
3-D Geometric Transformations
3-D Viewing Transformation
Projection Transformation

3-D Geometric
Transformations

� Move objects in a 3-D scene
� Extension of 2-D Affine Transformations
� Three important ones:

– Translation
– Scaling
– Rotations

Representing 3-D Points

� Homogeneous coordinates
� P (x,y,z) --> P’ (x’,y’,z’)

_ _ _ _
x		x’
y	-->	y’
z		z’
1		_1_

Homogeneous Translation
Matrix

� Given three translation components tx, ty, tz
P' = T * P

� T is the following 4 X 4 translation matrix:
_ _
| 1 0 0 tx |

T = | 0 1 0 ty |
| 0 0 1 tz |
|_ 0 0 0 1 _|

Scaling with respect to origin
� Given three scaling factors sx, sy, sz

P' = S * P
� S is the following 4 X 4 scaling matrix:

_ _
| sx 0 0 0 |

S = | 0 sy 0 0 |
| 0 0 sz 0 |
|_ 0 0 0 1_|

Rotations
� Need to specify angle of rotation
� And axis about which the rotation is to be

performed
� Infinite number of possible rotation axes

– Rotation about any axis: linear combinations
of rotations about x-axis, y-axis, z-axis

Z-Axis Rotation Matrix
_ _

| cos(theta) -sin(theta) 0 0 |
Rz = | sin(theta) cos(theta) 0 0 |

| 0 0 1 0 |
|_ 0 0 0 1_|

_ _
| 1 0 0 0 |

Rx = | 0 cos(theta) -sin(theta) 0 |
| 0 sin(theta) cos(theta) 0 |
|_ 0 0 0 1_|

X-Axis Rotation matrix

Y-Axis Rotation Matrix

_ _
| cos(theta) 0 sin(theta) 0 |

Ry = | 0 1 0 0 |
| -sin(theta) 0 cos(theta) 0 |
|_ 0 0 0 1 _|

Rotation Sense

� Positive sense
– Defined as counter clockwise as we look

down the rotation axis toward the origin

Composite 3-D Geometric
Transformations

� Series of consecutive transformations
– Represented by homogeneous transformation

matrices T1, T2, ..., Tn
� Equivalent to a single transformation

– Represented by composite transformation matrix T
– T is given by the matrix product:

T = Tn*...*T2*T1

– First one on the left, last one on the right
� Just like in 2-D, except matrices are 4 X 4

Library of 3-D
Transformation Functions

� 3-D Transformation Package
� Straightforward Extension of 2-D
� Enables setting up and transforming

points & polygons
� 4 X 4 Matrices have 12 non-trivial matrix

elements
� Package Might contain the following

functions:

3-D Transformation
Functions

void settranslate3d(a[12], tx, ty, tz);
void setscale3d(a[12], sx, sy, sz);
void setrotatex3d(a[12], theta);
void setrotatey3d(a[12], theta);
void setrotatez3d(a[12], theta);
void combine3d(c[12], a[12], b[12]); // C = A * B
void xformcoord3d(c[12], vi, *vo); // vo = C * vi
void xformpoly3d(inpoly[], outpoly[], float c[12]);
� a, b, and c are arrays

– Contain 12 non-trivial matrix elements of a 4 X4
homogeneous transformation matrix

� vi and vo are 3-D point structures; inpoly and outpoly are
polygons

Rotation about an Arbitrary
Axis

� Rotate point P by angle α about a line
� Given: endpoints P1=(x1,y1,z1) & P2=(x2,y2,z2)
� Convert problem into rotation about x-axis

1. Translate so that P1 is at origin: T1 = T(-x1,-y1,-z1)
2. Compute spherical coordinates of the other endpoint:
ρ = sqrt((x2-x1)2 + (y2-y1)2 + (z2-z1)2)
φ = arccos((z2-z1)/rho)
θ = arctan((y2-y1)/(x2-x1))

– 3. Rotate about z-axis by -θ so line lies in x-z plane:
T2 = Rz(-θ)

– 4. Rotate about y-axis by (90-φ)
to make line coincide with x-axis:
T3 = Ry(90-φ)

– 5. Rotate about x-axis by given angle α: T4 = Rx(α)
– 6. Rotate back to undo step 4: T5 = Ry(φ-90)
– 7. Rotate back to undo step 3: T6 = Rz(θ)
– 8. Translate back to undo step 1: T7 = T(x1,y1,z1)

� Composite transformation then will be:
T = T7*T6*T5*T4*T3*T2*T1

3-D Coordinate System
Transformations

� There’s a symmetrical relationship between 3-D
geometric transformations
– (moving the object)

and 3-D coordinate system transformations
– (moving the coordinate system)

� For translations, relationship is:
Tcoord(x,y,z) = Tgeom(-x,-y,-z)

� For each principal-axis, rotation relationship is:
Rcoord(θ) = Rgeom(-θ)

� Useful in deriving 3-D viewing transformation

3D Viewing and Projection

� See CS-460/560 notes on 3-D Viewing
and Projection Transformations

http://www.cs.binghamton.edu/~reckert/460/3dview.htm

3D Viewing/Projection
Transformations

� 3-D points in model must be transformed to
viewing coordinate system
– the Viewing Transformation

� Then projected onto a projection plane
– Projection Transformation

3-D Viewing Transformation

� Converts world coordinates (xw,yw,zy)
of a point to viewing coordinates
(xv,yv,zv) of the point
– As seen by a "camera" that is going to

"photograph" the scene
(xw,yw,zw) ------------------------> (xv,yv,zv)

Viewing transformation

3-D Viewing Transformation

Projection Transformation
� Converts viewing coordinates (xv,yv,zv)

of a point to 2-D coordinates (xp,yp) of
that point’s projection onto a projection
plane

� Think of projection plane as containing
screen upon which the image is to be
displayed
(xv,yv,zv) --------------------------> (xp,yp)

Projection transformation

Viewing Setups
� Specify position/orientation of

coordinate systems & projection plane
� Many possible viewing setups
� We’ll use a simple, 4-parameter viewing

setup
– Camera located at origin of viewing

coordinate system
– Somewhat restricted
– But adequate for most common situations

4-Parameter Viewing Setup

Parameters
� Position of viewpoint (camera location)

– Position of origin of Viewing Coordinate
System (VCS)

– Specify in spherical coordinates
• distance ρ from world coordinate system (WCS)

origin
• azimuthal angle θ
• polar angle φ

� Distance d of Projection
Plane from viewpoint

Viewing Setup Properties
� VCS zv-axis points toward WCS origin

– So objects we want to be visible must be placed
close to WCS origin

� Proj. Plane is perpendicular to zv-axis at a
distance d from VCS origin

So ρ must be greater than d

� Center of projection
coincides with VCS origin

� VCS’s yv-axis is parallel to projection of WCS’s zw-axis
– So WCS zw-axis defines ”screen up" direction

� VCS’s xv-axis is chosen so that xv-yv-zv axes form a
left-handed coordinate system
– objects far from the VCS’s origin have large zv

� 2-D Projection Plane coordinate system's origin is at
intersection of ρ and Projection Plane
– Its xp-yp-axes are projections of xv-yv axes onto Proj. Plane

• i.e., xv-yv translated a distance d along zv axis

3-D Viewing Transformation
� Must convert xw-yw-zw to xv-yv-zv system
� A coordinate system transformation
� Perform the following steps:

1. Translate origin by distance ρ in direction (θ, φ)
2. Rotate by -(90-θ) degrees about z-axis to bring new y-

axis into plane of zw and ρ
3. Rotate by (180-φ) about x-axis to point transformed z-

axis toward origin of world coordinate system
4. Invert x-axis

Viewing Xform: 1. Translate by ρρρρ

2.2.2.2.

 Rotate by -(90-θθθθ) about z

3. Rotate by (180-φφφφ) about x

4. Invert x-axis

1. Translate by ρρρρ
� Homogeneous transformation matrix for

translation by (x,y,z):
_ _
| 1 0 0 x |

Tgeom = | 0 1 0 y |
| 0 0 1 z |
|_0 0 0 1_|

� Use relationship between coordinate system
transformations & geometric transformations:

Tcoord(x,y,z) = Tgeom(-x,-y,-z)

� So first transformation matrix, T1:
_ _

| 1 0 0 -x |
T1 = | 0 1 0 -y |

| 0 0 1 -z |
|_ 0 0 0 1_|

� Express x, y, z in terms of ρ, θ, φ (spherical
coordinates)

x = ρ*sin(φ)*cos(θ)
y = ρ*sin(φ)*sin(θ)
z = ρ*cos(φ)

2. Rotate by -(90-θθθθ) about z
� Use relationship between coordinate

system rotations & geometric rotations:
Tcoord(alpha) = Tgeom(-alpha)

� So transformation is T2 = Rz(90-θ):
_ _

| cos(90-θ) -sin(90-θ) 0 0 |
T2 =| sin(90-θ) cos(90-θ) 0 0 |

| 0 0 1 0 |
|_ 0 0 0 1_|

3. Rotate by (180-φφφφ) about x
� Again use relationship between

geometric & coordinate system
rotations:
So T3 = Rx(φ -180):
_ _
| 1 0 0 0 |

T3=| 0 cos(φ-180) -sin(φ-180) 0 |
| 0 sin(φ-180) cos(φ-180) 0 |
|_0 0 0 1_|

4. Invert x-axis
� Result of step 3: x-axis points opposite from

direction it should
– Because WCS is right-handed, while VCS is left-

handed
� So need to reflect across y"-z” plane

– Will convert x to -x
_ _

| -1 0 0 0 |
T4 = | 0 1 0 0 |

| 0 0 1 0 |
|_0 0 0 1_|

Composite Viewing
Transformation Matrix

� Tv = T4*T3*T2*T1
� Important Result (after simplification):

_ _

| -sin(θ) cos(θ) 0 0 |
Tv = | -cos(φ)*cos(θ) -cos(φ)*sin(θ) sin(φ) 0 |

| -sin(φ)*cos(θ) -sin(φ)*sin(θ) -cos(φ) ρ |
|_ 0 0 0 1_|

Projection Transformation
� Look down xv axis at viewing setup:
Triangles OAP' & OBP are similar
So set up proportion:

yp d
---- = ----
yv zv

Solve for yp:
yp = (yv*d)/zv

Look down yv axis for xp:
Result: xp = (xv*d)/zv

Plotting Points on Screen
� Get screen coordinates (xs,ys) from

Projection Plane coordinates (xp,yp)
� Final Transformation:

2D Window-to Viewport Transformation
(xs,ys) <--- (xp,yp)
See earlier notes

• Replace xv,yv with xs,ys
• Replace xw,yw with xp,yp

Skeleton Pyramid Program:
Data Structures

// Build and display a polygon mesh model of a 4-sided pyramid:
struct point3d {float x; float y; float z;}; // a 3d point
struct polygon {int n; int *inds;}; // a polygon
struct point3d w_pts[5]; // 5 world coordinate vertices
struct point3d v_pts[5]; // 5 viewing coordinate vertices
POINT s_pts[5]; // 5 screen coordinate vertices
struct polygon polys[5]; // 5 polygons define the pyramid

// global variables:
float v11,v12,v21,v22,v23,v31,v32,v33,v34; // view xform matrix elements
int screen_dist; float rho, theta, phi; // viewing parameters
int xmax,ymax; // Screen dimensions
Int num_vertices=5, num_polygons=5;

void coeff (float r, float t, float p); // calculates viewing transformation
// matrix elements, vii

void convert (float x, float y, float z,
float *xv, float *yv, float *zv,
int *xs, int *ys); // converts a 3D world coordinate point to

// 3D viewing & 2D screen coordinates
// i.e., viewing, projection , and
// window-to-viewport transformations

void build_pyramid (void); // sets up pyramid points and polygons
// arrays (see last set of notes)

void draw_polygon (int poly); // draws polygon poly

Skeleton Pyramid Program:
Function Prototypes

Skeleton Pyramid Program:
Function Skeletons

// Main Function--Called whenever pyramid is to be displayed
void main_ftn ()
{
// Get or set values of rho, theta, phi, and screen_dist
build_pyramid (void); // build polygon model of the pyramid
coeff (rho,theta,phi); // compute transformation matrix elements
for (int i=0; i<num_vertices; i++)

{ // Loop to convert polygon vertices from world coordinates
// to viewing and screen coordinates; must call convert () each time}

for (int f=0; f<num_polygons; f++)
{ // Loop to draw each polygon face

// must call draw_polygon (f) }
}

Void coeff (float r, float t, float p)
{ // Code to compute non-trivial viewing transformation matrix

// elements: v11,v12,v21,v22,v23,v31,v32,v33,v43 }

void convert (float x, float y, float z,
float *xv, float *yv, float *zv, int *xs, int *ys)

{ // Code to compute viewing coordinates and screen coordinates of
// a point from its 3-D world coordinates. Must implement viewing,
// projection, and window-to-viewport transformations described
// in class }

void build_pyramid (void)
{ // Code to define the pyramid by setting up w_pts & polys arrays }

void draw_polygon (int poly)
{

// Code to draw polygon poly by:
// obtaining its vertex index values from the polys array
// getting the screen coordinates of each vertex from the s_pts array
// making appropriate calls to the system polygon-drawing primitive

}

