
The Internet:
Networking with

Stream-based Sockets

The Internet
• A Global Network of Networks
• ARPANet: SRI, Utah, UCLA, UCSB, (1969)

– Defense Dept. Advanced Research Projects Agency (DARPA)
– Stanford Research Institute (Doug Engelbart)
– Designed to survive bomb attacks
– Distributed control, Expandable

• Ethernet
– Global standard for interconnecting computers
– Xerox PARC (Early 70s)
– Client/Server architecture

• Exponential Growth
– Tens of Millions of Computers
– Hundreds of millions of Users

The Internet
• A Packet Switched Network

– Like Postal System
– Messages broken up into packets (like

envelopes)
--
| Error Detect | Data | Header |
| (Check Sum) | | (Addresses) |

Computer Node Addresses:

• IP (Internet Protocol)
– 32 bit numeric address in four 8-bit fields:
– 128.226.6.4 (bingsuns IP Address)

| |
network computer
(city/state) (street/number) <-- postal analogy

– Called the IP Address
• TCP (Transmission Control Protocol):
• Send Site: Breaks message into packets
• Receive Site: Collects & Reassembles

packets in proper order

“Best” path between computers is
chosen using Routers

2 4

1
3

7
5

6

Domain Names

• Synonyms for IP Addresses
• bingsuns.binghamton.edu

| |
individual largest
machine domain
– Synonym for 128.226.6.4

• Internet Domain Name Server (DNS)
software maps domain names to IP
addresses

Common High-Level Domain
Names

• com: commercial
• edu: educational
• gov: government
• mil: military
• org: other organization
• net: network resources
• --: country name

– e.g., ca = Canada

The .NET Dns Class
• In System.Net namespace
• Dns: a class that has methods that retrieve information

about a specific host from the Domain Name Server
– Dns.GetHostByName(string hostName) and Dns.GetHostByAddress(string

hostIPaddress) static methods

– Both return an IPHostEntry object containing host information
• For GetHostByName(hostName) it gives access to the IP address(es)

corresponding to the DNS name specified in hostName
– That object’s AddressList property can be used to set up an array of

IPaddresses that correspond to the hostname
• For GetHostByAddress(hostIPaddr) it gives access to domain

name/aliases for the specified IP address
– That object’s Aliases property is an array of domain names

– See GetIPAddress example program

Networking Software

• Client/Server Model
– Client Program -- seeks a service from remote

computer
– Server Program -- provides a service to a client

running on a remote computer
– Computers are usually connected over a network
– Examples

• Print Server
• File Server
• Information Server

Client/Server Model

Information Servers
• Program handles requests for information
• Some examples

– e-mail: electronic mail service
– telnet/Rlogin/SSH: remote logon services
– ftp/SSH: file transfer service
– Some older text-based information servers:

• gopher: net browsing service (text based)
• archie/veronica: automated net search services
• WAIS: automated file content search service
• Net News: network bulletin board service

– WWW: hypermedia access to internet (Web
page service)

Network Communication Between
Computers

•Applications running on different computers can
communicate with each other

–Server Application: Waits for other applications on
other computers to open a communication connection
–Client Application: Attempts to open a connection

•When connection is established, data can be
exchanged
•Either can close the communication
•Connections:

–Two programs running on different computers that are
communicating with each other form a connection
–Data is sent and received along the connection

Network Socket Stream
• Basic object used to perform network communication
• Used to read/write messages going between apps

– (Like a file stream in file I/O)

• A Socket is a communication "endpoint“
– There's a socket at each end of the connection

• Windows support for sockets: in the Winsock API
– MFC encapsulates this in the CAsyncSocket base class

• Provides complete, event-driven socket communications
• Lowest level support -- Notes at:

www.cs.binghamton.edu/~reckert/360/17b_sockets_f03.html

• Higher level support from derived classes like CSocket
• .NET encapsulates socket support in:

– System.Net.Sockets namespace
– With .NET sockets, networking is viewed like file I/O

• Read from /write to a socket stream as easily as from/to a file stream

Making a Socket Connection to a
Process Running on Another Computer

– Specify the IP Address of computer where the other
application is running
• Identifies a machine

– Also specify the Port the application is listening on
• Identifies the program that should handle the

communication
– e.g. port 80 is reserved for web document transfer

– IP Address/Port are like number/extension in
telephone communication
• Port can be any number from 0 to 65535

– Numbers 0 to 1023 may be used by the operating system
– So use numbers greater than 1023

Details of Establishing a Simple Server (Using
TCP/IP Network Socket Streams)

1. Create a TcpListener class object
• TcpListener myListener = new TcpListener(5000);

– Parameter: port # to bind the Server to on the machine it’s running on

2. Call TcpListener object’s Start() method to start
listening for connection requests

• myListener.Start();

3. Use TcpListener’s AcceptSocket() to accept an
incoming request and establish the connection

• Socket myConnection = myListener.AcceptSocket();
– Returns a Socket object

» Socket object will be null if connection was not made
» Its Connected property will be true after socket is connected

4. Create a NetworkStream associated with the socket
• NetworkStream myNetStream = new NetworkStream(myConnection);

– This will be used to do the reading and writing as in File I/O

Using the Server Network Stream Connection

5. Create BinaryReader and BinaryWriter objects for
transferring data across the network stream

BinaryWriter myWriter = new BinaryWriter(myNetStream);
BinaryReader myReader = new BinaryReader(myNetStream);

6. Use BinaryReader/BinaryWriter methods to read/write
data, e.g.:

string receiveStr, sendStr;
receiveStr = myReader.ReadString();

– Reads a line of text from the network stream (sent by the Client)
myWriter.Write(sendStr);

– Writes the specified string to the network stream (to the Client)

7. When done, close readers, writers, network stream, and
connection socket

myReader.Close(); myWriter.Close();
myNetStream.Close(); myConnection.Close();

Details of Establishing a Simple Client (Using
Network Streams)

1. Create a TcpClient class object
TcpClient myClient = new TcpClient();

2. Try to connect to a Server
• Call Client object’s Connect(IP address, port) method

– Specify IP address (or domain name) of machine Server is running on
and Server’s port number in the two parameters

– If successful, an underlying socket will be created for communications
and a positive integer is returned

– Will throw an exception if no Server is available at that address & port
myClient.Connect(“localhost”, 5000);
– “localhost” = “loopback” = 127.0.0.1 means same machine as server

3. Get a NetworkStream associated with the TcpClient
NetworkStream myNetStream = myClient.GetStream();
– This will be used to do the reading and writing as in File I/O
– An underlying socket will be created

Using the Client Network Stream Connection

4. Create BinaryReader and BinaryWriter objects for
transferring data across the network stream

BinaryWriter myWriter = new BinaryWriter(myNetStream);
BinaryReader myReader = new BinaryReader(myNetStream);

5. Use BinaryReader/BinaryWriter objects to read/write
data

string receiveStr, sendStr;
receiveStr = myReader.ReadString();

– Reads a line of text from the network stream (sent by the Server)
myWriter.Write(sendStr);

– Writes the specified string to the network stream (to the Server)

6. When done, close readers, writers, network stream, and
TCP Client

myReader.Close(); myWriter.Close();
myNetStream.Close(); myClient.Close();

Using Threads with Sockets

• Whenever we try to establish and use a connection, the
thread we do it in blocks until the connection is
established
– Blocking also takes place when reading or writing data

• To avoid the entire application from freezing, run this
code in a separate thread

A Network Chat Client/Server System
• A Server and a Client Application

– See Chapter 23 in your Deitel text book

• ChatServer application waits for a Client application to
connect to a specified port on its computer

• ChatClient application attempts to connect to that port
on that machine

• Both ChatServer and ChatClient have a single-line
“input” text box and a multi-line “display” text box

• When a connection is established, either can type text in
its input text box and the text will appear in the other’s
display text box when user hits <Enter> key

• The communication is done through network streams

ChatServer Application
• Form’s constructor starts a new thread to accept Client connections

– Thread’s RunServer() method does the work (executes when thread starts)
– Creates and starts a TcpListener on port 5000
– Listens for a connection attempt from a Client

• Connection is made (socket obtained) with listener’s AcceptSocket() method
• Uses new socket’s NetWorkStream() method to get a network stream
• Creates binary reader & writer to read/write data over the network stream connection
• Enters into a do/while loop that continually uses the binary reader to read a string

from the network stream
– Any string read is added to the text displayed in the “display”text box
– Do/While loop continues until the socket is disconnected or a “>>CLIENT

TERMINATE” string is received
• After do/while loop exits, the reader, writer, network stream, and socket are closed

• Input text box’s KeyDown handler:
– Writes the text in the input text box to the network stream using its binary writer

whenever the user types <Enter> as long as the connection is valid
• If the text entered is “TERMINATE”, closes the connection socket

• An event handler for the form’s “Closing” event is added
– Calls System.Environment.Exit(System.Environment.ExitCode) to close the app

• Exit() method of Environment class closes all threads associated with the app

ChatClient Application
• Same overall structure as the ChatServer
• Form’s constructor starts a new thread to connect to the Server

– Thread’s RunServer() method does the work
• Instantiates a TcpClient and run its Connect(“localhost”, 5000) method

– Connects to the Server on the same machine
– This call blocks until connection request is accepted

• Uses TcpClient’s GetStream() method to create a network stream
• Creates a binary reader and a binary writer to read/write data over the network

stream connection
• Enters into a do/while loop that continually uses the binary reader to read a string

from the network stream and display it in the form’s “Display” text box
• After do/while loop exits, the reader, writer, NetWorkStream, and TcpClient are

all closed and application is closed using the Application.Exit() method

• Input text box’s KeyDown handler
– Write the text in the input box to the network stream using its binary writer as

in the ChatServer application

• For both the Server and the Client, it would be much better to use
Try/Catch blocks

