
Adapting Scanline Polygon Fill 
to other primitives

� Example: a circle or an ellipse
– Use midpoint algorithm to obtain intersection 

points with the next scanline
– Draw horizontal lines between intersection 

points
– Only need to traverse part of the circle or 

ellipse

Scanline Circle Fill Algorithm



The Scanline Boundary Fill 
Algorithm for Convex Polygons

Select a Seed Point (x,y)
Push (x,y) onto Stack
While Stack is not empty:

Pop Stack (retrieve x,y)
Fill current run y: 

-- iterate on x until borders are hit
-- i.e., until pixel color == boundary color

Push left-most unfilled, nonborder pixel above
-->new "above" seed

Push left-most unfilled, nonborder pixel below
-->new "below" seed

Demo of Scanline Polygon Fill 
Algorithm vs. Boundary Fill 

Algorithm

� Polyfill Program
– Does:

• Boundary Fill
• Scanline Polygon Fill
• Scanline Circle with a Pattern
• Scanline Boundary Fill (Dino Demo)



Dino Demo of Scanline
Boundary Fill Algorithm

Pattern Filling

� Represent fill pattern with a Pattern 
Matrix

� Replicate it across the area until 
covered by non-overlapping copies of 
the matrix
– Called Tiling



Pattern Filling--Pattern Matrix

Using the Pattern Matrix

� Modify fill algorithm
� As (x,y) pixel in area is examined:

if(pat_mat[x%W][y%H] == 1)
SetPixel(x,y);



A More Efficient Way
Store pat_matrix as a 1-D array of bytes or words, e.g., WxH

y%H --> byte or word in pat_matrix
Shift a mask by x%W

e.g. 10000000 for 8x8 pat_matrix
--> position of bit in byte/word of pat_matrix

“AND” byte/word with shifted mask
if result != 0, Set the pixel

Color Patterns

� Pattern Matrix contains color values
� So read color value of pixel directly 

from the Pattern Matrix:

SetPixel(x, y, pat_mat[x%W][y%H])



Moving the Filled Polygon
� As done above, pattern doesn’t move 

with polygon
� Need to “anchor” pattern to polygon
� Fix a polygon vertex as “pattern 

reference point”, e.g., (x0,y0)
If (pat_matrix[(x-x0)%W][(y-y0)%H]==1)

SetPixel(x,y)

� Now pattern moves with polygon

Pattern Filling--Pattern Matrix



Geometric Transformations
� Moving objects relative to a stationary 

coordinate system
� Common transformations:

– Translation
– Rotation
– Scaling

� Implemented using vectors and 
matrices

Quick Review of Matrix Algebra

� Matrix--a rectangular array of numbers
� aij: element at row i and column j
� Dimension:  m x n

m = number of rows
n = number of columns



A Matrix

Vectors and Scalars



Matrix Operations--
Multiplication by a Scalar

C = k*A
cij = k * aij,  1<=i<=m,  1<=j<=n

� Example: multiplying position vector by a 
constant:
– Multiplies each component by the constant
– Gives a scaled position vector (k times as long)

Example of Multiplying a 
Position Vector by a Scalar



Adding two Matrices

� Must have the same dimension
� C = A + B

cij = aij + bij,  1<=i<=m,  1<=j<=n
� Example: adding two position vectors

– Add the components
– Gives a vector equal to the net 

displacement

Adding two Position Vectors:  
Result is the Net Displacement



Multiplying Two Matrices
� m x n = (m x p) * (p x n)
� C = A * B

� cij = Σ aik*bkj , 1<=k<=p
� In other words:

– To get element in row i, column j
• Multiply each element in row i by each 

corresponding element in column j
• Add the partial products

Matrix Multiplication               
An Example



Multipy a Vector by a Matrix
� V’ = A*V
� If V is a m-dimensional column vector, 

A must be an  m x m  matrix

� V’i = Σ aik * vk,  1<=k<=m
– So to get element i of product vector: 

• Multiply each row i matrix element by each 
corresponding element of the vector 

• Add the partial products

An Example



Geometrical 
Transformations

� Alter or move objects on screen
� Affine Transformations:

– Each transformed coordinate is a linear combination 
of the original coordinates

– Preserve straight lines
� Transform points in the object

– Translation:
• A Vector Sum

– Rotation and Scaling:
• Matrix Multiplies

Translation: Moving Objects



Scaling: Sizing Objects

Scaling, continued
P’ = S*P
P, P’ are 2D vectors, so S must be 2x2 matrix
Component equations:

x’ = sx*x,  y’ = sy*y



Rotation about Origin

� Rotate point P  by θ about origin
� Rotated point is P’
� Want to get P’ from P and θ
� P’ = R*P
� R is the rotation matrix
� Look at components:

Rotation: X Component



Rotation: Y Component

Rotation: Result
P’ = R*P
R must be a 2x2 matrix
Component equations:

x’ = x cos(θ) - y sin(θ)
y’ = x sin(θ) + y cos(θ)



Transforming Objects

� For example, lines
1. Transform every point & plot (too 

slow)
2. Transform endpoints, draw the line

• Since these transformations are affine, 
result is the transformed line

Composite Transformations
� Successive transformations
� e.g., scale then rotate an n-point object:

1. Scale points: P’ = S*P   (n matrix multiplies)
2. Rotate pts: P’’ = R*P’ (n matrix multiplies)
But:

P’’ = R*(SP), & matrix multiplication is associative
P’’ = (R*S)*P = Mcomp*P

So Compute Mcomp = R*S   (1 matrix mult.)
P’’ = Mcomp*P   (n matrix multiplies)
n+1 multiplies vs. 2*n multiplies



Composite Transformations
Another example: Rotate in place

center at (a,b)
1. Translate to origin: T(-a.-b)
2. Rotate: R(θ)
3. Translate back: T(a,b)

Rotation in place:
1. P’ = P + T1
2. P’’ = R*P’ = R*(P+T1)
3. P’’’ = P’’+T3 = R*(P+T1) + T3
Can’t be put into single matrix mult. form:

i.e.,   P’’’ !=   Tcomp * P
But we want to be able to do that!!

Problem is: translation--vector add
rotation/scaling--matrix multiply



Homogeneous Coordinates
� Redefine transformations so each is a 

matrix multiply
� Express each 2-D Cartesian point as a 

triple:
– A 3-D vector in a “homogeneous”

coordinate system
x xh where we define:

y yh xh = w*x,

w yh = w*y

� Each (x,y) maps to an infinite number of 
homogeneous 3-D points, depending on w

� Take w=1
� Look at our affine geometric 

transformations



Homogeneous Translations

Homogeneous Scaling (wrt origin)



Homogeneous Rotation (about origin)

Composite Transformations with 
Homogeneous Coordinates

� All transformations implemented as homogeneous 
matrix multiplies

� Assume transformations T1, then T2, then T3:
Homogeneous matrices are T1, T2, T3
P’ = T1*P
P’’ = T2*P’ = T2*(T1*P) = (T2*T1)*P
P’’=T3*P’’=T3*((T2*T1)*P)=(T3*T2*T1)*P
Composite transformation:  T = T3*T2*T1
Compute T just once!



Example
Rotate line from (5,5) to (10,5) by 90° about (5,5)
T1=T(-5,-5),  T2=R(90),  T3=T(5,5)
T=T3*T2*T1

_ _ _ _ _ _

| 1 0 5 | | cos90 -sin90 0 | | 1 0 –5 |
T = | 0 1 5 |*| sin90 cos90 0 |*| 0 1 –5 |

|_0 0 1_| |_ 0 0 1_| |_0 0 1_|

_ _

| 0 -1 10 |
T= | 1 0 0 |

|_0 0 1_|

Example, continued
P1’ = T*P1

_ _ _ _ _ _
| 0 -1 10 | | 5 | | 5 |

P1’ = | 1 0 0 |*| 5 | = | 5 |
|_0 0 1_| |_1_| |_1_|

_                   _     _      _          _   _
| 0 -1 10 | | 10 | | 5 |

P2’ = | 1 0 0 |*| 5 | = |10 |
|_0 0 1_| |_ 1_| |_1_|

i.e., P1’ = (5,5), P2’ = (5,10)



Setting Up a General 2D 
Geometric Transformation 

Package

Multiplying a matrix & a vector: 
General 3D Formulation

_ _ _ _ _ _

| x’ | | a0 a1 a2 | | x |

| y’ | = | a3 a4 a5 | * | y |

|_z’_| |_a6 a7 a8_| |_z_|

So: x’ = a0*x + a1*y + a2*z

y’ = a3*x + a4*y + a5*z

z’ = a6*x + a7*y + a8*z

(9 multiplies and 6 adds)



Multiplying a matrix & a vector: 
Homogeneous Form

_ _ _ _ _ _

| x’ | | a0 a1 a2 | | x |

| y’ | = | a3 a4 a5 | * | y |

|_1 _| |_0 0 1 _| |_1_|

So: x’ = a0*x + a1*y + a2

y’ = a3*x + a4*y + a5

(4 multiplies and 4 adds)

MUCH MORE EFFICIENT!

Multiplying 2 3D Matrices: 
General 3D Formulation

_ _ _ _ _ _

| c0 c1 c2 | | a0 a1 a2 | | b0 b1 b2 |

| c3 c4 c5 |=| a3 a4 a5 |*| b3 b4 b5 |

|_c6 c7 c8_| |_a6 a7 a8_| |_b6 b7 b8_|

So: c0 = a0*b0 + a1*b3 + a2*b6

Eight more similar equations

(27 multiplies and 18 adds)



Multiplying 2 3D Matrices: 
Homogeneous Form

_ _ _ _ _ _
| c0 c1 c2 | | a0 a1 a2 | | b0 b1 b2 |
| c3 c4 c5 |=| a3 a4 a5 |*| b3 b4 b5 |
|_0 0 1 _| |_0 0 1 _| |_0 0 1 _|
So: c0 = a0*b0 + a1*b3 + 0

(Similar equations for c1, c3, c4)

And: c2 = a0*b2 + a1*b5 +a2
(Similar equation for c5)

(12 multiplies and 8 adds)
MUCH MORE EFFICIENT!

Much Better to Implement our 
Own Transformation Package
� In general, obtain transformed point P' 

from original point P:
� P' = M * P
� Set up a a set of functions that will 

transform points
� Then devise other functions to do 

transformations on polygons
– since a polygon is an array of points



� Store the 6 nontrivial homogeneous 
transformation elements in a 1-D array A
– The elements are a[i] 

• a[0], a[1], a[2], a[3], a[4], a[5]

� Then represent any geometric transformation 
with the following matrix:

_ _
| a[0] a[1] a[2] |

M = | a[3] a[4] a[5] |
|_ 0 0 1 _|

� Define the following functions:
– Enables us to set up and transform 

points and polygons:
settranslate(double a[6], double dx, double dy); // set xlate matrix
setscale(double a[6], double sx, double sy);   //  set scaling matrix
setrotate(double a[6], double theta);               // set rotation matrix
combine(double c[6], double a[6], double b[6]);   // C = A * B
xformcoord(double c[6], DPOINT vi, DPOINT* vo);  // Vo=C*Vi
xformpoly(int n, DPOINT inpts[], DPOINT outpts[], double t[6]);



� The “set” functions take parameters that 
define the translation, scaling, rotation and 
compute the transformation matrix 
elements a[i]

� The combine() function computes the 
composite transformation matrix elements 
of the matrix C which is equivalent to the 
multiplication of transformation matrices A 
and B 
(C = A * B)

� The xformcoord(c[ ],Vi,Vo) function 
– Takes an input DPOINT (Vi, with x,y

coordinates)
– Generates an output DPOINT (Vo, with x',y' 

coordinates)
– Result of the transformation represented by 

matrix C whose elements are c[i]



� The xformpoly(n,ipts[ ],opts[ ],t[ ]) function
– takes an array of input DPOINTs (an input 

polygon)
– and a transformation represented by matrix 

elements t[i]
– generates an array of ouput DPOINTs (an 

output polygon)
• result of applying the transformation t[ ] to the 

points ipts[ ]
– will make n calls to xformcoord()

• n = number of points in input polygon

An Example--Rotating a 
Polygon about one of its 

Vertices by Angle θθθθ
� Rotation about (dx,dy) can be achieved by 

the composite transformation:
1. Translate so vertex is at origin (-dx,-dy); 

Matrix T1
2. Rotate about origin by θ; Matrix R
3. Translate back (+dx,+dy); Matrix T2

� The composite transformation matrix 
would be:  T = T2*R*T1



Some Sample Code: 
Rotating a Polygon about a 

Vertex

Example Code: rotating a polygon about a vertex

DPOINT p[4];                      // input polygon 
DPOINT px[4];                    // transformed polygon
int n=4;                                // number of vertices
int pts[ ]={0,0,50,0,50,70,0,70};  // poly vertex coordinates
float theta=30;                    // the angle of rotation
double dx=50,dy=70;         // rotate about this vertex
double xlate[6];                  // the transformation 'matrices'
double rotate[6];
double temp[6];
double final[6];



for (int i=0; i<n; i++)   // set up the input polygon
{ p[i].x=pts[2*i]; 

p[i].y=pts[2*i+1]; }
Polygon(p,n);                           // draw original polygon
settranslate(xlate,-dx,-dy);     // set up T1 trans matrix
setrotate(rotate,theta);            // set up R rotaton matrix
combine (temp,rotate,xlate);  // compute R*T1  &...

// save in temp
settranslate(xlate,dx,dy);        // set up T2 trans matrix
combine(final,xlate,temp);      // compute T2*(R*T1) &... 

// save in final
xformpoly(n,p,px,final);     // get transformed polygon px
Polygon(px,n);                    // draw transformed polygon

Setting Up More General Polygon 
Transformation Routines

� trans_poly() could translate a polygon 
by tx,ty

� rotate_poly() could rotate a polygon by θ
about point (tx,ty)

� scale_poly() could scale a polygon by 
sx, sy wrt (tx,ty)

� These would make calls to previously 
defined functions



General Polygon 
Transformation Function 

Prototypes
� void trans_poly(int n, DPOINT p[], DPOINT px[], 

double tx, double ty);

� void rotate_poly(int n, DPOINT p[], DPOINT px[], 
double theta, double x, double y);

� void scale_poly(int n, DPOINT p[], DPOINT px[], 
double sx, double sy, double x, double y);

More 2-D Geometric 
Transformations 

A. Shearing
B. Reflections



Other 2D Affine Transformations
� Shearing (in x direction)

– Move all points in object in x direction an       
amount proportional to y

– Proportionality factor: 
• shx (x shearing factor)

– Equations:
y’ = y

x’ = x + shx*y |1 shx 0 |

P’ = SHX*P SHX = |0 1 0 |

|0 0 1 |

– Move all points in object in y direction an amount 
proportional to x

– Proportionality factor: 
• shy (y shearing factor)

– Equations:
x’ = x

y’ = shy*x + y |1 0 0 |

P’ = SHX*P SHX = |shy 1 0 |

|0 0 1 |

Shearing in y Direction



Reflections

� Reflect through origin
x --> -x
y--> -y
Equations:

x’ = -x
y’ = -y |-1 0 0 |
P’ = Ro*P Ro = | 0 -1 0 |

| 0 0 1 |

Reflect Across y-axis

y --> y
x --> -x

Equations:
x’ = -x |-1 0 0 |

y’ = y Ry = | 0 1 0 |

P’ = Ry*P | 0 0 1 |



Reflect Across Arbitrary Line
Given line endpoints: (x1,y1), (x2,y2)
1. Translate by (-x1,-y1) [endpoint at origin]
2. Rotate by φ [line coincides with y-axis]
3. Reflect across y-axis
4. Rotate by -φ
5. Translate by (x1,y1)
6. Composite transformation:

T = T(x1,y1)*R(-φ)*Ry*R(φ)*T(-x1,-y1)

Reflect Across a Line
Endpoints (x1,y1), (x2,y2)



Coordinate System Transformations
� Geometric Transformations:

– Move object relative to stationary coordinate 
system (observer)

� Coordinate System Transformation:
– Move coordinate system (observer) & hold 

objects stationary
– Two common types

• Coordinate System translation
• Coordinate System rotation

– Related to Geometric Transformations

Coordinate System Translation



Coordinate System Rotation


