Adapting Scanline Polygon Fill
to other primitives

e Example: a circle or an ellipse

— Use midpoint algorithm to obtain intersection
points with the next scanline

— Draw horizontal lines between intersection
points

— Only need to traverse part of the circle or
ellipse

Scanline Circle Fill Algorithm

HModify midpoint cirecle algorithm

For each step draw 4 horizontal lines kcﬁ
Lined (x,y,h,k) 3 V. X

{ [ \
Line (-x+h, yt+k, x+h, y+k); ff 1
Line (-x+h,-y+k,xth,-y+k); // 2 \ }
Line (-y+h, x+k,y+h, x+k);: // 3 4 v, -X
Line (-¥+h,-x+k,y+h,-x+k); // 4 ¢ b

} 2




The Scanline Boundary Fill

Algorithm for Convex Polygons
Select a Seed Point (x,y)

Push (x,y) onto Stack

While Stack is not empty:
Pop Stack (retrieve x,y)
Fill current run y:
-- iterate on x until borders are hit
-- i.e., until pixel color == boundary color

Push left-most unfilled, nonborder pixel above
-->new "above" seed

Push left-most unfilled, nonborder pixel below

-->new "below" seed

Demo of Scanline Polygon Fill
Algorithm vs. Boundary Fill
Algorithm

e Polyfill Program

— Does:
* Boundary Fill
» Scanline Polygon Fill
» Scanline Circle with a Pattern
» Scanline Boundary Fill (Dino Demo)




Dino Demo of Scanline
Boundary Fill Algorithm

Pattern Filling

e Represent fill pattern with a Pattern
Matrix

e Replicate it across the area until
covered by non-overlapping copies of
the matrix

— Called Tiling




‘ Pattern Filling--Pattern Matrix ‘

0 34567829
0 =
1 .
> Pattern Matrix

Ww=3 Pattern

3 012 012
4 olof1]1 0
5 H=3 1[0[1]0 1
6 210100 2
7
8

In general, posn in matrix:
xpos = x%W, ypos = y%H

Using the Pattern Matrix

e Modify fill algorithm
e As (X,y) pixel in area is examined:
if(pat_mat[x%W][y%H] == 1)
SetPixel(x,y);




A More Efficient Way

Store pat_matrix as a 1-D array of bytes or words, e.g., WxH
y%H --> byte or word in pat_matrix
Shift a mask by x%W
e.g. 10000000 for 8x8 pat_matrix
--> position of bit in byte/word of pat_matrix
“AND” byte/word with shifted mask
if result I= 0, Set the pixel

Matrir (=[x = [=[= [x[x [5]
[t [o JoJoJofoJoTo]
Shift Right S
x%W =4
[0 o JoJoJr JofJoJo]
AND

if 1= 0 then SetPixel()

Color Patterns

e Pattern Matrix contains color values

e S0 read color value of pixel directly
from the Pattern Matrix:

SetPixel(x, y, pat_mat[x%W][y%H])




Moving the Filled Polygon

e As done above, pattern doesn’t move
with polygon
e Need to “anchor” pattern to polygon

e Fix a polygon vertex as “pattern
reference point”, e.qg., (x0,y0)
If (pat_matrix[(x-x0)%W][(y-y0)%H]==1)
SetPixel(x,y)
e Now pattern moves with polygon

‘ Pattern Filling--Pattern Matrix ‘

01234567829

0
1 .
2 Pattern Matrix
W=3 Pattern
3 o012 01 2
4 olof1]1 0
5 H=3 1|0]1]0 1
6 21010|0 2
7
8

In general, posn in matrix:
Xpos = X%W, ypos = y*H




Geometric Transformations

e Moving objects relative to a stationary
coordinate system

e Common transformations:
— Translation
— Rotation
— Scaling

e Implemented using vectors and
matrices

Quick Review of Matrix Algebra

e Matrix--a rectangular array of numbers
e 3;: element at row i and column |

e Dimension: m x n
m = number of rows
n = number of columns




A Matrix

An m X n matrix

11 %12 %13 ... ®1in
d231 422 @23 - - - 22n
A= |a3; azp azz + - - a3,

_am1 amz am3 . . . amn_
Dagenerate case: m = 1 {(a row vector)
V==[311'312'313' o a1ﬂ or:

v =l?1 a2 a3 . ea&

Vectors and Scalars

Degenerate Case (n=1l)a column vector--

[a171] a1 Point in space
a21 a2 (x,¥) or (x,y,z)--
a3] as Use vectors:
vV =|. or: YV =|. _
' P =r1 or P =¥
) ¥ =
| i | | Fm 2D 3D

Transpose of a Matrixz aT

al =3 . The transpose of a row vector
1] Ji  is a column vector.

Degenerate Case: men=1, a scalar

g = a11




Matrix Operations--
Multiplication by a Scalar

C =k*A
Cjj = k * ajj, 1<=i<=m, 1<=j<=n

e Example: multiplying position vector by a
constant:
— Multiplies each component by the constant

— Gives a scaled position vector (k times as long)

Example of Multiplying a
Position Vector by a Scalar

Multiplying Pecsition Vector by a Scalar--
Scales the Position Vector

pP'=2%p p

P(x,v) oy




Adding two Matrices

e Must have the same dimension
eC=A+B

C;j = a; + by, 1<=i<=m, 1<=j<=n
e Example: adding two position vectors

— Add the components

— Gives a vector equal to the net
displacement

Adding two Position Vectors:
Result is the Net Displacement

Adding Two Position Vectors

A(xl,yl) |
vl

x1l

/~ yl_!.—:_l"'. |

- —




Multiplying Two Matrices

emxn=(Mxp)*(pxn)
eC=A*B
ec,= 2 a*b, , 1<=k<=p

e I[N other words:

—To get element in row i, column j

» Multiply each element in row i by each
corresponding element in column j

» Add the partial products

Matrix Multiplication
An Example

Multiplying a 2x3 matrix by a 3x2 matrix
Result will be a 2x2 matrix

[—* 4| _y[provorizro=is 1 Row
1 3 5| 3 . col
6 - -
30 2> @4 %_ 15 1 Rrow
|1 3 5_ 1 3 * &k Col
0 |6 - -
[3 0 2'*,- 4 15 1 Row
i 3 § 3 [145+3%1+5%0=8 J cel
- - 6
(3 0 2]|5 [ 15 17 Row
1 3| 8 Col
- “lo |s




Multipy a Vector by a Matrix
o\ =A*V

e If V is a m-dimensional column vector,
A must be an m x m matrix

oV =2 a, *v,, 1<=k<=m
—So to get element i of product vector:

» Multiply each row i matrix element by each
corresponding element of the vector

* Add the partial products

An Example

Multiplying a 2-D Vector by a Matrix

S EHNH

|, (8] 34540%2=15]
_*_ 1 % k ok k

3 o7, (W] N 15 1
1 4 145+ 4%2=13




Geometrical
Transformations

e Alter or move objects on screen

e Affine Transformations:

— Each transformed coordinate is a linear combination
of the original coordinates

— Preserve straight lines

e Transform points in the object
— Translation:
¢ A Vector Sum

— Rotation and Scaling:
* Matrix Multiplies

Translation: Moving Objects

TRANSLATIONS IN 2-D

(Given translation components, tx, ty)

Prix",y") P:I:x:l —5 p' =|:x::|
¥ '}
P(x,y) ty
tx
Component rule:
i _— x' = x + tx
y' =y + ty
. ' x+tx
General rule: So: P = vty

T

P =P+T

where T= I:tx:l
ty




Scaling: Sizing Objects

AN EXAMPLE OF SCALING SCALING FACTORS:

9
g sx=3{ 5y =4
"
6 4 Pl =(2,1) — (6,4)
5 P2 =(5,1) — (15,4)
4 P3 =(5,2) — (15,8)
3 9 P4 =(2,2) —> (6,8)
3
2
| =1 o
Resulting figure is
1234567892 1111111 3 times as wide,
01234586 4 times as high
Component Rule: x' = sx¥x
y' o= syvy
Want a general rule for wvectors
Adding won't work
Try P' = S%p But what is 8°
Scaling, continued
P’ = S*P

P, P’ are 2D vectors, so S must be 2x2 matrix
Component equations:
X' = SX*X, Yy = sy*y

x| _ [s11 s12| |=x x!
v'| T [s21  s22|*|ly| °F ¥

So: sll=sx, sl1l2=0, s21=0, s22=sy

sll*x + s12%y
s21*x + s22%y

sX

Therefore: g= |:O

5??] {The scaling matrix)




Rotation about Origin

e Rotate point P by 8 about origin
e Rotated point is P’

e Want to get P’ from P and 0

o P’ =R*P

e R is the rotation matrix

e Look at components:

‘ Rotation: X Component

Rotate P by 6 about origin

X =T cos(®) B
¥ =r sin(p) Y-A.B
A =D cos(p)
So: B = C sin(p)
X' =T cos(8) cos(P) - T sin(@) sin(P) D =r cos(@)

X' = X cos(g) - ¥ sin(g) C =rsin@)




Rotation: Y Component

Rotate P by 6 about origin

P xy"

F
P xy)
%y E
[
* '=E+F
=E +
X =T COS(P) % =D sin@)
¥y =rsin(@) F = C cos(p)
D =r cos(8)
So: C =r sin(g)

¥' =r cos(0) sin(@) + r sin@) cos(y)
¥' =¥y cos(®) + x sin(@)

Rotation: Result
P'=R*P
R must be a 2x2 matrix
Component equations:
X' =X cos(6) - y sin(6)
y' = x sin(B) +y cos(0)

x] _ [r11 r12] [x =’
v~ [r21 roz|*|ly| °F ¥’

So: rll=cos{8), rl2=-sin(0), r2l=sin{0), r22=cos ()

rll*x + rl2*y
r2l*x + r22*y

Therefore: R =

[cos(0) -sin(0)
| sin (@) cos (9)

The Rotation Matrix




Transforming Objects

e For example, lines

1. Transform every point & plot (too
slow)
2. Transform endpoints, draw the line

» Since these transformations are affine,
result is the transformed line

Composite Transformations

e Successive transformations

e €.g., scale then rotate an n-point object:
1. Scale points: P’ = S*P  (n matrix multiplies)
2. Rotate pts: P” = R*P’ (n matrix multiplies)
But:
P” = R*(SP), & matrix multiplication is associative
P” = (R*S)*P = Mom,*P
So Compute Mo, = R*S (1 matrix mult.)
P” = Meomp*P (N matrix multiplies)
n+1 multiplies vs. 2*n multiplies




Composite Transformations

Another example: Rotate in place
center at (a,b)
1. Translate to origin: T(-a.-b)
2. Rotate: R(0)
3. Translate back: T(a,b)

N i

Tl = T(-a,-b) T2 = R(0) T3 = T(a,b)

Rotation in place:

1.PP=P+T1

2. P" = R*P’ = R*(P+T1)

3.P”=P"+T3 = R*(P+T1) + T3

Can’t be put into single matrix mult. form:
e, P” 1= Tem*P

But we want to be able to do that!!
Problem is: translation--vector add
rotation/scaling--matrix multiply




Homogeneous Coordinates

e Redefine transformations so each is a
matrix multiply

e Express each 2-D Cartesian point as a
triple:

— A 3-D vector in a “homogeneous”
coordinate system

X xh where we defi ne:
y yh xh = wx,
w yh = wy

e Each (x,y) maps to an infinite number of
homogeneous 3-D points, depending on w

e Take w=1

e Look at our affine geometric
transformations




Homogeneous Translations

P' = + T {Cartesian 2-D coordinates)
X x' tx
P = P! = . T =
v b4 ty
x x' (Homogenesous coords)
P =|y P' =|¥’ P' = T*P
1 1 What matrix is T?
x' t11 12 +£13 x
v t21 £22 t23 v
1 t31 £32 £33 1
matrix multiplication component egns Results
x'=tll*x+tl12%y+tl3 x'=x+tx; tll=l, £12=0, tl3=tx
Y'=t21*x+t22*y+t23 Y":y+ty; t21=0, t22=1 , t23=ty
1 =t31*x+t32%*y+t33 t31=0, t32=0, t33=1

So:

T

1 0 t=x
= |0 1 ¢ty
o 0 1

Homogeneous Scaling (wrt origin)

P' = S*Pp

Component Equations:
X' = sx*x, y' = sy*y
x' sll sl12 s13 X
yv'| =|s21 =22 s23 v
1 s31 s32 =33 1

Doing the matrix multiplication:

X' = sll*x + sl12%y + s13
y' = sl12%x + s22%y + =523
1 = s31%*x + s32%y + s33
Comparing with component egns:
sll=sx, s12=0, s13=0
s21=0, s22=sy, s23=0
s31=0, s32=0, s33=1
So: sx 0 0

s = |0 sy 0

0 0 1




‘Homogeneous Rotation (about origin)

P’ = R*P
Component Equations:
X' = x*cos(8) - y*sin(g), y' = x*sin(8) + y*cos(8)

x*t rll rl2 rl13 b4
v =|r21l r22 r23 v
1 r31 r32 r33 1

Doing the matrix multiplication:
x' = rll*x + rl2*y + rl3
v' r2l*x + r22%y + r23
1 r3l*x + r32*%y + r33

Comparing with component egns:

rll= cos(8) r12=-sin(g) rl3=0
r2l= sini(8) r22= cos(8) r23=0
r31=0 r32=0 r33=1
So: cos(f) -sin(B) O
R = [sin(8) cos{g) O
0 0 1

Composite Transformations with
Homogeneous Coordinates

e All transformations implemented as homogeneous
matrix multiplies

e Assume transformations T1, then T2, then T3:
Homogeneous matrices are T1, T2, T3
P’ =T1*P
P” = T2*P’' = T2%(T1*P) = (T2*T1)*P
P =T3*P"=T3*((T2*T1)*P)=(T3*T2*T1)*P
Composite transformation: T = T3*T2*T1
Compute T just once!




Example

Rotate line from (5,5) to (10,5) by 90° about (5,5)
T1=T(-5,-5), T2=R(90), T3=T(5,5)

T=T3*T2*T1
| 105 ] | cos90 -sing0 0 | | 1 0 -5 |
T=] 0215]|* sin90 co0s90 0 |*|] 0 1 -5 |
| 001 |_ O 0O 1] |00 1|
| 0 -1 10 |
T=1 1 0 0|
|0 0 1|

Example, continued
P’ = T*P1

| 0-1 10| | 5 | | 5|
PI' =] 1 0 O]* 5| =] 5|

|_0 0 1| [_1_] | _1_|

| 0-1 10| | 10| | 5 |
P2 =| 1 0 O0]|* 5] =10 |

|_0 0 1| [_ 1] | _1_]|
i.e., PI' = (5,5), P2 =




Setting Up a General 2D
Geometric Transformation
Package

Multiplying a matrix & a vector:
General 3D Formulation

| | a0 al a2 |

| x | x|
|y | =] aadtas| * | y|
| z' | | a6 a7 a8_| | z |
So: x’ = a0*x + al*y + a2*z

y' = a3*x + ad4*y + ad*z

Zz' = ab*x + ar*y + a8*z

(9 multiplies and 6 adds)




Multiplying a matrix & a vector:
Homogeneous Form

| | a0 al a2 |

| X | x|
| y | =| a3 ad a5 | * | vy |
|-+ | |0 0 1_| [|_1]|
So: x’ = a0*x + al*y + a2

y' = a3*x + ad4*y + ab

(4 multiplies and 4 adds)
MUCH MORE EFFI Cl ENT!

Multiplying 2 3D Matrices:
General 3D Formulation

| cOclc2 | | a0 al a2 | | bO bl b2 |
| ¢c3 c4 c5 |=|] a3 a4 a5 |*| b3 b4 b5 |
| ¢c6 c7 c8 | | _a6 a7 a8 | | b6 b7 b8_|

So: c0 = a0*b0 + al*b3 + a2*b6
Ei ght nore simlar equations
(27 multiplies and 18 adds)




Multiplying 2 3D Matrices:
Homogeneous Form

c0clc2| | a0 al a2 | | bO bl b2 |
| ¢c3 c4 c5 |=|] a3 a4 a5 |*| b3 b4 b5 |
| 00 1 |]0 0 1 |]0 0 1 |

So: cO0 = a0*b0 + al*b3 + O
(Simlar equations for cl, c3, c4)

And: c2 = a0*b2 + al*b5 +a2
(Simlar equation for cb)

(12 multiplies and 8 adds)

MUCH MORE EFFI Cl ENT!

Much Better to Implement our

Own Transformation Package

e In general, obtain transformed point P’
from original point P:

eP'=M*P

e Set up a a set of functions that will
transform points

e Then devise other functions to do
transformations on polygons
—since a polygon is an array of points




e Store the 6 nontrivial homogeneous
transformation elements in a 1-D array A

— The elements are a[i]
«a[0], a[1], a[2], a[3], a[4], a[5]

e Then represent any geometric transformation
with the following matrix:

| a[0] a[1] a[2] |
= | [3] a[4] a[9] |
| _ 0 1

e Define the following functions:

—Enables us to set up and transform
points and polygons:

settranslate(double a[6], double dx, double dy); // set xlate matrix
setscale(double a[6], double sx, double sy); // set scaling matrix
setrotate(double a[6], double theta); /I set rotation matrix
combine(double c[6], double a[6], double b[6]); /C=A*B
xformcoord(double c[6], DPOINT vi, DPOINT* vo); // Vo=C*Vi
xformpoly(int n, DPOINT inpts[], DPOINT outpts[], double t[6]);




e The “set” functions take parameters that
define the translation, scaling, rotation and
compute the transformation matrix
elements a[i]

e The combine() function computes the
composite transformation matrix elements
of the matrix C which is equivalent to the
multiplication of transformation matrices A
and B

(C=A*B)

e The xformcoord(c[ ],Vi,Vo) function

— Takes an input DPOINT (Vi, with x,y
coordinates)

— Generates an output DPOINT (Vo, with x',y"
coordinates)

— Result of the transformation represented by
matrix C whose elements are cJi]




e The xformpoly(n,ipts| ],opts| ],t[ ]) function
— takes an array of input DPOINTSs (an input
polygon)
— and a transformation represented by matrix
elements t[i]
— generates an array of ouput DPOINTSs (an
output polygon)
* result of applying the transformation {[ ] to the
points ipts| ]
— will make n calls to xformcoord()
* n = number of points in input polygon

An Example--Rotating a
Polygon about one of its
Vertices by Angle 6

e Rotation about (dx,dy) can be achieved by
the composite transformation:

1. Translate so vertex is at origin (-dx,-dy);
Matrix T1

2. Rotate about origin by 8; Matrix R
3. Translate back (+dx,+dy); Matrix T2

e The composite transformation matrix
would be: T =T2*R*T1




Some Sample Code:
Rotating a Polygon about a
Vertex

Example Code: rotating a polygon about a vertex

DPOINT p[4]; /I input polygon

DPOINT px[4]; /Il transformed polygon

int n=4; /l number of vertices

int pts[ ]={0,0,50,0,50,70,0,70}; // poly vertex coordinates
float theta=30; /l the angle of rotation

double dx=50,dy=70; /l rotate about this vertex
double xlate[6]; /[ the transformation 'matrices

double rotate[6];
double templ6];
double final[6];




for (int i=0; i<n; i++) // set up the input polygon
{ p[il.x=pts[2*];
pli].y=pts[2*i+1]; }

Polygon(p,n); /[ draw original polygon
settranslate(xlate,-dx,-dy); // setup T1 trans matrix
setrotate(rotate,theta); /[ set up R rotaton matrix

combine (temp,rotate,xlate); // compute R*T1 &...

/[ save in temp
settranslate(xlate,dx,dy); I/l set up T2 trans matrix
combine(final xlate,temp);  // compute T2*(R*T1) &...

I/l save in final
xformpoly(n,p,px.final); // get transformed polygon px
Polygon(px,n); /l draw transformed polygon

Setting Up More General Polygon
Transformation Routines

e trans_poly() could translate a polygon
by tx,ty

e rotate_poly() could rotate a polygon by 6
about point (tx,ty)

e scale_poly() could scale a polygon by
SX, Sy wrt (tx,ty)

e These would make calls to previously
defined functions




General Polygon
Transformation Function

Prototypes

e void trans_poly(int n, DPOINT p[], DPOINT px([],
double tx, double ty);

e void rotate_poly(int n, DPOINT p[], DPOINT px(],
double theta, double x, double vy);

e void scale_poly(int n, DPOINT p[], DPOINT px[],
double sx, double sy, double x, double y);

More 2-D Geometric
Transformations

A. Shearing
B. Reflections




Other 2D Affine Transformations

e Shearing (in x direction)

— Move all points in object in x direction an
amount proportional to y

shx

— Proportionality factor: —

* shx (x shearing factor) L///f
— Equations:

y' =y

X' = X + shx*y |1 shx O

P = SHX*P SHX = |0 1 0|

|0 O 1|

Shearing in y Direction
— Move all points in object in y direction an amount

proportional to x

— Proportionality factor:
* shy (y shearing factor)

— Equations: shy
X' =X
y' = shy*x + vy | 1 0

0 |
P = SHX*P  SHX = |shy 1 O |
|0 0 1]




Reflections

e Reflect through origin
X --> -X
y-->-y
Equations:
X’ - X
y’ -y
P Ro*P Ro =

1
O O K

| (S

- ‘

1
o+~ O
= O O

Reflect Across y-axis

y==y -
X ==> -X |
Equations:
X' = -X |-1 0 0|
y' =y Ry = 0 1 0]
P = Ry*P | 0 0 1|




Reflect Across Arbitrary Line

Given line endpoints: (x1,y1), (x2,y2)
Translate by (-x1,-y1) [endpoint at origin]
Rotate by @|[line coincides with y-axis]
Reflect across y-axis

Rotate by -@

Translate by (x1,y1)

Composite transformation:
T =T(x1,y1)*R(-@*Ry*R(®)*T(-x1,-y1)

ook wd R

Reflect Across a Line
Endpoints (x1,y1), (x2,y2)

x2,y2 |
. ¢
x1,vy1 *
2. Rotate hy ¢ 3. Reflect across
1, Translate by (-x1,-¥1) (2.x1) y-axis
tang=

x2,v2

| 5 */e
* ° . x1,vl
| 4. Rotate by -¢

5. Translate by (x1,y1)

T = TS*T4*T3*T2*T1




Coordinate System Transformations

e Geometric Transformations:
— Move object relative to stationary coordinate
system (observer)
e Coordinate System Transformation:

— Move coordinate system (observer) & hold
objects stationary
— Two common types
» Coordinate System translation
» Coordinate System rotation

— Related to Geometric Transformations

Coordinate System Translation

yy yo ¥
P P’ PP

[ X o X o4 L [ X

— X X
1 x x x
Geomeiric Translation Coordinate system
by + tx Translation by -tx
Y=x+1ix X=x+ix

50 a Coordinate System Translation by vector -P
is equivalent to a Geometric Translation by vector +P

T®) <==> T (P)

i.e., if P = (px,p¥): then:
110 px| |10 -px|

[0 01 | 00 1




Coordinate System Rotation

Yy v ¥ .
-8 ¥
/ %
| X x' | X
Geometric Rotation by © Coordinate
System
Rotation by -0 x'

Effect is the same

Re(0) <==> Rg(-0)




