Multithreading

A Process

» A Processisarunning application

* A Processis composed of Threads

—e.g. aprocess may have:
* A GUI thread
» Several computational threads
* A file1/O thread
* A print thread

Multithreading

*Thread

—A block of code that is the fundamental unit of
execution to which processor alocates processor time

—Threads run concurrently and share the cpu(s)
*OS manages running threads with scheduling algorithms
»Switches processor time between threads
*Done so fast and efficiently that it appears al threads are
running simultaneously

—A .NET managed application begins as a single thread
*Can spawn additional threads to partition its tasks

—On multi-cpu system, applications can run faster since
different threads can run on different processors

Concurrent Execution

*Threads run concurrently and asynchronously with
respect to each other
«Example: a GUI application that entersinto along
computational loop
—Running as a single thread:
*While applicatior s single thread is computing, messages on the
message queue are ignored
—So the application’s user interface is frozen until computation finishes
—Running as two threads:
*Relegate the computational work to a background thread

*Now the primary thread is free to service the message queue
—App is now responsive to user input while computation is occurring

Multithreading Complexities

«Since threads run asynchronously, multithreaded
applications are hard to write & debug

—For example, write then read a data structure
*|f both are in a single thread, we know write will occur first

*But if in separate threads, we don't know in advance when each
thread is going to run
—Read first then write & old (wrong) datawill be read

*Threads need to be synchronized

Threadsin .NET

*Threading classes are in namespace:
System.Threading

—Most important class. Thread
*Represents a thread of execution

Implements properties and methods that allow
programmer to launch and manipulate concurrently-
running threads

Some Thread Class Properties
*bool IsBackground

—false (default) means thread runsin foreground

—An application doesn’t end until all its foreground threads have finished
*Background threads are terminated by the CLR

estring Name
—Retrieve/change a thread’s name
*Thread CurrentThread

—Static property returning areference to the calling thread
—Useresult to get or change properties of currently-running thread
*ThreadPriority Priority
—ThreadPriority is an enumeration:
*Highest, AboveNormal, Normal (default), BelowNormal, Lowest
—Determines relative amount of processor time allotted to the thread
—Can be changed:

Thread myThread = Thread.CurrentThread,;
my Thread.Priority = ThreadPriority.AboveNormal;

Starting Threads
| nstantiate a Thread object

—Give constructor a new “thread method”
*This is the method the thread executes when it starts
*Must be “wrapped” in the ThreadStart del egate

*Then use the thread' s Start() method
«Example: /

Thread myThread= new Thread (new ThreadStart (myThreadMethod));
myThread. Start();
Starts the thread and causes myThre%\dM ethod() to run
*Y our application must implement this method:
void myThreadMethod() { // codetorun};
—Thread is now “alive” and remains alive until it terminates
—When the “thread method” returns, the thread ends

Threads-One & Threads-Two

Example Programs

» Form has “Toggle Background Color” & “Start Computation”
buttons and a |abel
— First button handler toggles background between red and green

— Second button handler starts along, nested-loop computation
» When computation is done, label control is turned blue and displays an “ All
Done” message
* Running as asingle thread (as usua):
— After “Start Computation” button isclicked

» Program does not respond to* Toggle Background Color” button until
computation is done (seems to be dead)

* Running in two threads:

— Foreground thread starts a background thread to do the computation when
user clicksthe “ Start Computation” button

— Now the program responds to the “ Change Background Color” button
while the computation is being done

Suspending & Resuming Threads

»Suspend() method temporarily suspends a running
thread
—Any thread can call Suspend() on any other thread
*Resume() method startsit running again
—f athread suspends itself, some other thread must call
Resume() on it to start it again
«Static method Sleep(int iMilliseconds)

—Suspend current thread for a specified number of
milliseconds

—A thread can only call Sleep() on itself

Terminating a Thread

*Abort() method terminates a running thread
myThread.Abort(); /terminates myThread

*Many times athread should pause until the
thread it istrying to abort terminates
—Join(') method does that
otherThread.Abort(); // ask the other thread to finish
otherThread.Join(); // “joins” the other thread
*Pauses (deeps) until other thread finishes

Other Thread Complexities
«Starting and stopping threadsis easy

*Making them work cooperatively with shared data
Isnot -- Thread synchronization is difficult

*One way of synchronizing threads:

—Use Monitors (System. Threading.Monitor class)

*Use “locks” so that only one thread can access data at atime

—Monitor.Enter(obj) static method acquires alock — Thread can then
manipul ate the object’s data

»All other threads are blocked from acquiring the lock and
accessing the data

»|f another thread has executed Enter(), our thread blocks
—Monitor.Exit(obj) static method releases the lock
»Blocked thread can now acquire the lock and manipul ate the data

—See Chapter 15 of the Deitel text book for details

Starting Processes on the System

*A Process component provides access to processes that are
running or can run on the system
—In System.Diagnostics namespace

*TO run a process:
—Instantiate a new Process object

—Set its StartInfo.FileName property to the name of the
executable file

—Invoke its Start() method
Process myProc = new Process();
myProc.StartInfo.FileName = “c:\\Windows\\Notepad.exe”;
myProc.Start();
 StartProcess example program
—Allows user to start any application program on the system

