
3-D Geometric Transformations
3-D Viewing Transformation
Projection Transformation

3-D Geometric 
Transformations

� Move objects in a 3-D scene
� Extension of 2-D Affine Transformations
� Three important ones:

– Translation
– Scaling
– Rotations



Representing 3-D Points

� Homogeneous coordinates
� P (x,y,z) --> P’ (x’,y’,z’)

_  _          _   _
|  x  |         |  x’ |
|  y  |  -->  |  y’ |
|  z  |         |  z’ |
|_1_|         |_1_|

Homogeneous Translation 
Matrix

� Given three translation components tx, ty, tz
P' = T * P

� T is the following 4 X 4 translation matrix:
_             _
|   1 0 0 tx |

T =  |   0 1 0 ty |
|   0 0 1 tz |
|_ 0 0 0 1 _|



Scaling with respect to origin
� Given three scaling factors sx, sy, sz

P' = S * P
� S is the following 4 X 4 scaling matrix:

_                   _ 
|   sx 0   0   0  |

S = |   0   sy 0   0  |
|   0   0   sz 0  |
|_ 0   0   0   1_|

Rotations
� Need to specify angle of rotation
� And axis about which the rotation is to be 

performed
� Infinite number of possible rotation axes

– Rotation about any axis: linear combinations 
of rotations about x-axis,  y-axis, z-axis



Z-Axis Rotation Matrix
_                                            _

| cos(theta)  -sin(theta)    0   0  |
Rz = | sin(theta)   cos(theta)    0   0   |

|     0                    0          1   0  |
|_   0                    0          0   1_|

_                                       _
|  1         0                 0            0  |

Rx =  |  0   cos(theta)  -sin(theta)     0  |
|  0   sin(theta)   cos(theta)     0   |
|_ 0          0                 0           1_|

X-Axis Rotation matrix



Y-Axis Rotation Matrix

_                                           _
|  cos(theta)  0  sin(theta)    0  |

Ry = |         0         1         0           0  |
| -sin(theta)   0  cos(theta)   0  |
|_       0        0         0          1 _|

Rotation Sense

� Positive sense 
– Defined as counter clockwise as we look 

down the rotation axis toward the origin



Composite 3-D Geometric 
Transformations

� Series of consecutive transformations 
– Represented by homogeneous transformation 

matrices T1, T2, ..., Tn
� Equivalent to a single transformation

– Represented by composite transformation matrix T
– T is given by the matrix product:

T = Tn*...*T2*T1

– First one on the left, last one on the right
� Just like in 2-D, except matrices are 4 X 4

Library of 3-D 
Transformation Functions

� 3-D Transformation Package
� Straightforward Extension of 2-D
� Enables setting up and transforming 

points & polygons
� 4 X 4 Matrices have 12 non-trivial matrix 

elements
� Package Might contain the following 

functions:



3-D Transformation 
Functions

void settranslate3d(a[12], tx, ty, tz); 
void setscale3d(a[12], sx,  sy, sz);
void setrotatex3d(a[12], theta);      
void setrotatey3d(a[12], theta); 
void setrotatez3d(a[12], theta);      
void combine3d(c[12], a[12], b[12]);  // C = A * B
void xformcoord3d(c[12], vi, *vo);    // vo = C * vi
void xformpoly3d(inpoly[], outpoly[], float c[12]);
� a, b, and c are arrays

– Contain 12 non-trivial matrix elements of a 4 X4 
homogeneous transformation matrix

� vi and vo are 3-D point structures; inpoly and outpoly are 
polygons

Rotation about an Arbitrary 
Axis

� Rotate point P by angle α about a line
� Given: endpoints P1=(x1,y1,z1) & P2=(x2,y2,z2)
� Convert problem into rotation about x-axis

1. Translate so that P1 is at origin: T1 = T(-x1,-y1,-z1)
2. Compute spherical coordinates of the other endpoint:
ρ = sqrt((x2-x1)2 + (y2-y1)2 + (z2-z1)2)
φ = arccos((z2-z1)/rho)
θ = arctan((y2-y1)/(x2-x1))



– 3. Rotate about z-axis by -θ so line lies in x-z plane:    
T2 = Rz(-θ)

– 4. Rotate about y-axis by (90-φ)                                   
to make line coincide with x-axis:                                 
T3 = Ry(90-φ)

– 5. Rotate about x-axis by given angle α: T4 = Rx(α)
– 6. Rotate back to undo step 4: T5 = Ry(φ-90)
– 7. Rotate back to undo step 3: T6 = Rz(θ)
– 8. Translate back to undo step 1: T7 = T(x1,y1,z1)

� Composite transformation then will be:
T = T7*T6*T5*T4*T3*T2*T1

3-D Coordinate System 
Transformations

� There’s a symmetrical relationship between 3-D 
geometric transformations
– (moving the object)

and 3-D coordinate system transformations
– (moving the coordinate system)

� For translations, relationship is:
Tcoord(x,y,z) = Tgeom(-x,-y,-z)

� For each principal-axis, rotation relationship is:
Rcoord(θ) = Rgeom(-θ)

� Useful in deriving 3-D viewing transformation



3D Viewing and Projection

� See CS-460/560 notes on 3-D Viewing 
and Projection Transformations

http://www.cs.binghamton.edu/~reckert/460/3dview.htm

3D Viewing/Projection 
Transformations

� 3-D points in model must be transformed to 
viewing coordinate system
– the Viewing Transformation

� Then projected onto a projection plane
– Projection Transformation



3-D Viewing Transformation

� Converts world coordinates (xw,yw,zy) 
of a point to viewing coordinates 
(xv,yv,zv) of the point
– As seen by a "camera" that is going to 

"photograph" the scene
(xw,yw,zw) ------------------------> (xv,yv,zv)

Viewing transformation

3-D Viewing Transformation



Projection Transformation
� Converts viewing coordinates (xv,yv,zv) 

of a point to 2-D coordinates (xp,yp) of 
that point’s projection onto a projection 
plane

� Think of projection plane as containing 
screen upon which the image is to be 
displayed
(xv,yv,zv) --------------------------> (xp,yp)

Projection transformation

Viewing Setups
� Specify position/orientation of 

coordinate systems & projection plane
� Many possible viewing setups
� We’ll use a simple, 4-parameter viewing 

setup
– Camera located at origin of viewing 

coordinate system
– Somewhat restricted
– But adequate for most common situations



4-Parameter Viewing Setup

Parameters
� Position of viewpoint (camera location)

– Position of origin of Viewing Coordinate 
System (VCS)

– Specify in spherical coordinates
• distance ρ from world coordinate system (WCS) 

origin
• azimuthal angle θ
• polar angle φ

� Distance d of Projection 
Plane from viewpoint



Viewing Setup Properties
� VCS  zv-axis points toward WCS origin

– So objects we want to be visible must be placed 
close to WCS origin

� Proj. Plane  is perpendicular to zv-axis at a 
distance d from VCS origin

So ρ must be greater than d

� Center of projection                        
coincides with VCS origin

� VCS’s yv-axis is parallel to projection of WCS’s zw-axis
– So WCS zw-axis defines ”screen up" direction

� VCS’s xv-axis is chosen so that  xv-yv-zv axes form a 
left-handed coordinate system
– objects far from the VCS’s origin have large zv

� 2-D Projection Plane coordinate system's origin is at 
intersection of ρ and Projection Plane
– Its xp-yp-axes are projections of xv-yv axes onto Proj. Plane

• i.e., xv-yv translated a distance d along zv axis



3-D Viewing Transformation
� Must convert xw-yw-zw to xv-yv-zv system
� A coordinate system transformation
� Perform the following steps:

1. Translate origin by distance ρ in direction (θ, φ)
2. Rotate by -(90-θ) degrees about z-axis to bring new y-

axis into plane of zw and ρ
3. Rotate by (180-φ) about x-axis to point transformed z-

axis toward origin of world coordinate system
4. Invert x-axis

Viewing Xform: 1. Translate by ρρρρ



2.2.2.2. 
  

 Rotate by -(90-θθθθ) about z

3. Rotate by (180-φφφφ) about x



4. Invert  x-axis

1. Translate by ρρρρ
� Homogeneous transformation matrix for 

translation by (x,y,z):
_           _
|  1 0 0 x  |

Tgeom =  |  0 1 0 y  |
|  0 0 1 z  |
|_0 0 0 1_|

� Use relationship between coordinate system 
transformations & geometric transformations:    

Tcoord(x,y,z) = Tgeom(-x,-y,-z)



� So first transformation matrix, T1:
_         _

|   1 0 0 -x  |
T1 = |   0 1 0 -y  |

|   0 0 1 -z  |
|_ 0 0 0  1_|

� Express x, y, z in terms of ρ, θ, φ (spherical 
coordinates)

x = ρ*sin(φ)*cos(θ)
y = ρ*sin(φ)*sin(θ)
z = ρ*cos(φ)

2. Rotate by -(90-θθθθ) about z
� Use relationship between coordinate 

system rotations & geometric rotations:
Tcoord(alpha) = Tgeom(-alpha)

� So transformation is T2 = Rz(90-θ):
_                                 _

| cos(90-θ)  -sin(90-θ)  0  0  |
T2 =| sin(90-θ)   cos(90-θ)  0  0  |

|        0               0        1   0  |
|_      0               0        0   1_|



3. Rotate by (180-φφφφ) about x
� Again use relationship between 

geometric & coordinate system 
rotations:
So  T3 = Rx(φ -180):
_                                 _ 
| 1          0               0            0  |

T3=|  0  cos(φ-180)  -sin(φ-180)  0  |
|  0   sin(φ-180)  cos(φ-180)   0  |
|_0         0                0            1_|

4. Invert x-axis
� Result of step 3: x-axis points opposite from 

direction it should
– Because WCS is right-handed, while VCS is left-

handed
� So need to reflect across  y"-z” plane

– Will convert  x  to  -x
_           _

| -1  0  0  0  |
T4 =  |  0  1  0  0  |

|  0  0  1  0  |
|_0  0  0  1_|



Composite Viewing 
Transformation Matrix

� Tv = T4*T3*T2*T1
� Important Result (after simplification):

_                                                               _

| -sin(θ)                cos(θ)               0           0  |
Tv =  | -cos(φ)*cos(θ)  -cos(φ)*sin(θ)   sin(φ)      0  |

| -sin(φ)*cos(θ)   -sin(φ)*sin(θ)   -cos(φ)     ρ |
|_  0                       0                      0         1_|

Projection Transformation
� Look down xv axis at viewing setup:
Triangles OAP' & OBP are similar
So set up proportion:

yp d
---- = ----
yv zv

Solve for yp:
yp = (yv*d)/zv

Look down yv axis for xp:
Result:  xp = (xv*d)/zv



Plotting Points on Screen
� Get screen coordinates (xs,ys) from 

Projection Plane coordinates (xp,yp)
� Final Transformation:

2D Window-to Viewport Transformation
(xs,ys) <--- (xp,yp)
See earlier notes

• Replace xv,yv with xs,ys
• Replace xw,yw with xp,yp

Skeleton Pyramid Program: 
Data Structures

// Build and display a polygon mesh model of a 4-sided pyramid:
struct point3d {float x; float y; float z;};  // a 3d point
struct polygon {int n; int *inds;};            // a polygon
struct point3d  w_pts[5];    // 5 world coordinate vertices
struct point3d  v_pts[5];     // 5 viewing coordinate vertices
POINT  s_pts[5];                // 5 screen coordinate vertices
struct polygon  polys[5];    // 5 polygons define the pyramid

// global variables:
float v11,v12,v21,v22,v23,v31,v32,v33,v34; // view xform matrix elements
int screen_dist; float rho, theta, phi;  // viewing parameters
int xmax,ymax;           // Screen dimensions
Int num_vertices=5, num_polygons=5;



void  coeff (float r, float t, float p);  // calculates viewing transformation
// matrix elements, vii

void  convert (float x, float y, float z, 
float *xv, float *yv, float *zv,
int *xs, int *ys);        // converts a 3D world coordinate point to             

// 3D viewing & 2D screen coordinates
// i.e., viewing, projection , and            
// window-to-viewport transformations

void  build_pyramid (void);   // sets up pyramid points and polygons   
// arrays (see last set of notes)

void  draw_polygon (int poly);   // draws polygon  poly

Skeleton Pyramid Program:
Function Prototypes

Skeleton Pyramid Program: 
Function Skeletons

// Main Function--Called whenever pyramid is to be displayed
void main_ftn ( )
{
// Get or set values of rho, theta, phi, and screen_dist
build_pyramid (void);   // build polygon model of the pyramid
coeff (rho,theta,phi);    // compute transformation matrix elements
for (int i=0; i<num_vertices; i++)

{  // Loop to convert polygon vertices from world coordinates
// to viewing and screen coordinates; must call convert () each time}

for (int f=0; f<num_polygons; f++) 
{ // Loop to draw each polygon face

// must call draw_polygon (f) }
}



Void  coeff (float r, float t, float p)
{ // Code to compute non-trivial viewing transformation matrix 

// elements: v11,v12,v21,v22,v23,v31,v32,v33,v43 }

void  convert (float x, float y, float z,
float *xv, float *yv, float *zv, int *xs, int *ys)

{  // Code to compute viewing coordinates and screen coordinates of
// a point from its 3-D world coordinates. Must implement viewing,
//  projection, and window-to-viewport transformations described 
//  in class }

void  build_pyramid (void)
{ // Code to define the pyramid by setting up w_pts & polys arrays }

void draw_polygon (int poly)
{ 

// Code to draw polygon poly by:
// obtaining its vertex index values from the polys array
// getting the screen coordinates of each vertex from the s_pts array
// making appropriate calls to the system  polygon-drawing primitive

}


