
Windows File I/O

Files
• Collections of related data stored on external

storage media and assigned names so that they
can be accessed later
– Entire collection is a file
– A file is made up of records

• One record for each entity stored in the file
• Each record broken down into fields (data elements)

Last Name First Name Phone

Smith John 777-1111
Jones Mary 777-2222Records

Fields

File I/O Under Win32 API and MFC
• Use Standard C Library File functions

FILE *fp; // a file pointer
fp = fopen("filename_string", "mode_string");

//Open file and retrieve a pointer to it

fread (buffer, size, number, fp);
// Read number of size elements into address pointed to by buffer

fwrite (buffer, size, number, fp);
// Write number of size elements from buffer to file

fseek(fp, offset, origin);
// Go offset bytes in open file, measured from origin

cur_posn = ftell(fp);
// Retrieve current byte position in open file

fclose(fp); // Close file pointed to by fp

– To be able to use these, we must #include <stdio.h>
• For details see:

– http://www.cs.binghamton.edu/~reckert/360/class12.htm

.NET File Class to Read/Write Files Files

• File class in System.IO namespace
• Static methods ReadAllText() and WriteAllText()

– File.ReadAllText(string FilePath);
– File.FileWriteAllText(string FilePath, string contents);
– Can also use ReadAllBytes(…) and WriteAllBytes(…)

for binary files

• Examples: FileSimpleWrite and FileSimpleRead
– Use a textbox for user to enter file name, a multiline

text box for the contents of the file to be written or read
and a button to initiate the reading/writing

Files and Streams in .NET

• .NET Framework handles data files using Streams
– When a file is opened for reading or writing it becomes a stream
– Stream: an object that transfer a series of bytes from one location

to another
– Read and write operations can be performed on a stream
– Streams can be more than just open disk files

• Network Streams: Data moving over a network connection is a stream
• Memory Streams: Memory to memory transfers

• Most .NET File and Stream I/O support is implemented in
System.IO namespace

• Any file-handling project should include the statement:
using System.IO;

FileStream File I/O Class
• FileStream

– Most basic File I/O class: like C file pointer
– Use to: open, read from, write to, and close files
– To open or create a file, create an object of type

FileStream
– Some FileStream constuctors:

FileStream(strFileName, Filemode);
• Some Filemode properties: Create, Open, Append
FileStream(strFileName, Filemode, FileAccess);
• Some FileAccess properties: Read, Write, ReadWrite

– Some FileStream Methods:
int ReadByte();
int Read(byte[] abyBuffer, int iBufferOffset, int iCount);
void WriteByte (byte byteValue);
void Write(byte[] abyBuffer, int iBufferOffset, int iCount);
long Seek(long offset, SeekOrigin origin);

Problems with FileStream
• C# casting is not as flexible as C casting

– FileStream Read() and Write() methods work only with
byte arrays

• For other data types the bytes in an array would have to be read
and assembled into other basic data types

• Very tedious

– Difficult to use with text files because of
different encodings (ASCII vs. Unicode)

• Better to work with StreamReader and
StreamWriter classes for reading/writing text files
– These create the file stream for you

• Or BinaryReader and BinaryWriter classes for
reading/writing binary files
– Files that are not text files

Writing Data to a File Sequentially
Using StreamWriter

• Declare and instantiate a new StreamWriter object
– In constructor specify name of the data file

StreamWriter phoneStreamWriter;
phoneStreamWriter = new StreamWriter("Phone.txt ”);“

– Opens the file for writing
• Use StreamWriter’s WriteLine() method to copy a line of

text (a string) from a buffer in memory to the file
phoneStreamWriter.WriteLine(“777-1111”);

– Or use Write(char) to write single elements (characters)
• After all data is written call StreamWriter’s Close()

method
phoneStreamWriter.Close();

– Transfers the data from the buffer to the file and releases system
resources used by the stream

– Usually done just before closing the window form

FileStream-Write Example
Program

• “Name” and “Phone” text boxes allow user to
enter a name and a phone number

• A StreamWriter object will save names and phone
number to a file
– File name is hard-coded when StreamWriter object is

instantiated
• This occurs in the form’s constructor
• Causes the file to be opened

• “Save” button: Click handler saves the current
name and phone number at the end of a file

• “Exit” button: Click handler calls the
StreamWriter’s Close() method & closes the form

Reading Data from a File Using
StreamReader

• Declare and instantiate a StreamReader class object
– In constructor specify the file name

StreamReader phoneStreamReader;
phoneStreamReader = new StreamReader("Phone.txt ");

• Opens the file for reading

• Use ReadLine() method to read next line (string)
string str = phoneStreamReader.ReadLine();

– Use a loop to retrieve multiple lines
– Use Peek() method to check for end of file

• Looks at next element without reading it
• Value returned after peeking beyond last item is -1

– Use Read() to read the next character from the stream
– Or numCharsRead = sr.Read(charArray, startPosn, nChars);

• When done, close stream with StreamReader’s Close();
phoneStreamWriter.Close();

FileStream-Read Example
Program

• Form has “Name” and “Phone” label controls to display each name
and phone number stored in a file

• When form is first loaded in Form1’s “Load” event handler:
– try/catch block attempts to instantiate a StreamReader object (file may not

exist)
• File name to open is hard-coded in constructor
• If successful, a call is made to a helper function DisplayRecord()
• DisplayRecord() uses StreamReader’s Peek() method to see if there are

more records to read
– If so, its ReadLine() method reads the next name and number records from

the file (same order as written) and stores them in the label controls

• “Next” Button: Click handler calls helper function DisplayRecord()
to read and display next name & phone number from the file

• “Exit” button: Calls the StreamWriter’s Close() method and closes
the form

Appending data to a File

• As we’ve used StreamWriter, if the file exists at
construction time, its contents will be destroyed

• Another constructor for StreamWriter:
– StreamWriter(string strFileName, bool bAppend)
– If bAppend is true, the file is not destroyed

• Data can be appended to it

Common File Dialog Boxes
• OpenFileDialog

– Allows user to browse directories or enter a file name for a file to
open

• SaveFileDialog
– In same way, allows user to select or enter a file name to save
– It just adds two new Boolean properties to OpenFileDialog:

• CreatePrompt: true means if file specified by user doesn’t exist, display a
message box asking if user really wants to create the file

• OverwritePrompt: true means a message box will prompt for confirmation if
selected file already exists – to avoid undesired overwriting

– If these properties are not needed, you can use OpenFileDialog for
both opening and saving

• Both set its FileName property to the fully qualified file
name the user selects from a list box or types into a text box
– This can then be used to read from that file or to save data to it

Some Important OpenFileDialog Class
Properties

• Name Name of OpenFileDialog object (VS Designer default:
OpenFileDialog1)

• Title Title bar of dialog box
• FileName Name of file selected/entered by user, including path
• CheckFileExists Display error message if file does not exist; set to false for

saving a file since you want to create a new file if it doesn’t
exist; leave true (default) to read an existing file

• CheckPathExists Same, but for the file path
• Filter Filter file extensions to display in “Files of Type” combo

box, e.g.: “All Files (*.*)|*.*”
• InitialDirectory Directory to display when dialog box opens; set to

“Applications.StartupPath” to begin in same directory as
application’s executable

File-Write-OpenFileDialog
Example Program

• Adds “File” | “Open” menu item to FileStream-Write
example program
– “Open” menu item starts an OpenFileDialog box for user to

select or type in a file to write names and phone numbers to
• Checks to see if file is already open first

– If so, it closes it before starting the OpenFileDialogbox and
instantiating a StreamWriter object (opening the selected file)

– “Save” button handler checks to see if file is open, and if
so, saves current name and phone number

• If not, puts up a message box to warn user, then calls the “Open”
menu click handler so user can select the file to open

• Also clears the text boxes and sets the focus to the “Name” text box

– “Exit” menu item click handler closes the file if it’s open
before closing the form

File-Read-OpenFileDialog
Example Program

• Adds “File” | “Open” menu item to FileStream-Read
example program
– Click “Open” menu item to start an OpenFileDialog box

for user to select or type in a file to read names and phone
numbers from

• Checks to see if file is already open first
– If so, it closes it before starting the OpenFileDialogbox and

instantiating a StreamReader object (opening the selected file)

– “Next” button handler Peeks to make sure we’re not at the
end of file, then reads the next name an number, and
displays them in the label controls

• Note that initially “Next” button’s enable property is set to false
– Makes no sense for user to ask for the next item if file is not open

– “Exit” menu item click handler closes the file if it’s open
before closing the form

BinaryWriter for integer data
• Instantiate a FileStream object and from it an

associated BinaryWriter
• Then use its Write(data) method to write binary

data to the stream
int[] x = new int[] { 3, 5, 7 };
FileStream fs = new FileStream(writeFileName, FileMode.Create);
BinaryWriter bw= new BinaryWriter(fs);

for (int i=0; i<3; i++)
bw.Write(x[i]);

fs.Close();

BinaryReader for integer data
• Instantiate a FileStream object and from it an

associated BinaryReader
• Then use its ReadInt32() method to read binary

data from the stream
int [] x = new int[100];
FileStream fs = new FileStream(readFileName, FileMode.Open);
BinaryReader br = new BinaryReader(fs);

For (int i=0; i<100; i++)
x[i] = br.ReadInt32();

fs.Close();

Other File Handling Static Methods

• All are member of the System.IO.File class
• Since they’re static, don’t need to instantiate a File object
• Some of them:

– Determining whether a file exists
• bool File.Exists(string strFileName)

– Copying a file
• File.Copy(string strSrcFN, string strDestFN)

– Moving a file
• File.Move(string strSrcFN, string strDestFN)

– Deleting a file
• File.Delete(string strFileName)

Retrieving a File’s Properties
• System.IO.File class has many other static

methods
– GetCreationTime (string strFN)
– GetLastAccessTime (string strFN)
– GetLastWriteTime (string strFN)

• All return a DateTime object

– GetAttributes (string strFN)
• Returns a FileAttributes enumeration
• Stores bit-packed Boolean Attribute Flags:

– Archive, Directory, Hidden, Normal, ReadOnly, System,
Temporary

» Do Boolean AND with appropriate mask to determine if a
given attribute is true (bit is set)

Manipulating Directories
• System.IO.Directory Class
• Use its static methods just like the File methods
• Some of its static methods:

– Directory.CreateDirectory(string strDirName)
– bool Directory.Exists(string strDirName)
– Directory.Move(string strSrc, string strDest)
– Directory.Delete(string strDirName)

Serialization
• Saving and Retrieving complex objects

instantiated from a class
• Serialization refers to converting an object’s state

to a stream of bits that can be saved
• Deserialization refers to reading the data back

and recreating the object
• Declare a class as Serializable and use a

formatter to serialize the object
– BinaryFormatter formats data in binary form
– SoapFormatter formats data in an XML format (Web)

Using Serialization: Saving an Object
• Include Using statements

Using System.IO;
Using System.Runtime.Serialization;
Using System.Runtime.Serialization.Formatters.Binary;

• Declare the object’s class as Serializable; for example:
[Serializable] public class Book { … };

• In the form’s code:
– Instantiate the object; for example:

Book bookObject = new Book();

– Declare a FileStream object that specifies the name of the file
FileStream bookStream = new FileStream(“books.txt ”, FileMode.Create);

– Declare a BinaryFormatter object; for example:
BinaryFormatter bookFormatter = new BinaryFormatter();

– Use BinaryFormatter object’s Serialize() method to save the object
bookFormatter.Serialize(bookStream, bookObject);

– Close the FileStream object
bookStream.Close();

Using Deserialization: Recreating
an Object

• Read the object back with the Deserialize() method of the
formatter

• Steps:
– Declare a BinaryFormatter object; for example:

BinaryFormatter bookFormatter = new BinaryFormatter();

– Create a FileStream object; for example:
FileStream bookStream = new FileStream(“books.txt ”, FileMode.Open);

– Use formatter’s Deserialize() method, converting the input to the
desired object type; for example, a Book object:

bookObject = (Book) bookFormatter.Deserialize(bookStream);

– Use the object’s fields/properties as desired
– Close the FileStream object

bookStream.Close();

File-Serializable-Book Example Program
• A “Book” class encapsulates information about a book

– Public Properties to access private data fields:
• Title
• Quantity
• Price
• Total

– Private Method calculates Total:
• ComputeTotal()

– Invoked in constructor

• Main form:
– Text boxes to enter information about a book
– A “Compute Total” button to calculate the total
– File Menu:

• Save Record
– Uses serialization to save a book object’s data to disk

• Retrieve Record
– Uses deserialization to retrieve a book object’s data from disk

