
Windows Dialog Boxes,
Text Boxes, and List

Boxes

Dialog Boxes

• Popup child windows created by Windows

• Used for special-purpose input & output
– A principal I/O mechanism in Windows

• Contain several child window controls

• Layout & what it does is are predefined
• In .NET they’re just another Form

– Derived from class Form

• We can design our own dialog boxes
• Five predefined “Common Dialog Boxes”

Types of Dialog Boxes

• Modal
• Modeless
• System Modal

Common Dialog Boxes
• Predefined Modal Dialog Boxes that enable user to

perform common I/O operations in a standard way
• Five of them -- all date back to Windows 3.1

– FileDialog
• Open/Save files in an easy and standard way

– ColorDialog
• Choose colors in an easy and standard way

– FontDialog
• Select fonts in an easy and standard way

– PageSetupDialog
– PrintDialog

• Both related to printing

• Contained in classes derived from
System.Windows.Forms.CommonDialog

• User interactions with common dialog box set
properties that can be read & used afterwards

Using Common Dialog Boxes
1. Instantiate a common dialog object, e.g. ColorDialog:

ColorDialog colordlg = new ColorDialog();

2. Set its properties (optional)
colordlg.Color = this.BackColor;

3. Call its ShowDialog() method to invoke the dialog box
• Since Modal, execution halts until user dismisses the dialog box
colordlg.ShowDialog();

4. After it returns, use its properties changed by user actions
this.BackColor = colordlg.Color;

– Almost always contain “OK” & “Cancel” buttons
• “Abort”, “Ignore”, “No”, “Retry’, ‘Yes” buttons are also defined
• Button pressed by user is contained in ShowDialog() return value

– E.g., DialogResult.OK, DialogResult.Cancel, etc.
if (colordlg.ShowDialog() == DialogResult.OK)

this.BackColor = colordlg.Color;

– Example program: Common-Color-Dialog
• Note button inherits the new color

Common Font Dialog Box
• Allows the user to change fonts
• Class FontDialog

– Properties:
• Font font
• Color Color
• bool ShowColor
• bool ShowEffects
• bool ShowApply
• bool ShowHelp

– Instantiate and start with ShowDialog() member
function just as for the Common Color dialog Box

• Example program: Common-Color-Font-Dialog

Using Visual Studio Designer to Create
Common Dialog Boxes

• Just drag them from the toolbox onto the form
• Their properties can be accessed easily in their

Properties Windows
• Still have to write code to invoke them

– ShowDialog()

• And code to use their changed properties
– Common-Color-Dialog-Designer example

Programmer-Defined Dialog Boxes

• Define our own dialog boxes containing whatever
controls are required for custom I/O

• Just define and instantiate a second class derived
from class Form in the application
– Encapsulates everything about the dialog box
– Set desired properties
– Add desired controls and event handlers
– Start it with the object’s ShowDialog() method
– Main form’s code stops executing until user dismisses

the dialog box
• DialogResult property returned by ShowDialog() will identify

which button in dialog box was pressed to terminate it

Dialog-Manual Example Program
• Main form created with VS Designer as usual

– Contains a “Start Dialog Box” button And a Label
control

• When user clicks the button, a modal dialog box with “OK”
and “Cancel” buttons appears

• The name of the button pressed by the user to dismiss the
dialog box will be displayed in the main form’s label control

– The dialog box’s buttons, properties, and button click
handler methods are all defined in a second Form class

• Handlers should set Dialog Box’s DialogResult property

– The second form class was coded manually in same file
• Easier to use Visual Studio to add the second dialog box

class, set its properties, and add its button click handlers

Dialog-Designer Example Program
• Same functionality as Dialog-Manual application
• Add dialog box

– With project name selected in Solution Explorer:
• Select from main menu: Project | Add New Item | Windows Form
• Or right click on project name and select Add | Windows Form

– In either case the “Add New Item” dialog box comes up
• Change the default name to SimpleDialogBox

– VS Designer will create a new file containing the new class
– As usual, add the “OK” & “Cancel” buttons to the new form by

dragging them from the tool box
– And add their click event handlers by double clicking on them

or using the properties window (lightning bolt)
• Add “Start Dialog Box” button on main form
• And its click event handler as usual

– In this handler add code to instantiate the dialog box, set its
properties, and start it

Getting Data from a Dialog Box

• Dialog boxes usually allow user to provide data for the
application

• How to get data from the dialog box to the parent form:
– Could use public fields (variables)

• So other classes (the parent form) can access them

– Better to use public properties
• For protected access to private fields

– Must be defined in the dialog box class
– Properties with their get/set accessors can be coded manually
– See DlgBoxPropertiesTest Example

• Displays which of three buttons in a Dialog Box was pressed
• Note use of this.Close() in Exit button handler to dismiss the Dialog Box

Radio-Check-Dialog Example
• Radio-Check application modified using a dialog box

– Two classes:
• ColorFillDialogBox class encapsulates a dialog box that allows the

user to choose a color and fill option
– Colors are shown in radio buttons in a “Color” group box

» Create and add the radio buttons in a loop
» Selected color (ColorRect) is a public Property added to the class

get/set accessors index thru all controls in the Color groupbox
» Note use of Color.FromName(…) that creates a Color from a string

– “Fill Rectangle” is a check box
» Check box state (Fill) is another public Property added to the class

get/set accessors return/set the Checked state of the checkbox

• Main Form1 class has a button to start the dialog box
– Dialog Box’s ColorRect and Fill Properties are used to change class-level

variables colorRect and bFillRect after dialog box is dismissed
– Paint event is forced

» Paint handler draws or fills a rectangle according to the values of
colorRect and BFillRect

Modeless Dialog Boxes
• Stick around after invoked
• Start with Show() member method of DialogBox

class
– Not ShowDialog(), which starts it as a modal dialog

box
– We’ll come back to these later

More Windows Controls

Text Input Controls
• TextBox

– Formerly called an Edit Control
– Allows user to type in text

• Can be single line or multiline

• ListBox
– Presents a scrollable list of selections for user to

choose

• ComboBox
– Combines the features of a Text Box and a List Box

Text Boxes
• Simplest is derived from TextBox class

– RichTextBox class provides additional functionality
– Both are derived from TextBoxBase class

• Some Properties:
– string Text
– int MaxLength // max # of characters
– int TextLength // (get only)
– bool Multiline
– string[] Lines // for multiline text boxes
– int Lines.Length // # of lines

• Most useful event:
– TextChanged -- actually defined in Control parent class
– Method: OnTextChanged()
– Delegate: EventHandler
– Argument: EventArgs

TextBox-Simple Example Program

• Creates a TextBox and a Label control
• Any time user changes text in the TextBox,

it is reproduced in the Label control
– Program handles the TextBox’s TextChanged

event

• Created with VS Designer
– Just drag the TextBox and Label from the

toolbox, change their properties, and add the
TextChanged event handler

MultiLine Text Boxes
• Just set Multiline property to true
• Another property:

– Lines
• An array of strings that contains the text entered by user
• Since it’s an array, Lines also has a Length property

• Can add scrollbars
– ScrollBars property:

• None, Horizontal, Vertical, Both
• For horizontal to work, WordWrap property must be set to

false

• Give Notepad-like functionality
• Example: TextBox-Multiline

Non-textual Data in a TextBox

• Use Parse() method to convert Text property of a control
to its numeric form before using it in a computation

• Each data type has its own Parse() method, e.g.:
– int.Parse(); float.Parse(); decimal.Parse();

• Example – two text boxes contain strings that represent
numbers:
– numTxtBox and priceTxtBox
– To do computations need to convert to numeric values:

int num = int.Parse(numTxtBox.Text); //get number of items
decimal price = decimal.Parse(priceTxtBox.Text); //get price per item
float totPrice = price*num; //compute total price

Formatting Data for Display
• Display numeric data in the Text property of a

Label, Textbox, or Listbox
• Use ToString() and “format specifier codes”

– Can format a numeric value to a string containing such
features as: $, comma, decimal point, %

– Also can specify # of digits to right of decimal point
• xxx.ToString(“format code”)

• Some format codes (example: 1123.42817):
– “C” currency $1,123.43
– “F0” fixed point 1123
– “F3 fixed point 1123.428
– “N” number 1,123.43
– “N3” number 1123.428

Compute-Interest Example
• Text Boxes for:

– Principal, Interest Rate, Number of Years
• Labels for each
• Label for computed Total Interest
• Computes Total Interest:

– Interest = Principal*Rate*Years
– Note Parsing to get values from Text Boxes
– And formatting to display result
– Also note use of M or F suffix on numeric constants

• M: decimal
• F: float
• C# defaults to double

• But what if user enters the wrong type of data?
– Use a try/catch block
– See ComputeInterestTryCatch example

List Boxes and Combo Boxes
• List Box

– Contains lists of items that can be selected
– Entire list is shown
– User selects items
– Selected item is highlighted
– Encapsulated in class ListBox

• Combo Box
– Text box combined with a list box
– List box can be displayed at all times or pulled down
– User selects item from list & item is copied to text box
– One type allows user to type into text box
– Encapsulated in class ComboBox

• For both, scroll bars are added automatically as
needed

List Box “Items” Property
• The list of Items in a list box is a collection (like ArrayList)

– These collections have methods that allow programmer to:
• Add items, insert items, remove items, refer to individual items, count

items, get selected item, & clear the collection

– listBox1.Items.Add(ItemValue);
– listBox1.Items.Insert(IndexPosition, ItemValue);
– listBox1.Items.Remove(ItemValue);
– listBox1.Items.RemoveAt(IndexPosition);
– Referring to a given item:

• listBox1.Items[IndexPosition];

– Number of items in list
• listBox1.Items.Count

– SelectedIndex Property – stores index of item selected
• int x = listBox1.SelectedIndex; // retrieve index of selected item
• listBox1.SelectedIndex = 3; // select item 3 (will appear selected)

– listBox1.Items.Clear(); // remove all items from list

Using Designer to Fill a List Box at
Design Time

• Select the List Box control on the form
• Scroll Properties window to “Items” property
• Click on “…” to open “String Collection Editor”

– Type in the items in the list, ending each with Enter key

• Note in Designer Generated Code:
– listBox1.Items.AddRange(new object[] {“str1”, “str2”, …});

ListBox-Simple Example
• Initial list box contents set at design time
• “Add Item” button allows user to add items to

the list box using a text box
• “Get Current Selection” button displays

currently-selected item from the list box in a
label control

Combo Box
• Very Similar to a List Box
• Has an associated Text Box control

– Text property is what is typed by user
– Text property can be set in code

• DropDownStyle Property
– Simple, DropDown

