
Windows Programming
with MFC

MFC Programming

?MFC: The Microsoft Foundation Class
Library

?Additional Notes:
http://www.cs.binghamton.edu/~reckert/360/class14.htm
http://www.cs.binghamton.edu/~reckert/360/class15.htm
http://www.cs.binghamton.edu/~reckert/360/10.html

MFC

?The Microsoft Foundation Class (MFC)
Library--
– A Hierarchy of C++ classes designed to

facilitate Windows programming
– An alternative to using Win32 API functions
– A Visual C++ Windows app can use either

Win32 API, MFC, or both

Some Characteristics of MFC
? Offers convenience of REUSABLE CODE

– Many tasks in Windows apps are provided by MFC
– Programs can inherit and modify this functionality as

needed
– MFC handles many clerical details in Windows pgms
– Functionality encapsulated in MFC Classes

? Produce smaller executables
? Can lead to faster program development
? MFC Programs must be written in C++ and

require the use of classes
– Programmer must have good grasp of OO concepts

Help on MFC Classes
? See Online Help (Index) on:

“MFC”
“Hierarchy”

“Hierarchy Chart”
“MFC Reference”

? On the Web:
http://msdn.microsoft.com/en-us/library/d06h2x6e(VS.80).aspx

Base MFC Class
? CObject: At top of hierarchy ("Mother” of almost

all MFC classes)
? Provides features like:

– Serialization
– Runtime class information
– Diagnostic & Debugging support
– Some important macros

? All its functionality is inherited by any classes
derived from it

Some Important Derived Classes

?CFile
?CDC
?CGdiObject
?CMenu

?CCmdTarget: Encapsulates message passing
process and is parent of:
– CWnd

• Base class from which all windows are derived
• Encapsulates many important windows functions and

data members
• Examples:

– m_hWnd stores the window’s handle
– Create(…) creates a window

– Most common subclasses:
• CFrameWindow
• CView
• CDialog

?CCmdTarget also parent of:
– CWinThread: Defines a thread of execution and

is the parent of:
• CWinApp

– Encapsulates an MFC application
– Controls following aspects of Windows programs:

– Startup, initialization, execution, the message
loop, shutdown

– An application should have one CWinApp
object

– When instantiated, application begins to run
– CDocument

Primary task in writing an MFC
program

?To create/modify classes
– Most will be derived from MFC library

classes

?Call class functions to perform tasks

MFC Class Member Functions
?Most functions called by an application will

be members of an MFC class
?Examples:

– ShowWindow()--a member of CWnd class
– TextOut()--a member of CDC
– LoadBitmap()--a member of CBitmap

?Applications can also call API functions
directly
– Use “global scope resolution” operator ::

• Example ::UpdateWindow(hWnd);

MFC Global Functions

?Not members of any MFC class
? Independent of or span MFC class

hierarchy
?Example:

– AfxMessageBox()

Message Processing under MFC
? API mechanism: switch/case statement in app’s WndProc
? Under MFC, WndProc is buried in MFC framework
? Message handling mechanism: “Message Maps "

– lookup tables the MFC WndProc searches

? A Message Map contains:
– A Message number
– A Pointer to a message-processing function

• These are members of CWnd
• You override the ones you want your app to respond to

• Like virtual functions
– “Message-mapping macros” set these up

MFC Windows Programming
(App/Window Approach)

? Simplest MFC programs must contain two classes
derived from the hierarchy:
– 1. An application class derived from CWinApp

• Defines the application
• provides the message loop

– 2. A window class usually derived from
CWnd or CFrameWnd

• Defines the application's main window
? To use these & other MFC classes you must have:

#include <Afxwin.h> in the .cpp file

MFC Windows Programming
(Document/View Approach)
?Frequently need to have different views

of same data
?Doc/View approach achieves this

separation:
– Encapsulates data in a CDocument class

object
– Encapsulates data display mechanism &

user interaction in a CView class object

Relationship between Documents,
Views, and Windows

Document/View Programs
? Almost always have at least four classes derived

from:
– CFrameWnd
– CDocument
– CView
– CWinApp

? Usually put into separate declaration (.h) and
implementation (.cpp) files

?Lots of initialization code
? Could be done by hand, but nobody does it that

way

Microsoft Developer Studio
AppWizard and ClassWizard

Tools

AppWizard
? Tool that generates a Doc/View MFC program

framework automatically
? Can be built on and customized by programmer
? Fast, efficient way of producing Windows Apps
? Creates functional CFrameWnd, CView,

CDocument, CWinApp classes
? After AppWizard does it's thing:

– Application can be built and run
– Full-fledged window with all common menu items,

tools, etc.

Other Visual Studio Wizards
? Dialog boxes that assist in generating code

– Generate skeleton message handler functions
• Set up the message map

– Connect resources & user-generated events to
program response code

– Insert code into appropriate places in program
• Code then can then be customized by hand

– Create new classes or derive classes from MFC base
classes

– Add new member variables/functions to classes
? In .NET many wizards available through

‘Properties window’

SKETCH Application
?Example of Using AppWizard and

ClassWizard
?User can use mouse as a drawing pencil

Left mouse button down:
– lines in window follow mouse motion

?Left mouse button up:
– sketching stops

?User clicks "Clear" menu item
– window client area is erased

? Sketch data (points) won't be saved
– So leave document (CSketchDoc) class

created by AppWizard alone
? Base functionality of application (CSketchApp)

and frame window (CMainFrame) classes are
adequate
– Leave them alone

? Use ClassWizard to add sketching to
CSketchView class

Sketching Requirements

?Each time mouse moves:
– If left mouse button is down:

• Get a DC
• Create a pen of drawing color
• Select pen into DC
• Move to old point
• Draw a line to the new point
• Make current point the old point
• Select pen out of DC

Variables

?BOOLEAN m_butdn
?CPoint m_pt, m_ptold
?COLORREF m_color
?CDC* pDC

Steps in Preparing SKETCH
1. “File” / “New” / “Project”

– Project Type: “Visual C++ Projects”
– Template: “MFC Application”
– Enter name: Sketch

2. In “Welcome to MFC Application Wizard”
– Application type: “Single Document” Application
– Take defaults for all other screens

3. Build Application --> Full-fledged SDI App with
empty window and no functionality

4. Add member variables to CSketchView
– Can do manually in .h file
– Easier to:

• Select Class View pane
• Click on SketchView class

– Note member functions & variables
• Right click on CSketchView class

– Choose “Add / Variable”
– Launches “Add Member Variable Wizard”

– Variable Type: enter CPoint
– Name: m_pt
– Access: Public (default)

– Note after “Finish” that it’s been added to the .h file
• Repeat for other variables (or add directly in .h file):

– CPoint m_ptold
– bool m_butdn
– COLORREF m_color
– CDC* pDC

5. Add message handler functions:
– Select CSketchView in Class View
– Select “Messages” icon in Properties window

• Results in a list of WM_ messages

– Scroll to WM_LBUTTONDOWN & select it
– Add the handler by clicking on down arrow and

“<Add> OnLButtonDown”
• Note that the function is added in the edit window and the

cursor is positioned over it:
– After “TODO…” enter following code:

m_butdn = TRUE;
m_ptold = point;

?Repeat process for WM_LBUTTONUP
handler:
– Scroll to WM_LBUTTONUP
– Click: “<Add> OnLButtonUp”,
– Edit Code by adding:

m_butdn = FALSE;

? Repeat for WM_MOUSEMOVE
– Scroll to WM_MOUSEMOVE
– Click: “<Add> OnMouseMove”
– Edit by adding code:

if (m_butdn)
{

pDC = GetDC();
m_pt = point;
CPen newPen (PS_SOLID, 1, m_color);
CPen* pPenOld = pDC->SelectObject (&newPen);
pDC->MoveTo (m_ptold);
pDC->LineTo (m_pt);
m_ptold = m_pt;
pDC->SelectObject (pPenOld);

}

6. Initialize variables in CSketchView
constructor
– Double click on CSketchView constructor

• CSketchView(void) in Class View

– After “TODO…”, Add code:
m_butdn = FALSE;
m_pt = m_ptold = CPoint(0,0);
m_color = RGB(0,0,0);

7. Changing Window’s Properties
– Use window’s SetWindowXxxxx() functions

• In CWinApp-derived class in its InitInstance(…)
function before window is shown and updated

– Example: Changing the default window title
m_pMainWnd->SetWindowTextW(

TEXT(“Sketching Application”));

– There are many other SetWindowXxxxx()
functions that can be used to change other
properties of the window

8. Build and run the application

Menus and Command Messages

? User clicks on menu item
? WM_COMMAND message is sent
? ID_XXX identifies which menu item (its ID)
? No predefined handlers

– We write the OnXxx() handler function
– Must be declared in .h file and defined in .cpp file

? Event handler wizard facilitates this

Adding Color and Clear Menu
Items to SKETCH App

? Resource View (sketch.rc folder)
– Double click Menu folder
– Double click IDR_MAINFRAME menu
– Add: “Drawing Color” popup menu item with items:

• “Red”, ID_DRAWING_COLOR_RED (default ID)
• “Blue”, ID_DRAWINGCOLOR_BLUE

• “Green”, ID_DRAWINGCOLOR_GREEN
• “Black”, ID_DRAWINGCOLOR_BLACK

– Add another main menu item:
• “Clear Screen”, ID_CLEARSCREEN

– Set Popup property to False

Add Menu Item Command
Handler Function

– One way: Use “Event Handler Wizard”
– In “Resource View” bring up menu editor
– Right click on “Red” menu item
– Select “Add Event Handler” ? “Event Handler Wizard”

dialog box
• Class list: CSketchView
• Message type: COMMAND
• Function handler name: accept default

– OnDrawingcolorRed
• Click on “Add and edit”
• After “TODO…” in editor enter following code:

m_color = RGB(255,0,0);

– In Class View Select CSketchView
– In Properties window select Events (lightning

bolt icon)
– Scroll down to: ID_DRAWINGCOLOR_RED
– Select “COMMAND”
– Click “<Add> OnDrawingcolorRed” handler
– Edit code by adding:

m_color = RGB(255,0,0);

Another Method of Adding a
Menu Item Command Handler

Repeat for ID_DRAWINGCOLOR_BLUE
Code: m_color = RGB(0,0,255);

Repeat for ID_DRAWINGCOLOR_GREEN
Code: m_color = RGB(0,255,0);

Repeat for ID_DRAWINGCOLOR_BLACK
Code: m_color = RGB(0,0,0);

Repeat for ID_CLEAR
Code: Invalidate();

Destroying the Window

? Just need to call DestroyWindow()
– Do this in the CMainFrame class – usually

in response to a “Quit” menu item

Build and Run the Application

