» GetaDC
» Create a pen of drawing color
» Select peninto DC
* Move to old point
» Draw a line to the new point
» Make current point the old point
» Select pen out of DC

Variables

= BOOLEAN m_butdn
= CPoint m_pt, m_ptold
= COLORREF m_color
= CDC* pDC

Steps in Preparing SKETCH
1. “File” / “New” / “Project’
— Project Type: “Visual C++ Projects”
— Template: “MFC Application”
— Enter name: Sketch
2. In “Welcome to MFC Application Wizard”
— Application type: “Single Document” Application
— Take defaults for all other screens

3. Build Application --> Full-fledged SDI App with
empty window and no functionality

4. Add member variables to CSketchView
— Can do manually in .h file

— Easier to:
» Select Class View pane
* Click on SketchView class
— Note member functions & variables
 Right click on CSketchView class
— Choose “Add / Variable”
— Launches “Add Member Variable Wizard”
— Variable Type: enter CPoint
— Name: m_pt
— Access: Public (default)
— Note after “Finish” that it's been added to the .h file
» Repeat for other variables (or add directly in .h file):
— CPoint m_ptold
— bool m_butdn
— COLORREF m_color
— CDC* pDC

Add Member Variable Wizard - sketcha I x|

Welcome to the Add Member Variable Wizard
This wizard adds a member variable to your dass, struct, or union. @

Arccess:

| public
Variable type:
I CPaint

\Variable name: Control type:

fm_p |

Comment (f{ notation not required):

Finish Cancel Help

5. Add message handler functions:
— Select CSketchView in Class View

— Select “Messages” icon in Properties window
» Results in a list of WM_ messages

— Scroll to WM_LBUTTONDOWN & select it

— Add the handler by clicking on down arrow and
“<Add> OnLButtonDown”

* Note that the function is added in the edit window and the
cursor is positioned over it:

— After “TODO...” enter following code:
m_butdn = TRUE;
m_ptold = point;

=8 _O: CsketchaViey _:J
3} o._: Bases and Interfaces
b

@: Dump(CDumpContext & |
GetDocument{void) con
GetRuntimeClass{vaid)

% GetThisClass{void)

¢ OnBeginPrinting(COC

= OnDraw{COC *pDC) &
4|) | »
ZHa.|Gs. [Hr. (A0
Properties I X
| csketchaView vCCodeClass =
4 @ /[e =
WM_ICONERASE |
WM_INITMENU |
WM_INITMENUF |
WM_KEYDOWN |
WM_KEYUP
WM_KILLFOCUS |
WM_LBUTTOND

WM_LBUTTOND OnLButtonDo'.‘-;!‘d

| wM_LBUTTONDOWN |
! Indicates when left mouse button is
ipressed |

Properties | @

« Repeat process for WM_LBUTTONUP
handler:
— Scrollto WM_LBUTTONUP
— Click: “<Add> OnLButtonUp”,

— Edit Code by adding:
m_butdn = FALSE;

= Repeat for WM_MOUSEMOVE
— Scroll to WM_MOUSEMOVE
— Click: “<Add> OnMouseMove”
— Edit by adding code:
if (m_butdn)
{
pDC = GetDC();
m_pt = point;
CPen newPen (PS_SOLID, 1, m_color);
CPen* pPenOld = pDC->SelectObject (&newPen);
pDC->MoveTo (m_ptold);
pDC->LineTo (m_pt);
m_ptold =m_pt;
pDC->SelectObject (pPenOld);

6. Initialize variables in CSketchView
constructor
— Double click on CSketchView constructor
» CSketchView(void) in Class View
— After “TODO...”, Add code:
m_butdn = FALSE;
m_pt = m_ptold = CPoint(0,0);
m_color = RGB(0,0,0);

7. Changing Window's Properties

— Use window's SetWindowXxxxx() functions

* In CWinApp-derived class in its Initinstance(...)
function before window is shown and updated

— Example: Changing the default window title

m_pMainWnd->SetWindowTextW(
TEXT(“Sketching Application”));
— There are many other SetWindowXxxxx()
functions that can be used to change other
properties of the window

8. Build and run the application

Menus and Command Messages

= User clicks on menu item
= WM_COMMAND message is sent
= |ID_XXX identifies which menu item (its ID)

=« No predefined handlers
— We write the OnXxx() handler function
— Must be declared in .h file and defined in .cpp file

= Event handler wizard facilitates this

Adding Color and Clear Menu
ltems to SKETCH App

= Resource View (sketch.rc folder)

— Double click Menu folder

— Double click IDR_MAINFRAME menu

— Add: “Drawing Color” popup menu item with items:
» “Red”, ID_DRAWING_COLOR_RED (default ID)
e “Blue”, ID_DRAWINGCOLOR_BLUE
» “Green”, ID_DRAWINGCOLOR_GREEN
» “Black”, ID_DRAWINGCOLOR_BLACK

— Add another main menu item:

» “Clear Screen”, ID_CLEARSCREEN
— Set Popup property to False

Add Menu Item Command
Handler Function

One way: Use “Event Handler Wizard”
In “Resource View” bring up menu editor
Right click on “Red” menu item

Select “Add Event Handler” & “Event Handler Wizard”
dialog box

Class list: CSketchView

* Message type: COMMAND

Function handler name: accept default
— OnDrawingcolorRed

Click on “Add and edit”

After “TODO...” in editor enter following code:
m_color = RGB(255,0,0);

Event Handler Wizard - sketcha

Welcome to the Event Handler Wizard

This wizard adds & menu or accelerator command handler or dialog control event handler to the
class of your chaice,

B

Command nz

Message type: Class list:

'CsketchaApp
UPDATE_COMMAND_UI CaboutDlg
CMainFrame

Csketchaloc

Function handler name:

IOnD:'a';-.'ingcolorRed

Add and Edit Edit Cade Cancel Help

Another Method of Adding a
Menu Item Command Handler

—In Class View Select CSketchView

—In Properties window select Events (lightning
bolt icon)

— Scroll down to: ID_ DRAWINGCOLOR_RED
— Select “"COMMAND”
— Click “<Add> OnDrawingcolorRed” handler
— Edit code by adding:

m_color = RGB(255,0,0);

[ClassView-sketcha 2 x|
L5 |
= G:; CsketchaView :_J
B -oﬁ: Bases and Interfaces
- = Maps
1240 AssertValid(void) const
i--=4 CreateObject{void)

: p
{24 GetDocument{void) const

{4 GetRuntimeClass{void) const
Sy GetThisClass (vaid)

¢ OnBeginPrinting(CDC *pDC, CPr
i@ OrDraw{COC *phC) =

I —— C

| CsketchaView VCCodeClass

B4 8[Z= o=

_DRAWINGCOLOR_BL {Chject)

_DRAWINGCOLOR_GR {Object)

=l 0_DRAWINGCOLOR RERETES
COMMAND OnDrawingcolork
UPDATE_COMMAND_L

ID_EDIT_COPY {Object)

ID_EDIT_CUT {Object)

ID_EDIT_PASTE {Object) o

x

L

[+

o

ID_DRAWINGCOLOR_RED

5! Properties | @) Dynamic Help |

Repeat for ID_ DRAWINGCOLOR_BLUE
Code: m_color = RGB(0,0,255);

Repeat for ID_ DRAWINGCOLOR_GREEN
Code: m_color = RGB(0,255,0);

Repeat for ID_DRAWINGCOLOR_BLACK
Code: m_color = RGB(0,0,0);

Repeat for ID_CLEAR
Code: Invalidate();

Destroying the Window

& Just need to call DestroyWindow()

— Do this in the CMainFrame class — usually
in response to a “Quit” menu item

Build and Run the Application

