

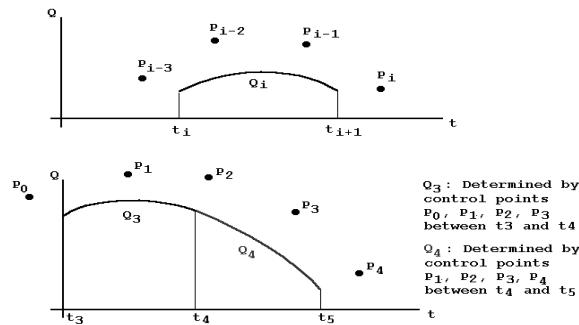
B-Spline Polynomials

B-Spline Polynomials

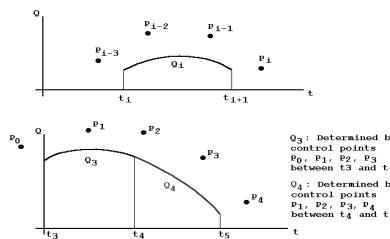
- Draftman's spline
 - Flexible metal strip used to lay out object surfaces
 - If not stressed too much, get level-2 (2nd derivative) continuity curve
- Want local control
- Smoother curves
- B-spline curves:
 - Segmented approximating curve
 - 4 control points affect each segment
 - Local control
 - Level-2 continuity everywhere
 - Very smooth

Cubic B-Spline Polynomial Curves

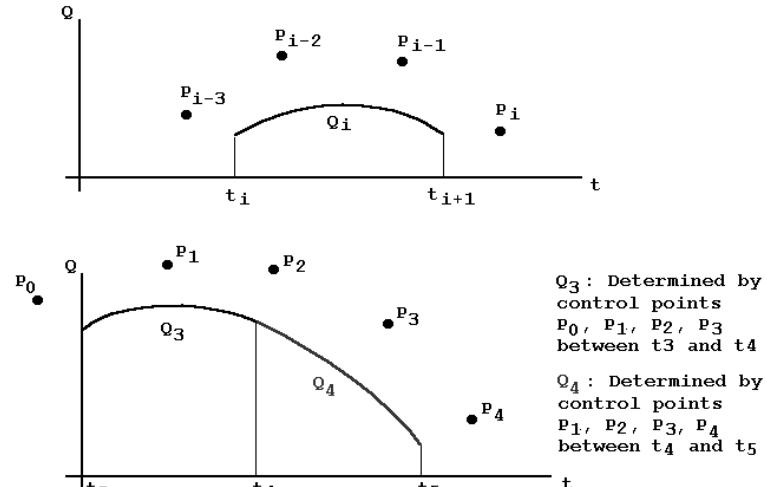
- Approximate $m+1$ control points P_i ($i=0,1,2,\dots,m$) with a curve consisting of $m-2$ cubic polynomial curve segments Q_i ($i=3,4,\dots,m$), $m \geq 3$
- Each Q_i defined in terms of:
 - parameter t : $t_i \leq t \leq t_{i+1}$ and by four of the $m+1$ control points



- Segment Q_i determined by control points: $P_{i-3}, P_{i-2}, P_{i-1}, P_i$ between t_i and t_{i+1}
- Q_i begins at $t = t_i$ and ends at $t = t_{i+1}$,
- Q_{i+1} joins Q_i at t_{i+1}
 - Join point called a knot.
- For example
 - First segment is Q_3 , begins at t_3 , ends at t_4
 - Is determined by control points P_0, P_1, P_2, P_3
- Each segment is affected by only 4 control points
- Each control point affects at most 4 curve segments



Uniform Cubic B-Spline Curves



Uniform Cubic B-Splines

- A special case where we assume that:
- $t_{i+1} = t_i + 1$
- Polynomial equation for segment Q_i :
- $Q_i(t) = a^*(t-t_i)^3 + b^*(t-t_i)^2 + c^*(t-t_i) + d$,
 $t_i \leq t \leq t_i + 1$
- Take independent variable as $t-t_i$
 - Will vary from 0 to 1 for any interval

- Need to get polynomial coefficients (a,b,c,d)
 - from control points
- Find a "B-Spline Basis Matrix"
 - as for Bezier curves
 - but must do computation for each interval

$$\begin{vmatrix} a \\ b \\ c \\ d \end{vmatrix} = M_{BS} * \begin{vmatrix} P_{i-3} \\ P_{i-2} \\ P_{i-1} \\ P_i \end{vmatrix}$$

- M_{BS} is the desired matrix

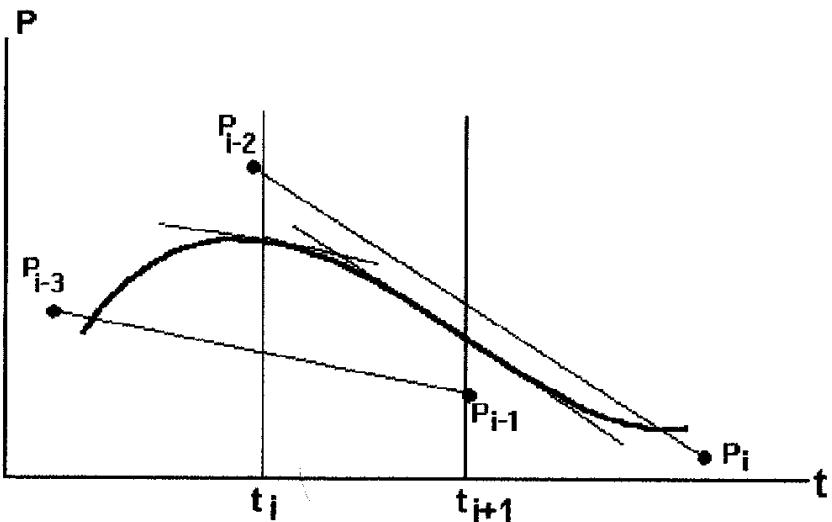
B-Spline Continuity Conditions

- Conditions on 1st & 2nd derivatives:
 1. dQ_i/dt (at $t=t_i$) = slope of line segment joining P_{i-3} and P_{i-1}
 2. dQ_i/dt (at $t=t_{i+1}$) = slope of line segment joining P_{i-2} and P_i
 3. $(dQ_i/dt)' (t=t_i)$ = rate of change in slope at t_i :

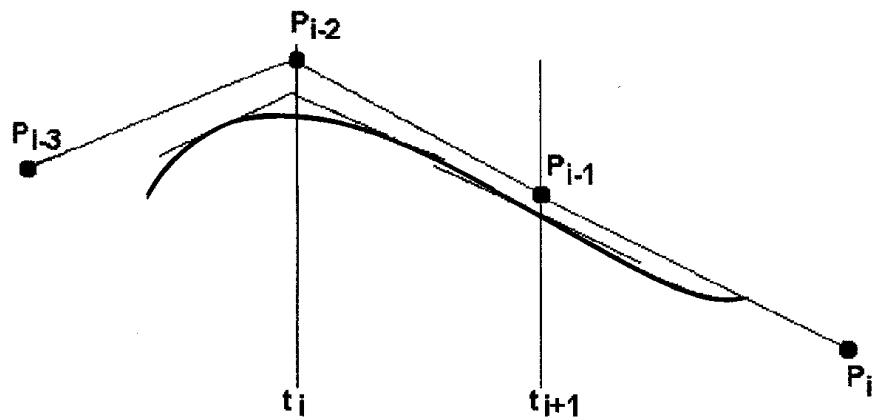
$$(\text{slope of } [P_{i-3}-P_{i-2}] - \text{slope of } [P_{i-2}-P_i]) / \Delta t$$
 4. $(dQ_i/dt)' (t=t_{i+1})$ = rate of change in slope at t_{i+1} :

$$(\text{slope of } [P_{i-2}-P_{i-1}] - \text{slope of } [P_{i-1}-P_i]) / \Delta t$$

Continuity Conditions 1 and 2



Continuity Conditions 3 and 4



$$Q_i = a^*(t-t_i)^3 + b^*(t-t_i)^2 + c^*(t-t_i) + d$$

$$dQ_i/dt = 3*a^*(t-t_i)^2 + 2*b^*(t-t_i) + c$$

$$(dQ_i/dt)' = 6a^*(t-t_i) + 2*b$$

- Condition 1: $c = (P_{i-1} - P_{i-3})/2$
- Condition 2: $3*a + 2*b + c = (P_i - P_{i-2})/2$
- Condition 3: $2*b = ((P_{i-1} - P_{i-2}) - (P_{i-2} - P_{i-3})) / 1$
- Condition 4: $6*a + 2*b = ((P_i - P_{i-1}) - (P_{i-1} - P_{i-2})) / 1$
- These four equations are not independent
 - Solving gives only a, b, c, but not d

Solution

$$a = (1/6) * (-P_{i-3} + 3*P_{i-2} - 3*P_{i-1} + P_i)$$

$$b = (1/6) * (3*P_{i-3} - 6*P_{i-2} + 3*P_{i-1})$$

$$c = (1/6) * (-3*P_{i-3} + 3*P_{i-1})$$

Need another condition to get d

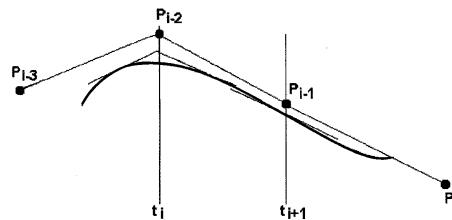
- Choose the following condition:

$$Q \text{ (at } t=t_i) = (1/6) * (P_{i-3} + 4*P_{i-2} + P_{i-1})$$

– i.e., control point at t_i (P_{i-2}) pulls 4 times as hard at $t=t_i$ as control points on either side of t_i

- Substitute in polynomial equation -->

$$d = (1/6) * (P_{i-3} + 4*P_{i-2} + P_{i-1})$$



Uniform Cubic B-Spline Coefficient Matrix Equation

$$\begin{vmatrix} a \\ b \\ c \\ d \end{vmatrix} = (1/6) * \begin{vmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ -1 & 4 & 1 & 0 \end{vmatrix} * \begin{vmatrix} P_{i-3} \\ P_{i-2} \\ P_{i-1} \\ P_i \end{vmatrix}$$

Could also be written in terms of blending functions

$$Q_i(t) = \sum_{j=0}^3 B_{i-j,4}(t) * P_{i-j}$$

$$B_{i-3,4} = 1/6 * (1-t)^3$$

$$B_{i-2,4} = 1/6 * (3t^3 - 6t^2 + 4)$$

$$B_{i-1,4} = 1/6 * (-3t^3 + 3t^2 - 3t + 1)$$

$$B_{i,4} = 1/6 * t^3$$

See Foley & Van Dam

Plotting Uniform Cubic B-Splines

- Given $m+1$ control points $P_0, P_1, P_2, \dots, P_m$
 - (Recall that each has an x and y coordinate)
 - i.e., $P_0 \rightarrow x_0$ and y_0 , etc.
- The following is a "brute force" algorithm to plot the curve
 - δ is a very small increment (e.g., 0.05)

Brute Force Algorithm

```
For (i=3 to m) // each segment
    Compute ax,bx,cx,dx and ay,by,cy,dy
        from control points i-3, i-2, i-1, i
    For (t=0; t<=1; t+=delta) // plot ith segment
        x = ax*t^3 + bx*t^2 + cx*t + dx
        y = ay*t^3 + by*t^2 + cy*t + dy
        If (t==0)
            MoveTo(x,y)
        Else
            LineTo(x,y)
```

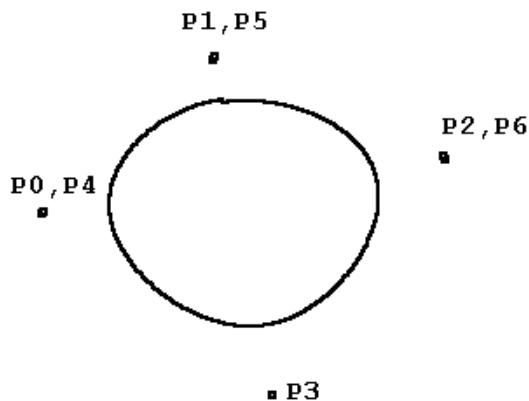
- To increase performance, use forward differences

Closed Cubic B-Splines

Make last 3 control points coincide with 1st 3

0 <--> m-2, 1 <--> m-1, 2 <--> m

Example: m=6



Forcing Interpolation

- Reproduce a control point three times
- Curve will then go through that point

Properties of Uniform B-Splines

1. Local Control
 - Each segment determined by only 4 control points
2. Approximates control points; doesn't interpolate
(However it will interpolate triplicated control points)
3. Lies inside convex hull of control points
 - Each segment lies inside convex hull of its 4 control points
4. Invariant under affine transformations
5. Very smooth
 - Level-2 continuity everywhere
6. More computations required than for "equivalent" Bezier curve

Bezier vs. B-Spline Curves

