

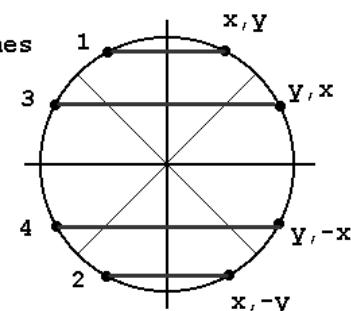
Adapting Scanline Polygon Fill to other primitives

- Example: a circle or an ellipse
 - Use midpoint algorithm to obtain intersection points with the next scanline
 - Draw horizontal lines between intersection points
 - Only need to traverse part of the circle or ellipse

Scanline Circle Fill Algorithm

```
Modify midpoint circle algorithm
For each step draw 4 horizontal lines

Line4(x,y,h,k)
{
    Line(-x+h,y+k,x+h,y+k);    // 1
    Line(-x+h,-y+k,x+h,-y+k);  // 2
    Line(-y+h,x+k,y+h,x+k);    // 3
    Line(-y+h,-x+k,y+h,-x+k);  // 4
}
```



The Scanline Boundary Fill Algorithm for Convex Polygons

Select a Seed Point (x,y)

Push (x,y) onto Stack

While Stack is not empty:

 Pop Stack (retrieve x,y)

 Fill current run y:

 -- iterate on x until borders are hit

 -- i.e., until pixel color == boundary color

 Push left-most unfilled, nonborder pixel above

 -->new "above" seed

 Push left-most unfilled, nonborder pixel below

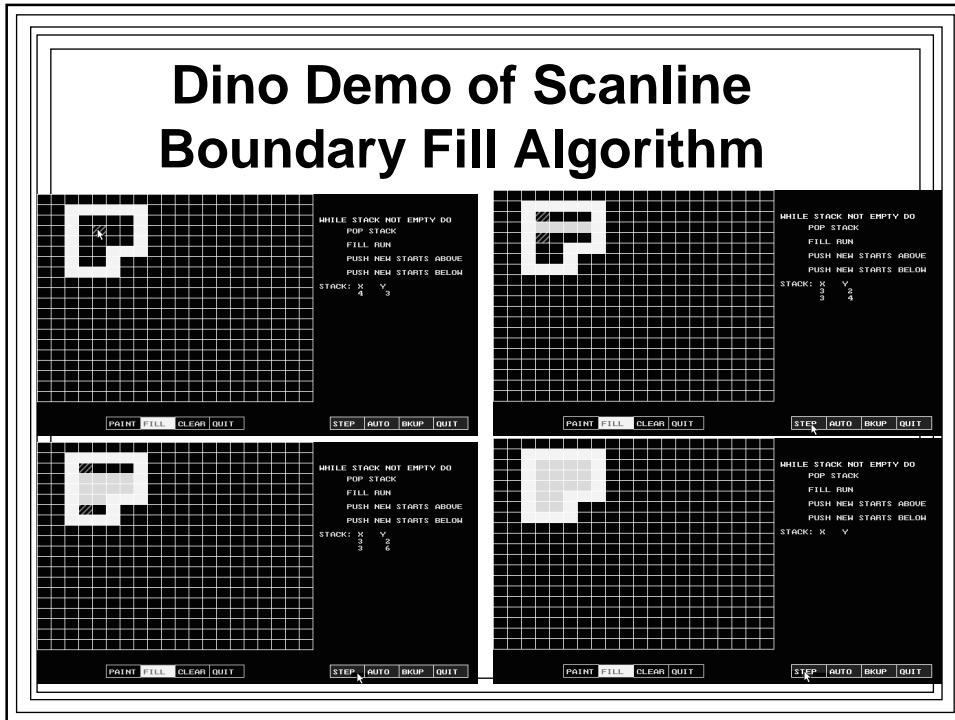
 -->new "below" seed

Demo of Scanline Polygon Fill Algorithm vs. Boundary Fill Algorithm

- Polyfill Program**

- Does:**

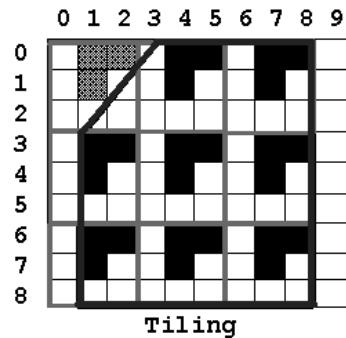
- Boundary Fill**
 - Scanline Polygon Fill**
 - Scanline Circle with a Pattern**
 - Scanline Boundary Fill (Dino Demo)**



Pattern Filling

- Represent fill pattern with a Pattern Matrix
- Replicate it across the area until covered by non-overlapping copies of the matrix
 - Called Tiling

Pattern Filling--Pattern Matrix



Pattern Matrix

	W=3	0 1 2
0	0	0 1 1
1	1	0 1 0
2	2	0 0 0

Pattern	0 1 2
0	0
1	1
2	2

x	0 1 2 3 4 5 6 7 8
x posn	0 1 2 0 1 2 0 1 2
y	0 1 2 3 4 5 6 7 8
y posn	0 1 2 0 1 2 0 1 2

In general, posn in matrix:
xpos = x%W, ypos = y%H

Using the Pattern Matrix

- Modify fill algorithm
- As (x,y) pixel in area is examined:
if(pat_mat[x%W][y%H] == 1)
 SetPixel(x,y);

A More Efficient Way

Store pat_matrix as a 1-D array of bytes or words, e.g., WxH

$y\%H \rightarrow$ byte or word in pat_matrix

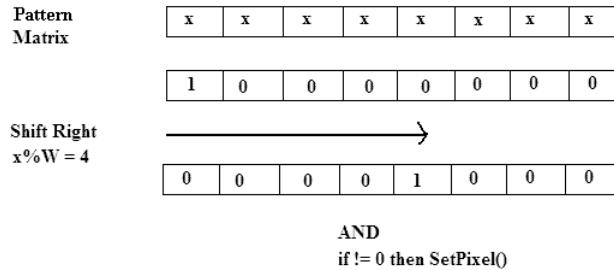
Shift a mask by $x\%W$

e.g. 10000000 for 8x8 pat_matrix

\rightarrow position of bit in byte/word of pat_matrix

“AND” byte/word with shifted mask

if result $\neq 0$, Set the pixel



Color Patterns

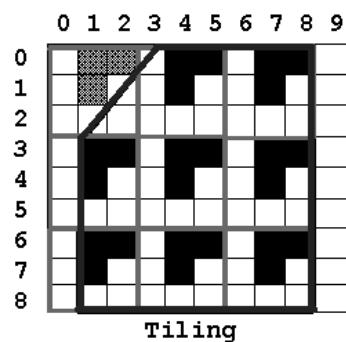
- Pattern Matrix contains color values
- So read color value of pixel directly from the Pattern Matrix:

`SetPixel(x, y, pat_mat[x%W][y%H])`

Moving the Filled Polygon

- As done above, pattern doesn't move with polygon
- Need to "anchor" pattern to polygon
- Fix a polygon vertex as "pattern reference point", e.g., (x_0, y_0)
If $(\text{pat_matrix}[(x-x_0)\%W][(y-y_0)\%H]==1)$
SetPixel(x,y)
- Now pattern moves with polygon

Pattern Filling--Pattern Matrix



Pattern Matrix
W=3
0 1 2
0 0 1 1
1 0 1 0
2 0 0 0
H=3

Pattern
0 1 2
0 1 1
1 0 0
2 0 0

x	0	1	2	3	4	5	6	7	8
x posn	0	1	2	0	1	2	0	1	2
y	0	1	2	3	4	5	6	7	8
y posn	0	1	2	0	1	2	0	1	2

In general, posn in matrix:
xpos = x%W, ypos = y%H

Geometric Transformations

- Moving objects relative to a stationary coordinate system
- Common transformations:
 - Translation
 - Rotation
 - Scaling
- Implemented using vectors and matrices

Quick Review of Matrix Algebra

- Matrix--a rectangular array of numbers
- a_{ij} : element at row i and column j
- Dimension: $m \times n$
 - m = number of rows
 - n = number of columns

A Matrix

An $m \times n$ matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

Degenerate case: $m = 1$ (a row vector)

$$v = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \end{bmatrix} \quad \text{or:}$$

$$v = \begin{bmatrix} a_1 & a_2 & a_3 & \dots & a_n \end{bmatrix}$$

Vectors and Scalars

Degenerate Case ($n=1$) a column vector--

$$v = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ \vdots \\ a_{m1} \end{bmatrix} \quad \text{or:} \quad v = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_m \end{bmatrix}$$

Point in space
(x, y) or (x, y, z)--
Use vectors:
 $P = \begin{bmatrix} x \\ y \end{bmatrix}$ or $P = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$
2D 3D

Transpose of a Matrix A^T

$a_{ij}^T = a_{ji}$ The transpose of a row vector
is a column vector.

Degenerate Case: $m=n=1$, a scalar

$$s = a_{11}$$

Matrix Operations-- Multiplication by a Scalar

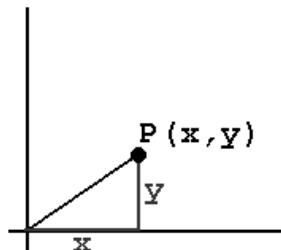
$$C = k * A$$

$$c_{ij} = k * a_{ij}, \quad 1 \leq i \leq m, \quad 1 \leq j \leq n$$

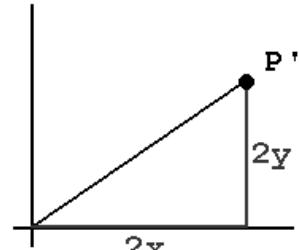
- Example: multiplying position vector by a constant:
 - Multiplies each component by the constant
 - Gives a scaled position vector (k times as long)

Example of Multiplying a Position Vector by a Scalar

Multiplying Position Vector by a Scalar--
Scales the Position Vector



$$\mathbf{P}' = 2 * \mathbf{P}$$

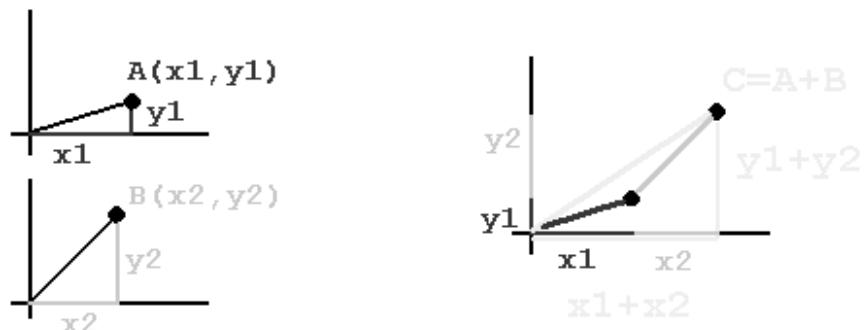


Adding two Matrices

- Must have the same dimension
- $C = A + B$
 $c_{ij} = a_{ij} + b_{ij}, \quad 1 \leq i \leq m, \quad 1 \leq j \leq n$
- Example: adding two position vectors
 - Add the components
 - Gives a vector equal to the net displacement

Adding two Position Vectors: Result is the Net Displacement

Adding Two Position Vectors



Multiplying Two Matrices

- $m \times n = (m \times p) * (p \times n)$
- $C = A * B$
- $C_{ij} = \sum a_{ik} * b_{kj}, 1 \leq k \leq p$
- In other words:
 - To get element in row i , column j
 - Multiply each element in row i by each corresponding element in column j
 - Add the partial products

Matrix Multiplication

An Example

Multiplying a 2x3 matrix by a 3x2 matrix
Result will be a 2x2 matrix

$$\begin{bmatrix} 3 & 0 & 2 \\ 1 & 3 & 5 \end{bmatrix} * \begin{bmatrix} 5 & 4 \\ 1 & 3 \\ 0 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 3*5+0*1+2*0=15 & *** \\ *** & *** \end{bmatrix} \quad \begin{matrix} \text{Row 1} \\ \text{Col 1} \end{matrix}$$
$$\begin{bmatrix} 3 & 0 & 2 \\ 1 & 3 & 5 \end{bmatrix} * \begin{bmatrix} 5 & 4 \\ 1 & 3 \\ 0 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 15 & 3*4+0*3+2*6=24 \\ *** & *** \end{bmatrix} \quad \begin{matrix} \text{Row 1} \\ \text{Col 2} \end{matrix}$$
$$\begin{bmatrix} 3 & 0 & 2 \\ \boxed{1} & 3 & 5 \end{bmatrix} * \begin{bmatrix} 5 & 4 \\ 1 & 3 \\ 0 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 15 & 24 \\ 1*5+3*1+5*0=8 & *** \end{bmatrix} \quad \begin{matrix} \text{Row 2} \\ \text{Col 1} \end{matrix}$$
$$\begin{bmatrix} 3 & 0 & 2 \\ 1 & 3 & 5 \end{bmatrix} * \begin{bmatrix} 5 & 4 \\ 1 & 3 \\ 0 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 15 & 24 \\ 8 & 1*4+3*3+5*6=43 \end{bmatrix} \quad \begin{matrix} \text{Row 2} \\ \text{Col 2} \end{matrix}$$

Multiply a Vector by a Matrix

- $V' = A^*V$
- If V is a m -dimensional column vector,
 A must be an $m \times m$ matrix
- $V'_i = \sum a_{ik} * v_k, 1 \leq k \leq m$
 - So to get element i of product vector:
 - Multiply each row i matrix element by each corresponding element of the vector
 - Add the partial products

An Example

Multiplying a 2-D Vector by a Matrix

$$v = \begin{bmatrix} 3 & 0 \\ 1 & 4 \end{bmatrix} * \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 0 \\ 1 & 4 \end{bmatrix} * \begin{bmatrix} 5 \\ 2 \end{bmatrix} \rightarrow \begin{bmatrix} 3*5+0*2=15 \\ *** \end{bmatrix}$$

$$\begin{bmatrix} 3 & 0 \\ 1 & 4 \end{bmatrix} * \begin{bmatrix} 5 \\ 2 \end{bmatrix} \rightarrow \begin{bmatrix} 15 \\ 1*5+4*2=13 \end{bmatrix}$$

$$v = \begin{bmatrix} 15 \\ 13 \end{bmatrix}$$

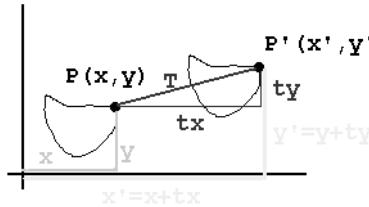
Geometrical Transformations

- Alter or move objects on screen
- Affine Transformations:
 - Each transformed coordinate is a linear combination of the original coordinates
 - Preserve straight lines
- Transform points in the object
 - Translation:
 - A Vector Sum
 - Rotation and Scaling:
 - Matrix Multiplies

Translation: Moving Objects

TRANSLATIONS IN 2-D

(Given translation components, tx , ty)



$$P = \begin{bmatrix} x \\ y \end{bmatrix} \rightarrow P' = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

Component rule:
 $x' = x + tx$
 $y' = y + ty$

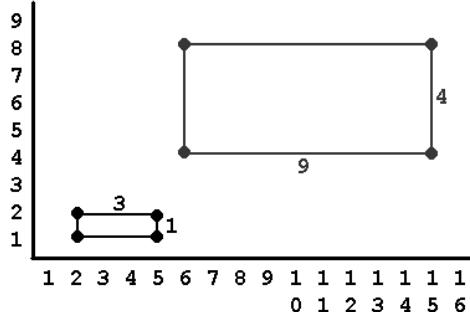
So: $P' = \begin{bmatrix} x+tx \\ y+ty \end{bmatrix}$

$P' = P + T$

where $T = \begin{bmatrix} tx \\ ty \end{bmatrix}$

Scaling: Sizing Objects

AN EXAMPLE OF SCALING



Component Rule: $x' = sx \cdot x$
 $y' = sy \cdot y$

Want a general rule for vectors
 Adding won't work

Try $P' = S \cdot P$ But what is S ?

SCALING FACTORS:

$s_x = 3, s_y = 4$

$P_1 = (2, 1) \rightarrow (6, 4)$
 $P_2 = (5, 1) \rightarrow (15, 4)$
 $P_3 = (5, 2) \rightarrow (15, 8)$
 $P_4 = (2, 2) \rightarrow (6, 8)$

Resulting figure is
 3 times as wide,
 4 times as high

Scaling, continued

$$P' = S \cdot P$$

P, P' are 2D vectors, so S must be 2×2 matrix

Component equations:

$$x' = s_x \cdot x, \quad y' = s_y \cdot y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} \quad \text{or} \quad \begin{aligned} x' &= s_{11} \cdot x + s_{12} \cdot y \\ y' &= s_{21} \cdot x + s_{22} \cdot y \end{aligned}$$

$$\text{So: } s_{11} = s_x, \quad s_{12} = 0, \quad s_{21} = 0, \quad s_{22} = s_y$$

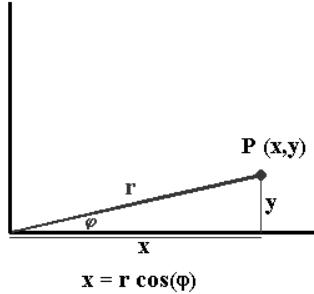
$$\text{Therefore: } S = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \quad (\text{The scaling matrix})$$

Rotation about Origin

- Rotate point P by θ about origin
- Rotated point is P'
- Want to get P' from P and θ
- $P' = R^*P$
- R is the rotation matrix
- Look at components:

Rotation: X Component

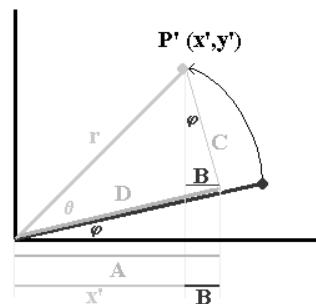
Rotate P by θ about origin



$$x = r \cos(\phi)$$
$$y = r \sin(\phi)$$

So:

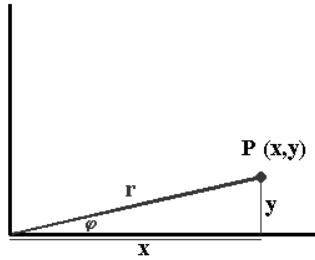
$$x' = r \cos(\theta) \cos(\phi) - r \sin(\theta) \sin(\phi)$$
$$x' = x \cos(\theta) - y \sin(\theta)$$



$$x' = A - B$$
$$A = D \cos(\phi)$$
$$B = C \sin(\phi)$$
$$D = r \cos(\theta)$$
$$C = r \sin(\theta)$$

Rotation: Y Component

Rotate P by θ about origin



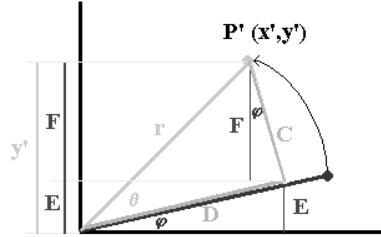
$$x = r \cos(\phi)$$

$$y = r \sin(\phi)$$

So:

$$y' = r \cos(\theta) \sin(\phi) + r \sin(\theta) \cos(\phi)$$

$$y' = y \cos(\theta) + x \sin(\theta)$$



$$y' = E + F$$

$$E = D \sin(\phi)$$

$$F = C \cos(\phi)$$

$$D = r \cos(\theta)$$

$$C = r \sin(\theta)$$

Rotation: Result

$$P' = R^*P$$

R must be a 2x2 matrix

Component equations:

$$x' = x \cos(\theta) - y \sin(\theta)$$

$$y' = x \sin(\theta) + y \cos(\theta)$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} * \begin{bmatrix} x \\ y \end{bmatrix} \quad \text{or} \quad \begin{aligned} x' &= r_{11}x + r_{12}y \\ y' &= r_{21}x + r_{22}y \end{aligned}$$

So: $r_{11} = \cos(\theta)$, $r_{12} = -\sin(\theta)$, $r_{21} = \sin(\theta)$, $r_{22} = \cos(\theta)$

$$\text{Therefore: } R = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

The Rotation Matrix

Transforming Objects

- For example, lines
 1. Transform every point & plot (too slow)
 2. Transform endpoints, draw the line
 - Since these transformations are affine, result is the transformed line

Composite Transformations

- Successive transformations
- e.g., scale then rotate an n-point object:
 1. Scale points: $P' = S \cdot P$ (n matrix multiplies)
 2. Rotate pts: $P'' = R \cdot P'$ (n matrix multiplies)

But:

$$P'' = R \cdot (S \cdot P)$$

& matrix multiplication is associative

$$P'' = (R \cdot S) \cdot P = M_{\text{comp}} \cdot P$$

So Compute $M_{\text{comp}} = R \cdot S$ (1 matrix mult.)

$$P'' = M_{\text{comp}} \cdot P$$

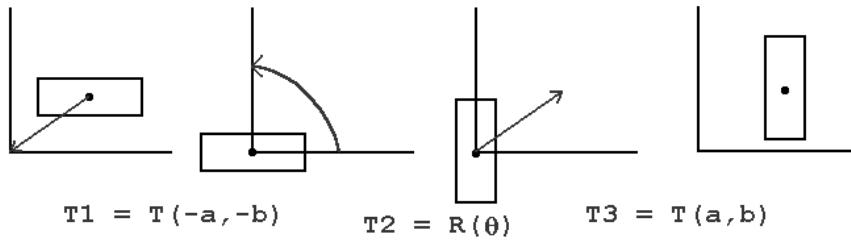
(n matrix multiplies)

n+1 multiplies vs. 2*n multiplies

Composite Transformations

Another example: Rotate in place
center at (a, b)

1. Translate to origin: $T(-a, -b)$
2. Rotate: $R(\theta)$
3. Translate back: $T(a, b)$



Rotation in place:

1. $P' = P + T_1$
2. $P'' = R^*P' = R^*(P+T_1)$
3. $P''' = P'' + T_3 = R^*(P+T_1) + T_3$

Can't be put into single matrix mult. form:

i.e., $P''' \neq T_{\text{comp}} * P$

But we want to be able to do that!!

Problem is: translation--vector add
rotation/scaling--matrix multiply

Homogeneous Coordinates

- Redefine transformations so each is a matrix multiply
- Express each 2-D Cartesian point as a triple:
 - A 3-D vector in a “homogeneous” coordinate system

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \rightarrow \begin{bmatrix} xh \\ yh \\ w \end{bmatrix} \quad \text{where we define:}$$
$$xh = w \cdot x, \quad yh = w \cdot y$$

- Each (x,y) maps to an infinite number of homogeneous 3-D points, depending on w
- Take $w=1$
- Look at our affine geometric transformations

Homogeneous Translations

$P' = P + T$ (Cartesian 2-D coordinates)

$$P = \begin{bmatrix} x \\ y \end{bmatrix} \quad P' = \begin{bmatrix} x' \\ y' \end{bmatrix} \quad T = \begin{bmatrix} tx \\ ty \end{bmatrix}$$

$$P = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \quad P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \quad P' = T \cdot P$$

(Homogeneous coords)
What matrix is T?

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

<u>matrix multiplication</u>	<u>component eqns</u>	<u>Results</u>
$x' = t_{11}x + t_{12}y + t_{13}$	$x' = x + tx; \quad t_{11}=1, \quad t_{12}=0, \quad t_{13}=tx$	
$y' = t_{21}x + t_{22}y + t_{23}$	$y' = y + ty; \quad t_{21}=0, \quad t_{22}=1, \quad t_{23}=ty$	
$1 = t_{31}x + t_{32}y + t_{33}$	$t_{31}=0, \quad t_{32}=0, \quad t_{33}=1$	

So: $T = \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix}$

Homogeneous Scaling (wrt origin)

$P' = S \cdot P$

Component Equations:

$$x' = sx \cdot x, \quad y' = sy \cdot y$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Doing the matrix multiplication:

$$x' = s_{11}x + s_{12}y + s_{13}$$

$$y' = s_{21}x + s_{22}y + s_{23}$$

$$1 = s_{31}x + s_{32}y + s_{33}$$

Comparing with component eqns:

$$s_{11}=sx, \quad s_{12}=0, \quad s_{13}=0$$

$$s_{21}=0, \quad s_{22}=sy, \quad s_{23}=0$$

$$s_{31}=0, \quad s_{32}=0, \quad s_{33}=1$$

So: $S = \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Homogeneous Rotation (about origin)

$$P' = R \cdot P$$

Component Equations:

$$x' = x \cdot \cos(\theta) - y \cdot \sin(\theta), \quad y' = x \cdot \sin(\theta) + y \cdot \cos(\theta)$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Doing the matrix multiplication:

$$x' = r_{11} \cdot x + r_{12} \cdot y + r_{13} \cdot 1$$

$$y' = r_{21} \cdot x + r_{22} \cdot y + r_{23} \cdot 1$$

$$1 = r_{31} \cdot x + r_{32} \cdot y + r_{33} \cdot 1$$

Comparing with component eqns:

$$r_{11} = \cos(\theta) \quad r_{12} = -\sin(\theta) \quad r_{13} = 0$$

$$r_{21} = \sin(\theta) \quad r_{22} = \cos(\theta) \quad r_{23} = 0$$

$$r_{31} = 0 \quad r_{32} = 0 \quad r_{33} = 1$$

So: $R = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Composite Transformations with Homogeneous Coordinates

- All transformations implemented as homogeneous matrix multiplies

- Assume transformations T1, then T2, then T3:

Homogeneous matrices are T1, T2, T3

$$P' = T1 \cdot P$$

$$P'' = T2 \cdot P' = T2 \cdot (T1 \cdot P) = (T2 \cdot T1) \cdot P$$

$$P''' = T3 \cdot P'' = T3 \cdot ((T2 \cdot T1) \cdot P) = (T3 \cdot T2 \cdot T1) \cdot P$$

Composite transformation: $T = T3 \cdot T2 \cdot T1$

Compute T just once!

Example

Rotate line from (5,5) to (10,5) by 90° about (5,5)

$T1=T(-5,-5)$, $T2=R(90)$, $T3=T(5,5)$

$T=T3*T2*T1$

$$T = \begin{vmatrix} 1 & 0 & 5 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{vmatrix} * \begin{vmatrix} \cos 90 & -\sin 90 & 0 \\ \sin 90 & \cos 90 & 0 \\ 0 & 0 & 1 \end{vmatrix} * \begin{vmatrix} 1 & 0 & -5 \\ 0 & 1 & -5 \\ 0 & 0 & 1 \end{vmatrix}$$

$$T = \begin{vmatrix} 0 & -1 & 10 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

Example, continued

$$P1' = T * P1$$

$$P1' = \begin{vmatrix} 0 & -1 & 10 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix} * \begin{vmatrix} 5 \\ 5 \\ -1 \end{vmatrix} = \begin{vmatrix} 5 \\ 5 \\ -1 \end{vmatrix}$$

$$P2' = \begin{vmatrix} 0 & -1 & 10 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix} * \begin{vmatrix} 10 \\ 5 \\ -1 \end{vmatrix} = \begin{vmatrix} 10 \\ 5 \\ -1 \end{vmatrix}$$

$$\text{i.e., } P1' = (5, 5), \quad P2' = (5, 10)$$

Setting Up a General 2D Geometric Transformation Package

Multiplying a matrix & a vector: General 3D Formulation

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} a_0 & a_1 & a_2 \\ a_3 & a_4 & a_5 \\ a_6 & a_7 & a_8 \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

So: $x' = a_0*x + a_1*y + a_2*z$

$y' = a_3*x + a_4*y + a_5*z$

$z' = a_6*x + a_7*y + a_8*z$

(9 multiplies and 6 adds)

Multiplying a matrix & a vector: Homogeneous Form

$$\begin{array}{c|c|c|c|c|c|c|c|c} \hline & & & & & & & & \\ \hline | & x' & | & a_0 & a_1 & a_2 & | & x & | \\ | & y' & | = & a_3 & a_4 & a_5 & | * & y & | \\ | -1 & - & | -0 & 0 & 1 & - & | -1 & - & | \\ \hline \end{array}$$

$$\text{So: } x' = a_0*x + a_1*y + a_2$$

$$y' = a3*x + a4*y + a5$$

(4 multiplies and 4 adds)

MUCH MORE EFFICIENT!

Multiplying 2 3D Matrices: General 3D Formulation

—	c0	c1	c2	—	a0	a1	a2	—	b0	b1	b2	—
—	c3	c4	c5	=	a3	a4	a5	*	b3	b4	b5	—
—	_c6	c7	c8_	—	_a6	a7	a8_	—	_b6	b7	b8_	—

$$\text{So: } c_0 = a_0 * b_0 + a_1 * b_3 + a_2 * b_6$$

Eight more similar equations

(27 multiplies and 18 adds)

Multiplying 2 3D Matrices: Homogeneous Form

$$\begin{vmatrix} c0 & c1 & c2 \\ c3 & c4 & c5 \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} a0 & a1 & a2 \\ a3 & a4 & a5 \\ 0 & 0 & 1 \end{vmatrix} * \begin{vmatrix} b0 & b1 & b2 \\ b3 & b4 & b5 \\ 0 & 0 & 1 \end{vmatrix}$$

So: $c0 = a0*b0 + a1*b3 + 0$

(Similar equations for $c1, c3, c4$)

And: $c2 = a0*b2 + a1*b5 + a2$

(Similar equation for $c5$)

(12 multiplies and 8 adds)

MUCH MORE EFFICIENT!

Much Better to Implement our Own Transformation Package

- In general, obtain transformed point P' from original point P :
- $P' = M * P$
- Set up a a set of functions that will transform points
- Then devise other functions to do transformations on polygons
 - since a polygon is an array of points

- Store the 6 nontrivial homogeneous transformation elements in a 1-D array A
 - The elements are $a[i]$
 - $a[0], a[1], a[2], a[3], a[4], a[5]$
- Then represent any geometric transformation with the following matrix:

$$M = \begin{vmatrix} a[0] & a[1] & a[2] \\ a[3] & a[4] & a[5] \\ 0 & 0 & 1 \end{vmatrix}$$

- Define the following functions:
 - Enables us to set up and transform points and polygons:

```
settranslate(double a[6], double dx, double dy); // set xlate matrix
setscale(double a[6], double sx, double sy); // set scaling matrix
setrotate(double a[6], double theta); // set rotation matrix
combine(double c[6], double a[6], double b[6]); // C = A * B
xformcoord(double c[6], DPOINT vi, DPOINT* vo); // Vo=C*Vi
xformpoly(int n, DPOINT inpts[], DPOINT outpts[], double t[6]);
```

- The “set” functions take parameters that define the translation, scaling, rotation and compute the transformation matrix elements $a[i]$
- The `combine()` function computes the composite transformation matrix elements of the matrix C which is equivalent to the multiplication of transformation matrices A and B

$$(C = A * B)$$

- The `xformcoord(c[],Vi,Vo)` function
 - Takes an input DPOINT (Vi , with x,y coordinates)
 - Generates an output DPOINT (Vo , with x',y' coordinates)
 - Result of the transformation represented by matrix C whose elements are $c[i]$

- The `xformpoly(n,ipnts[],opts[],t[])` function
 - takes an array of input DPOINTS (an input polygon)
 - and a transformation represented by matrix elements `t[i]`
 - generates an array of output DPOINTS (an output polygon)
 - result of applying the transformation `t[]` to the points `ipnts[]`
 - will make `n` calls to `xformcoord()`
 - `n` = number of points in input polygon

An Example--Rotating a Polygon about one of its Vertices by Angle θ

- Rotation about (dx,dy) can be achieved by the composite transformation:
 1. Translate so vertex is at origin $(-dx,-dy)$; Matrix T1
 2. Rotate about origin by θ ; Matrix R
 3. Translate back $(+dx,+dy)$; Matrix T2
- The composite transformation matrix would be: $T = T2 * R * T1$

Some Sample Code: Rotating a Polygon about a Vertex

Example Code: rotating a polygon about a vertex

```
DPOINT p[4];           // input polygon
DPOINT px[4];          // transformed polygon
int n=4;                // number of vertices
int pts[ ]={0,0,50,0,50,70,0,70}; // poly vertex coordinates
float theta=30;          // the angle of rotation
double dx=50,dy=70;      // rotate about this vertex
double xlate[6];         // the transformation 'matrices'
double rotate[6];
double temp[6];
double final[6];
```

```

for (int i=0; i<n; i++) // set up the input polygon
{ p[i].x=pts[2*i];
  p[i].y=pts[2*i+1]; }
Polygon(p,n);           // draw original polygon
settranslate(xlate,-dx,-dy); // set up T1 trans matrix
setrotate(rotate,theta);   // set up R rotaton matrix
combine (temp,rotate,xlate); // compute R*T1 &...
                             // save in temp
settranslate(xlate,dx,dy); // set up T2 trans matrix
combine(final,xlate,temp); // compute T2*(R*T1) &...
                             // save in final
xformpoly(n,p,px,final); // get transformed polygon px
Polygon(px,n);           // draw transformed polygon

```

Setting Up More General Polygon Transformation Routines

- `trans_poly()` could translate a polygon by tx,ty
- `rotate_poly()` could rotate a polygon by θ about point (tx,ty)
- `scale_poly()` could scale a polygon by sx, sy wrt (tx,ty)
- These would make calls to previously defined functions

General Polygon Transformation Function Prototypes

- void trans_poly(int n, DPOINT p[], DPOINT px[], double tx, double ty);
- void rotate_poly(int n, DPOINT p[], DPOINT px[], double theta, double x, double y);
- void scale_poly(int n, DPOINT p[], DPOINT px[], double sx, double sy, double x, double y);

More 2-D Geometric Transformations

- A. Shearing
- B. Reflections

Other 2D Affine Transformations

- Shearing (in x direction)

- Move all points in object in x direction an amount proportional to y

- Proportionality factor:

- shx (x shearing factor)

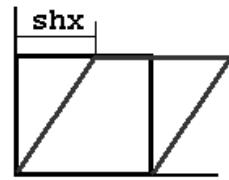
- Equations:

$$y' = y$$

$$x' = x + shx * y \quad | 1 \quad shx \quad 0 |$$

$$P' = SHX * P \quad SHX = | 0 \quad 1 \quad 0 |$$

$$| 0 \quad 0 \quad 1 |$$



Shearing in y Direction

- Move all points in object in y direction an amount proportional to x

- Proportionality factor:

- shy (y shearing factor)

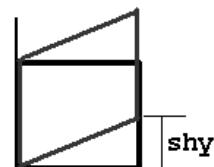
- Equations:

$$x' = x$$

$$y' = shy * x + y \quad | 1 \quad 0 \quad 0 |$$

$$P' = SHY * P \quad SHY = | shy \quad 1 \quad 0 |$$

$$| 0 \quad 0 \quad 1 |$$



Reflections

- Reflect through origin

$$x \rightarrow -x$$

$$y \rightarrow -y$$

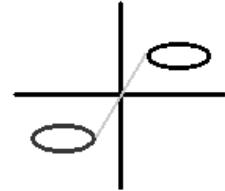
Equations:

$$x' = -x$$

$$y' = -y$$

$$P' = R_O \cdot P$$

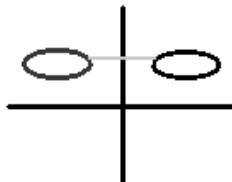
$$R_O = \begin{vmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$



Reflect Across y-axis

$$y \rightarrow y$$

$$x \rightarrow -x$$



Equations:

$$x' = -x$$

$$y' = y$$

$$P' = R_Y \cdot P$$

$$R_Y = \begin{vmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

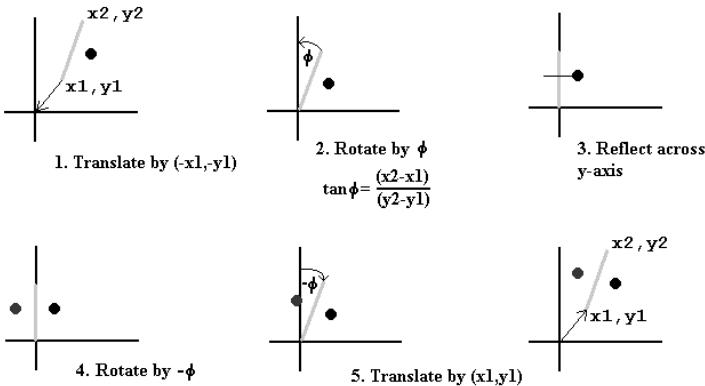
Reflect Across Arbitrary Line

Given line endpoints: $(x_1, y_1), (x_2, y_2)$

1. Translate by $(-x_1, -y_1)$ [endpoint at origin]
2. Rotate by ϕ [line coincides with y-axis]
3. Reflect across y-axis
4. Rotate by $-\phi$
5. Translate by (x_1, y_1)
6. Composite transformation:

$$T = T(x_1, y_1) * R(-\phi) * R_y * R(\phi) * T(-x_1, -y_1)$$

Reflect Across a Line Endpoints $(x_1, y_1), (x_2, y_2)$

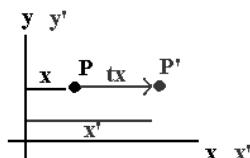


$$T = T_5 * T_4 * T_3 * T_2 * T_1$$

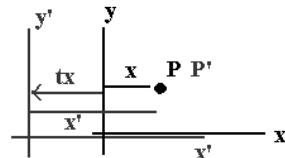
Coordinate System Transformations

- Geometric Transformations:
 - Move object relative to stationary coordinate system (observer)
- Coordinate System Transformation:
 - Move coordinate system (observer) & hold objects stationary
 - Two common types
 - Coordinate System translation
 - Coordinate System rotation
 - Related to Geometric Transformations

Coordinate System Translation



Geometric Translation
by \mathbf{P}
 $\mathbf{x}' = \mathbf{x} + \mathbf{P}$



Coordinate system
Translation by $\mathbf{-P}$
 $\mathbf{x}' = \mathbf{x} - \mathbf{P}$

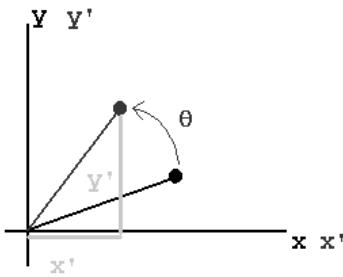
So a Coordinate System Translation by vector $\mathbf{-P}$
is equivalent to a Geometric Translation by vector $\mathbf{+P}$

$$T_G(\mathbf{P}) \iff T_C(-\mathbf{P})$$

i.e., if $\mathbf{P} = (px, py)$: then:

$$T_G = \begin{vmatrix} 1 & 0 & px \\ 0 & 1 & py \\ 0 & 0 & 1 \end{vmatrix} \quad T_C = \begin{vmatrix} 1 & 0 & -px \\ 0 & 1 & -py \\ 0 & 0 & 1 \end{vmatrix}$$

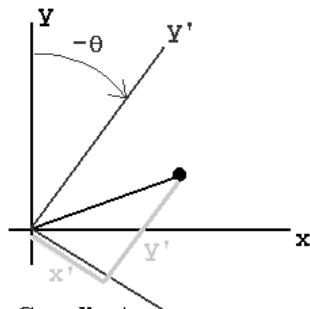
Coordinate System Rotation



Geometric Rotation by θ

Effect is the same

$$R_C(\theta) \iff R_G(-\theta)$$



Coordinate System Rotation by $-\theta$