NET Graphics Unitsand
Transformations

The Windows Clipboard

Device | ndependent Drawing and
Changing Coordinate System

«\Want to be able to control how the output of
our programs looks on different devices
—Printers and video devices use different units
*Also want to be able to use different
coordinate systems
—Different units (inches, centimeters, device units)
—Change direction of coordinate axes
—Rotate, trandate, scale what is displayed

Video and Printer Coordinates

*Device coordinates: x-axisto the right, y-axis down
*Video uses pixel units
—Resolution of most video display modes is about 100 dpi
(dots per inch)
For printer, printer dot units, but under the GDI+ ...

—Coordinates passed to its Graphics drawing functions are
interpreted as 0.01 inch units, regardless of printer
*So for most applications we'll get about the same
results when we use the same coordinates to draw on
a video Graphicsobject and a printer Graphics object

Manual Coordinate System Conversions

*Usethe DpiX and DpiY properties of the Graphics object to
adjust coordinates passed to drawing functions
—Horizontal and vertical resolution of device in dots per inch

«Example: want to use floating-point coordinates to draw in
millimeter units

—A helper function to convert a point from millimetersto
dots (pixels or printer dots):
PointF MM Conv(Graphics g, PointF pointf)
/I returns a PointF object which isthe conversion of pointf parameter to dots
{
pointf.X *= g.DpiX/25.4f; /I divide by 25.4 mm/inch to convert to inches
pointf.Y *=g.DpiY/25.4f; // and multiply by Dpi to convert to dots
Return pointf;

Page Units & Page Scale

*Graphics class has two properties that do unit
conversions (scalings) for us, so we don't have to
write our own function to do them:

GraphicsUnit PageUnit // units used, an enumeration

*Members
—Display Same as device (pixels or printer dots)
—Pixel
—Point units of /72 inch
—Inch
—Document units of 1/300 inch
—Millimeter
float PageScale // how much to scale by

The Page Transformation

*Example: we want to draw in units of hundredths of an inch
g.PageUnit = GraphicsUnit.Inch;
g.PageScale = 0.01f;
*Then to draw a 1-inch long horizonta line:
g.DrawLine(pen, 0, 0, 100, 0);
*Resulting line on a printer would be exactly 1 inch long

*Setting PageUnit and PageScal e properties is known as the Page
Transformation

—GDI+ appliestwo formulas to get device coordinates from page
coordinates sent to Graphics functions
xdevice = xpage * PageScale * xconvfactor
ydevice = ypage * PageScale * yconvfactor
—Conversion factors depend on PageUnit
»Display (printer): xconvfactor = DpiX/100; yconvfactor = DpiY /100
»Display (video): xconvfactor = yconvfactor = 1
»Inch: xconvfactor = DpiX, yconvfactor = DpiY
»Millimeter: xconvfactor = DpiX/25.4; yconvfactor = DpiY/25.4

Ten-Centimeter-Ruler
Example Program

eDraws aruler that’s exactly 10 centimeters long
with mm., half-cm. markings and numbers

*The Form’s classis subclassed from our
PrintableForm class (“ enhanced”) so that we can
override its DoPage() method to draw on either the
window’s client area or to the default printer (if user
selects “Print” menu item)

—The “enhanced” PrintableForm class has a“ Print
Preview” menu item whose handler starts a PrintPreview
dialog box to view a preview of the printer output

Client Area Dimensions

*Form’s ClientSize property always gives the
dimensions of the client areain pixels

«After setting a new page transformation, you may

need the dimensions in the units being used to draw

with

—Use VisibleClipBounds property of the Graphics object

For video display it returns the dimensions of the client areain
whatever page units you are using
*But for printer, VisibleClipBounds returns printable areain
units of /100 inch

—So for printer you may need to convert the value returned by ClientSize
to Page Units

Transfor ming between Page
Unitsand Device Units

g. TransformPoints(Coordi nateSpace.Page,
CoordinateSpace.Device, apt);
—To convert points from device units to page units

—Converts an array of points, apt, from device to
page coordinates

»apt is the original array of points
»Result will bein apt

g. TransformPoints(CoordinateSpace.Device,
CoordinateSpace.Page, apt);

—Converts an array of points, apt, from page units
to device units. Result will be in apt

World Coordinate Transfor mation

*Page Transformation limitations:

—Must have same units in horizontal and vertica
directions (no non-isotropic scaling)

—X-axis must point right and y-axis down
—Origin must be at (0,0)
—Cannot do rotations or trandations
*To overcome these and other limitations, use
aWorld Coordinate Transformation

—GDI+ uses 3 X 3 homogeneous transformation
matrices to map world coordinates to device
coordinates

Graphics Class Methods that Implement the

World Coordinate Transfor mation
*RotateTransform(angle-i n-degrees)

—Clockwise is positive
«ScaleTransform(sx, sy)

—sX, Sy are horizontal and vertical scaling factors
s TranslateTransform(tx, ty)

—Shifts x and y coordinates along horizontal and
vertical axes

*All subsequent Graphics drawing functions
will use these new coordinates

»See World Transformation example program
—Also uses* enhanced” PrintableForm class

The Windows
Clipboard

Transferring Data Between
Applicationswith the Clipboard

*The Windows Clipboard

—A global memory block maintained by the Windows OS
—Available since the earliest versions of Windows
—Provides a common mechanism for getting data from
application to application

*Also be used for single-program cut/copy and paste
—Many programs have "Cut", "Copy", "Paste" menu
items

«“Cut” or “Copy”: transfers data to clipboard

*“Paste”: retrieves data from clipboard
—Clipboard contents are available to any running app

The Clipboard Class

o|t's in System.Windows.Forms namespace
o|t’ s tiny, but powerful

—No properties and just two gatic methods:
1. void SetDataObject(object obj) or

void SetDataObject(object obj, bool bStayAfterAppExit)
—Copies obj to the clipboard memory block
—Object could be many data types:
»String, Bitmap, etc.
—Two successive calls replace first object with second on clipboard

—If 20d argument isfalse, item on clipboard is gone after program
terminates

2. |DataObject GetDataObject()
—Returns an instance of a class that implements | DataObject “interface”
»Interface: like a class; only contains method signatures, no bodies
»|f aclassinherits from an interface it must implement all methods

Using | DataObj ect

IDataObject data = Clipboard.GetDataObject();
—Resulting class object has two methods. GetDataPresent(), GetData()
data. GetDataPresent(DataFormats format);
*Returnstrue if the object retrieved contains data of the specified data format

*Some DataFormats:
—Bitmap, Dib, Html, RTF, Serializable, StringFormat, Text, Tiff,
WaveAudio, ... lots more

—Some examples:
if (data.GetDataPresent(typeof(string))) { ...}
if (data.GetDataPresent(DataFormats.Bitmap)) { ...}
After verifying that the desired data type is on the clipboard,
retrieve data with its GetData() method, e.g.,
string str = (string)data.GetData(typeof (string));
Bitmap bm = (Bitmap)data. GetData(DataFormats.Bitmap);

Clipboar d-Simple Example

«Form has a multi-line text box and a picture box

—PictureBox control class can display an image or bitmap
*Set SizeMode property to “Stretchimage”
—So any image displayed will be scaled to fill the picture box
*“Edit” menu item has“Copy” and “Paste” items

—If user clicks* Copy”, selected text in textbox is sent to
the clipboard
—If user clicks* paste”

*Any text on the clipboard is displayed in the textbox

*Any image on the clipboard is displayed in the picture box

