Computer Graphics
Attributes

Computer Graphics

Attributes

—Line and Text Attributes
* Fonts in Windows

— AreaFill
* Boundary/Flood Fill Algorithms
» Scanline Polygon Fill Algorithm

Attributes

= How primitives are to be displayed

= Most systems use modal attributes
— Values in effect until changed

Text Attributes

=« Font (typeface)
— Character set with particular design style
= Display style

—underlined, italic, boldface, outlined,
strikeout, spacing, etc.

« Color
« Size (width, height)--specified in points
—Point = 1/72 inch

Text Attributes, continued

« Orientation--how much character is rotated

= Escapement--orientation of line between first &
last character in a string

200 200

C
2700 2700

Escapement Orientation

Character Escapement & Orientation

Line Attributes

= Color
= Width

« Style--solid, dotted, dashed, etc.
Can be specified by giving a pattern array
e.g., pat[]={1,1,1,1,1,1,0,0}
Repeat this pattern on entire line:

ith pixel along line:
if (pat[i%8]==1) SetPixel(x,y)

=« In Windows, use a pen (CPen)

Area Fill

= Important for any closed output primitive
— Polygons, Circles, Ellipses, etc.
« Attributes:
— fill color
— fill pattern
« 2 Types of area fill algorithms:
— Boundary/Flood Fill Algorithms
— Scanline Algorithms

Area Fill Algorithms

= See CS-460/560 Notes Web Page

& Link to:
— Week 5-BC: Area Fill Algorithms
« URL:

— http://www.cs.binghamton.edu/~reckert/460
ffillalgs.htm

Boundary/Flood Fill Algorithms
= Determine which points are inside from pixel
color information

— e.g., interior color, boundary color, fill color, current
pixel color

— Color the ones that are inside.

Current Pixel

Fill Color: Red

Interior Color: White
Boundary Color: Black
Current Color: White

Scanline Algorithms

= Examine horizontal scanlines spanning area

= Find intersection points between current
scanline and borders

= Color pixels along the scanline between
alternate pairs of intersection points
=« Especially useful for filling polygons

— polygon intersection point calculations are very
simple and fast

— Use vertical and horizontal coherence to get new
intersection points from old

Current
Scanline

® Intersection Points

Scanline Algorithms

Boundary/Flood Fill Algorithms

= Determine which points are inside from pixel
color information

— e.g., interior color, boundary color, fill color, current
pixel color

— Color the ones that are inside.

Current Pixel

Fill Coloxr: Red

Interior Color: White
Boundary Color: Black
Current Color: White

Connected Area Boundary Fill
Algorithm

= For arbitrary closed areas
& Input:

— Boundary Color (BC), Fill Color (FC)
— (x,y) coordinates of seed point known to be
inside
= Define a recursive BndFill(x,y,BC,FC)
function:
If pixel(x,y) not set to BC or FC, then set to FC
Call BndFill() recursively for neighboring points

=« TO be able to implement this, need an
inquire function

=e.g., Windows GetPixel(x,y)
— returns color of pixel at (x,y)

The BndFill() Function
BndFill(x,y,BC,FC)
{
color = GetPixel(x,y)
if ((color '=BC) && (color !'=FC))
{
SetPixel(x,y,FC);
BndFill(x+1,y,BC,FC); BndFill(x,y+1,BC,FC);
BndFill(x-1,y,BC,FC); BndFill(x,y-1,BC,FC);
}

}

=« This would be called by code like:
BndFill(50,100,5,8); // 5,8 are colors
— Windows GDI: colors are COLORREFs
— RGB() macro could be used
= As given, only works with 4-connected regions
= Boundary must be of a single color
— Could have multiple interior colors

|l A 4-connected Region An 8-connected Region _ |

Flood Fill Algorithm

& A variation Boundary Fill

« Fill area identified by the interior color
— Instead of boundary color
— Must have a single interior color

= Good for single colored area with
multicolor border

Ups & Downs of
Boundary / Flood Fill

« Big Up: Can be used for arbitrary areas!

= BUT-- Deep Recursion so:

— Uses enormous amounts of stack space
* (Adjust stack size before building in Windows!)

= Also very slow since:
— Extensive pushing/popping of stack
— Pixels may be visited more than once

— GetPixel() & SetPixel() called for each pixel
2 accesses to frame buffer for each pixel plotted

Adjusting Stack Size in VC++

« ‘Project’ on Main Menu

— Properties
 Configuration Properties
— Linker
System
Stack Reserve Size:
perhaps 10000000
Stack Commit Size:
perhaps 8000000

Scanline Polygon Fill
Algorithm

« Look at individual scan lines

= Compute intersection points with polygon
edges

« Fill between alternate pairs of intersection
points

Current
Scanline

® Intersection Points

Scanline Algorithms

More specifically:

« For each scanline spanning the polygon:

— Find intersection points with all edges the
current scanline cuts

— Sort intersection points by increasing x

— Turn on all pixels between alternate pairs of
intersection points

= But--

— There may be a problem with intersection
points that are polygon vertices

12 3 . .
—R 4 No wvertices intersected (OK!)
1 2 3 .4 5

-\ u Yertex a local max (OKIl)
1 -z¥- 4 2 ¢ &' Yertex not local min or max
Probleml! 1!
1! -} E 4 V5 5 vertex a local min {OKEl)
112

e 3 ¥ertex not local min or max
\ Problem! ']

Dealing With Vertex Intersection Points

Vertex inter section pointsthat are not local
max or min must be preprocessed!

Preprocessing non-max/min
Intersection points
= Move lower endpoint of upper edge up by
one pixel
sle,y<-y+1
= What about x?
m = ?y/?X, so ?x = (1/m) * ?y
But ?y =1, so:
X<--X+ 1/m

Preprocessing

Hew endpoint

scanline k+1

scanline k

Preprocessing Edge E

Active Edge

« A polygon edge intersected by the current
scanline

« As polygon is scanned, edges will become
active and inactive.

= Criterion for activating an edge:

ysl = ymin of the edge
(Here ysl =y of current scanline)

& Criterion for deactivating an edge:
«Yysl = ymax of the edge

Vertical & Horizontal
Coherence

= Moving from one scanline to next:
=y=y+1
« |f edge remains active, new intersection
point coordinates will be:
ynew = yold + 1
xnew = xold + 1/m
(1/m = inverse slope of edge)

Scanline Polygon Fill
Algorithm Input

& List of polygon vertices (xi,yi)

Scanline Polygon Fill Algorithm
Data Structures

1. Edge table:
— For each edge: edge #, ymin, ymax, X, 1/m
2. Activation Table:

— (y, edge number activated at y)
 Provides edge(s) activated for each new scanline
» Constructed by doing a "bin" or "bucket" sort

3. Active Edge List (AEL):

— Active edge numbers sorted on x
* A dynamic data structure

Bin Sort for Activation Table

Edge Table

11 a|ymin | ymax]
10 0 6 11
1 2 11
2 2 L
3 3 5 10
4 1 1 6 10

tivation Table

- NW RM G~ @
bl
o

v | activated edge
™ 2 1 2
£ . 3 2
4
5 3
6 0 4

123 45 67

Scanline Polygon Fill Algorithm

1. Set up edge table from vertex list; determine range of
scanlines spanning polygon (miny, maxy)

2. Preprocess edges with nonlocal max/min endpoints

3. Set up activation table (bin sort)

4. For each scanline spanned by polygon:
— Add new active edges to AEL using activation table
— Sort active edge list on x

— Fill between alternate pairs of points (x,y) in order of
sorted active edges

— For each edge e in active edge list:
If (y I= ymax[e]) Compute & store new x (x+=1/m)
Else Delete edge e from the active edge list

Scanline Polygon Fill Algorithm Example

poly={1,1, 2,5, 5,4, 8,7, 10,4, 10,2, 1,1}

8 edge |x1 |yl |x2|y2|sgn(Dy)
7 0 | 1| 1| 2| 5| +
6 1| 2| 5| 5| 4] -
2 | 5| 4| 8] 7| +
5 K 3| 8| 7|10| a| -
1 (4) |10| 4|10| 2| - ¢
3 A Y 10| 2| 1| 1| -
2 J 0o | 1| 1| 2| 65| ~+
1
0 Edge Table
01234 5678091011 |edge| 1/m | ymin | x ymax
0 | 174 | 1 T 5
i ; 1| -3 4 5 5
Activation Table 9 1 1 .]
Y 1|2]3]4|5/6]7 3 |-2/3 | 495 [1091/3] 7
activated |0| |4]|1|3 g g i—)a 13—)10 ;
edge s 5 2

Scanline Poly Fill Alg. (with example Data)

Edge Table (As Algorithm Executes)

Edge | 1/m | ymax | ymin| x

0 1/4 5 1 1, 1.25, 1.5, 1.75, 2

1 -3 5 4 5, 2

2 1 7 4 5,6, 7, 8

3 |-2/3 7 5 9.33, 8.67, 8

4 0 4 3 10, 10

5 9 2 1 1, 10

Active Edge List (As it dewvelops)

v 1 2 3 4 5 6 7
Active | , 5 10,5 (0,4 |0,1,2,4 |0,1,2,3 |2,3 |2,3
Edges
Fill 1-1 |1-10 | 2-10| 2-5,5-10| 2-2,6-9 | 7-9 | 8-8
between

