
Fractals

Fractals
� Beautiful designs of infinite structure and 

complexity
� Qualities of Fractals:

– Fractional dimension
– Self similarity
– Complex structure at all scales
– Chaotic dynamical behavior
– Simple generation algorithms
– Capable of describing an enormous range of 

natural objects



Some Objects 
Representable by Fractals

� Mountains
� Clouds
� Snow flakes
� Fog
� Frost patterns
� Fire
� River basins
� Sea coasts

� Explosions and fireworks
� Plants
� Island formations
� Galaxies
� Arteries and veins
� Cells
� Rivers
� Stock market fluctuations
� Weather systems
� Many More!!



Types of Fractal-Generation 
Algorithms

� Linear Replacement Mapping
� Iterated Function Systems
� Random Midpoint Displacement
� Plasmas
� Escape-time algorithms
� Complex plane mapping
� Recursive, grammar-based systems
� Particle Systems

Linear Replacement Mapping
1. Define initial structure in terms of line 

endpoints
2. Define a replacement mapping

– rule that replaces each line with a refined 
set of lines

– defines next generation of structure
– inherently recursive

3. Iterate the refinement until desired level 
achieved



Example: Koch Snowflake

Implementing a Koch Curve
Assume recursive function Koch(len,theta,n)

(len = length, theta = angle of line, n=recursion level)
To get next generation curve (i.e., if n >0) from a line segment, make 4 

calls:

Koch (len/3, theta, n-1);
theta += 60;
Koch (len/3, theta, n-1);
theta -= 120;
Koch (len/3, theta, n-1);
theta += 60;
Koch (len/3, theta, n-1);

Base case: At lowest (n=0) level of recursion, so draw line:
LineTo (len*cos(theta), len*sin(theta) ) ;



Using the Koch() function

� 1. Assign a value to n and an initial 
position (x0,y0)

� 2. Make a call to MoveTo(x0, y0)
� 3. Assign an initial len, and theta
� 4. Make the call Koch (len, theta, n)

FractInt
� Classic free program for playing around 

with many different kinds of fractals
� Originally a DOS program
� Has been extended to Windows
� FractInt home page:

– http://spanky.triumf.ca/www/fractint/fractint.html
– Has a link to a download site



Dimension of a Fractal
� Look at a non-fractal, a line (1-D)

– Subdivide into N similar pieces, e.g., 3
– Reduce by a scaling factor r, e.g., 1/3

1 = N*r1

� Another: a square (2-D): r = 1/3, N = 9
1 = N*r2

� Another: a cube (3-D): r = 1/3, N = 27
1 = N*r3

� Evidently the exponent of r is the 
“dimension” of the object

Hausdorff Dimension
� In general, assume 1 = N*rD

– where D is the “dimension” of the object
� Solve for D:

– D = log(N)/log(1/r)
� For a Koch curve

– N=4, r=1/3
– D = log(4)/log(3) = 1.2857
– Non-integer!!

� Somehow it occupies more space than a 
linear object in Euclidean space

� Fractals: Hausdorff dim. > topological dim.



Iterated Function Systems
� Define a set of contractive affine transformation 

matrices Mi:
_            _ 

|   ai   bi   ei |
Mi   =   |   ci   di   fi  |

|_ 0    0   1_|

Generate new points P’=(x’,y’) from old P=(x,y):
P’ = Mi*P

i.e.:
x’ = ai*x + bi*y + ei
y’ = ci*x + di*y + fi

The IFS Algorithm

Select “seed point” (x,y)
Repeat many time:

Pick an i randomly
Compute x’,y’ from x,y using Mi (ai,bi,ci,di,ei,fi)
Plot (x’,y’) on screen
Set (x,y) to (x’,y’)



Accelerating the IFS 
Algorithm

� Choose each Mi with a probability:

| ai*di - bi*ci |
Pi = ---------------------

Σ | ai*di - bi*ci |

Example: An IFS Fern



Finding IFS for Arbitrary Images
� Collage Theorem (M. Barnsley)

– Any image can be represented by union of 
contractive affine transformations of itself

– So cover the image with reduced replicas 
of itself

• a collage
– Find transformation for each replica --> Mi
– Process can be automated
– Can be used in image compression



Random Midpoint Displacement
� Good for mountain 

silhouettes
� Recursive subdivision
� Start with a line segment
� Find midpoint (xm,ym)
� Displace ym by a random amount proportional to 

current length
� Repeat with each subdivision until sufficiently 

detailed
– Repeat until we get to individual pixels
– Store computed values of y in an array y[]

� Start endpoint coordinates: (x1,y1), (x2,y2)
� Assume we have a recursive procedure 

fracline(a,b) 
– Computes displaced midpoint line from x=a to x=b 
– Calls itself for each half of line 
– Repeat until y values for all pixels between 

endpoints are computed



int y[SCREEN_WIDTH);
float rug = 0.5;                // ruggedness factor
y[x1] = y1;  y[x2] = y2;    // line endpoints
fracline (x1,x2);              // fills y array values
for (x=x1; x<=x2; x++)

SetPixel(x,y[x]);

fracline (a,b)

{   if ((b-a) > 1)
{  xmid = (a+b)/2;

y[xmid] = (y[a]+y[b])/2 + rug*(b-a)*rand();
fracline (a, xmid); fracline (xmid, b); }   

}

� Generalize to triangular surfaces in 3D
� Displace each triangle edge midpoint randomly in z
� --> Neat mountains!



Drawing Trees With Recursive 
Subdivision

� A tree is a recursive structure
– Each node is a new tree

� Draw trunk (first branch)
� Draw new branches from end of parent 

branch
– Each new branch length reduced by a factor f
– Each new branch goes off at an angle alpha with 

respect to parent branch
– Recursive function branch(n,x,y,a,alpha)

• n=level of recursion, x,y = endpoint of current branch,     
a = length of current branch, alpha = current branch 
angle

Plasmas

� Extension of random midpoint 
displacement

� Works with colors
� Great for generating clouds
� Easily generalized to give mountains



Set screen black
Set current rectangle to entire screen
Set each corner pixel of current rectangle to a random color
For each edge of current rectangle
Compute color of midpoint P between edge's corner pixels by:

1. Pick a random color C
2. Compute weighting factor W proportional to distance 
between corner & P
3. Set midpoint color to average of two corner colors and the 
color C weighted by W

Set center of current rectangle to average of 4 edge midpoint 
colors

Repeat recursively for each new rectangle determined by corner 
pixel and center pixel until all pixels are colored

Plasma-generating Algorithm

� Key idea--at beginning, distances are large
– So color of center pixel is mostly random
– But as rectangles become smaller, 

random contribution is less...
while neighbor pixel contribution is greater

– So close points have similar colors
• Like clouds



Converting a Plasma to a Mountain
– Treat color code of each point as a height 
– Plot the resulting surface
– (A cloud is a color-coded map of a mountain!)

Escape-Time Algorithms for 
Generating Fractals

� Give iterative rule for generating points in the 
complex plane

� Use "seed" points & determine if “orbit” of  points 
generated by iterative rule is finite or escapes to 
infinity

� Map real (x) and imaginary (y) parts of each 
seed point to a pixel on screen

� Boundary between seed points whose orbits 
escape and those whose orbits do not escape is 
often a very complex fractal



Example: Mandelbrot Set

� Iteration rule:   z = z2 + c
� c is the seed point:  c = cx + i*cy
� z = zx + i*zy is each new complex point generated
� Start out with z = (0,0)
� By definition z2 = ( zx2 - zy2, 2*zx*zy )
� Square of radius of orbit:   |z|2 = zx2 + zy2

� If |z| > 2, orbit will escape to infinity (can be shown)
� Area of complex plane containing Mandelbrot set: 

-2 < cx < 1.5   and   -1.5 < cy < 0.5

Mandelbrot Set Algorithm

� Simple algorithm to generate image of 
Mandelbrot set

� Points in Set are painted black
� Points outside set are painted white
� Can be generalized to paint in colors

– Depending on how quickly outside points 
escape to infinity



Set N to some large maximum number of iterations
For y = 0 to SCREEN_HEIGHT

For x = 0 to SCREEN_WIDTH
Map (x,y) to (cx,cy)  // inverse 2D viewing transformation
zx = 0; zy = 0; count = 0;
While ( (zx*zx + zy*zy < 4) && (count < N) )

count++;
temp = zx*zx - zy*zy + cx;  // real part of new z
zy = 2*zx*zy + cy;          // imaginary part of new z
zx = temp;

If (count < N)
Setpixel(x,y,white);    // orbit escaped to infinity

Else
Setpixel(x,y,black);    // orbit did not escape in N iterations



Grammar-Based Systems 
(Lindemayer, L-Systems)

� Objects represented by strings of letters
– Need an “Alphabet”

• used to compose strings
– Need an initial word (“Axiom”)

• successive generations of string derived from it

� “Productions” specify how new 
generations of objects are obtained
– Give rewriting rules 

• applied in parallel to each letter in string

L-Systems in Computer 
Graphics

� Interpret each letter as a movement on 
screen (turtle graphics)

� Example alphabet with interpretation:
F: Go forward (trace a line)
+: Turn left by a given angle
- : Turn right by a given angle
many other possible movements



L-System for a Koch Curve

Alphabet:
F, +, -

Forward, turn +/-
Take angle as 60

Axiom:
F

Production:
F -> F + F - - F + F

Deriving the System

F -> F + F - - F + F
Next iteration

(F+F--F+F) + (F+F--F+F) - - (F+F--F+F) + 
(F+F--F+F)

Successive iterations generate the Koch 
Curve



L-Systems can be extended 
in many ways

� Bracketed L-Systems
– Good for modeling plants
– Anything inside brackets is a branch
– “[” means push onto stack (start branch)
– “]” means pop from stack (end branch)

� Stochastic L-Systems
– Apply productions probabilistically

� Lots of other variations

Particle Systems

� Collections of particles that evolve over 
time

� Used to model systems whose time 
behavior is unpredictable

� Evolution determined by applying laws 
of physics to each particle

� Probabilistic effects easily included



Particles can:
� Be born and die
� Generate new particles
� Change their attributes

– color, mass, etc.
� Move according to specified laws of 

motion
� Interact with their environment
� Interact with each other

Particles can model:

� Fire
� Clouds
� Fog
� Explosions
� Moving water
� Flocking birds
� Lots of other systems



� Final Exam
– Open books & notes
– Thursday, May 13, 2010
– 11:00 A.M-1:00 P.M.
– FA-212

End of Course Stuff

Final Exam Topics
� 3D Geometric Transformations

– Translation; Rotation about x, y, z axes; Scaling
� The 3D Modeling/Rendering Pipeline

– 3D Polygon Mesh Model Data Structures (Points, Polygon lists)
– 3D Viewing Transformation (4-parameter viewing setup)
– Projection Transformations (perspective, parallel)
– Window to Viewport Transformation

� 3D Modeling and Rendering with OpenGL
� Back-Face Culling
� Z-Buffer Hidden Surface Removal Algorithm
� Illumination and Reflection (ambient, diffuse, specular)
� The Phong Illumination/Reflection Model
� Flat Shading
� Interpolated Shading (Gouraud)
� Ray Tracing & Texture Mapping
� Fractals


