
Introduction and Motivation
Related Work

Work Completed
Proposed Work

Proposal Defense:
Analysis and Optimization for Processing

Grid-Scale XML Datasets

Michael R. Head

Department of Computer Science
Grid Computing Research Laboratory

Binghamton University
mike@cs.binghamton.edu

Friday, September 12, 2008

1 / 80

http://www.binghamton.edu
http://www.piximal.org
http://www.piximal.org
mailto:mike@cs.binghamton.edu
http://www.cs.binghamton.edu
http://grid.cs.binghamton.edu
http://www.binghamton.edu
mailto:mike@cs.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

Outline

1 Introduction and Motivation
XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

2 Related Work
High Performance XML Processing Approaches

3 Work Completed
XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

4 Proposed Work

2 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

Outline

1 Introduction and Motivation
XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

2 Related Work
High Performance XML Processing Approaches

3 Work Completed
XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

4 Proposed Work

3 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

XML Defined

Text based (usually UTF-8 encoded)
Tree structured
Language independent
Generalized data format

4 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

Motivation from SOAP

Generalized RPC mechanism (supports other models, too)
Broad industrial support
Web Services on the Grid

OGSA: Open Grid Services Architecture
WSRF: Web Services Resource Framework

At bottom, SOAP depends on XML

5 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

XML Exclusive of SOAP

General structured data format
Becoming standard for many scientific datasets

HapMap - mapping genes
Protein Sequencing
NASA astronomical data
Many more instances

6 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

Explosion of Data

Enormous increase in data from sensors, satellites,
experiments, and simulations∗

Use of XML to store these data is also on the rise

XML is in use in ways it was never really intended (GB and
large size files)

7 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

Benchmark Motivation

Grid applications place a wide range of requirements on
the communication substrate and data formats.
Simple and straightforward implementations can have a
severe performance impact.

8 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

XML Performance Limitations

Compared to “legacy” formats
Text-based

Lacks any “header blocks” (ex. TCP headers), so must scan
every character to tokenize
Numeric types take more space and conversion time

Lacks indexing
Unable to quickly skip over fixed-length records

9 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

Limitations of XML

Poor CPU and space efficiency when processing scientific
data with mostly numeric data [Chiu et al 2002]

Features such as nested namespace shortcuts don’t scale
well with deep hierarchies

May be found in documents aggregating and nesting data
from disparate sources

Character stream oriented (not record oriented): initial
parse inherently serial

Still ultimately useful for sharing data divorced of its
application

10 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

Outline

1 Introduction and Motivation
XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

2 Related Work
High Performance XML Processing Approaches

3 Work Completed
XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

4 Proposed Work

11 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

Prevalence of Parallel Machines

All new high end and mid range CPUs for desktop- and
laptop-class computers have at least two cores
The future of AMD and Intel performance lies in increases
in the number of cores

Despite extant SMP machines, many classes of software
applications remain single threaded

Multi-threaded programming considered “hard”
Reinforced in the current curricula and by existing
languages and tools

12 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

XML and Multi-Core

Most string parsing techniques rely on a serial scanning
process

Challenge: Existing (singly-threaded) XML parsers are
already very efficient [Zhang et al 2006]

13 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

Outline

1 Introduction and Motivation
XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

2 Related Work
High Performance XML Processing Approaches

3 Work Completed
XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

4 Proposed Work

14 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

Contributions

We present the design and implementation of a
comprehensive benchmark suite for XML and SOAP
implementations with standard mechanisms to quantify,
compare, and evaluate the performance of each toolkit and
study the strengths and weaknesses for a wide range of
representative use case scenarios.
We present an analysis of pre-fetching and piped
implementation techniques that aim to offset disk I/O costs
while processing large-scale XML datasets on multi-core
CPU architectures.

15 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

Contributions Continued

We propose techniques to modify the lexical analysis
phase for processing large-scale XML datasets to leverage
opportunities for parallelism. (PIXIMAL)
We present an analysis of the scalability that can be
achieved with our proposed parallelization approach as the
number of processing threads and size of XML-data is
increased.
We present an analysis on the usage of various states in
the processing automaton to provide insights on why the
performance varies for differently shaped input data files.

16 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

Thesis Statement

In this thesis we present a comprehensive benchmark suite that
facilitates the study of the strengths and weaknesses of XML
and SOAP toolkits for a wide range of representative use case
scenarios.

We propose a parallel processing model for some
application-based large-scale XML datasets that can effectively
leverage opportunities for parallelism in emerging multi-core
CPU architectures.

17 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

High Performance XML Processing Approaches

Outline

1 Introduction and Motivation
XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

2 Related Work
High Performance XML Processing Approaches

3 Work Completed
XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

4 Proposed Work

18 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

High Performance XML Processing Approaches

High Performance XML Processing Approaches

Look-aside buffers/String caching [gsoap, XPP]
Trie data structure with schema-specific parser [Chiu et al 02,
Engelen 04]

One pass table-driven recursive descent parser [Zhang et al
2006]

Pre-scan and schedule parser [Lu et al 2006]

Parallelized scanner, scheduled post-parser [Pan et al 2007]

19 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Outline

1 Introduction and Motivation
XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

2 Related Work
High Performance XML Processing Approaches

3 Work Completed
XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

4 Proposed Work

20 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

XML Benchmark Suite

1 A chosen set of XML documents
Low level probes
Application-based benchmarks

2 A driver application for each XML processor
Runs the parser on the input, but does not act on the data

Eliminates application-level performance differences
One for each interface style (SAX/DOM)

3 Published in Proceedings of SC’06 [Head et al 2006]

21 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Benchmark Probes

Overhead test
Minimal XML document

(header plus one self-closing element)

Buffering
Repeated use of xsi:type attributes

Namespace management
Gratuitous use of xmlns attributes

SOAP payloads
“Interop” test: arrays of integer, string, double, MIO, event
objects

22 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Application Benchmarks

Ptolemy Workflow documents (which Kepler uses)
Genetic data files

(Large) files from the International HapMap Project

Molecular data
Mesh interface objects, event streams (WSMG)
WS-Security documents

23 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Overhead of Each Parser

 0

 1

 2

 3

 4

 5

 6

 7

 8

xp
p3

xe
rc

es
−

j−
sa

x

xe
rc

es
−

j−
do

m

xe
rc

es
−

c−
sa

x

xe
rc

es
−

c−
do

m

qt
4−

sa
x

pi
cc

ol
o

m
on

o−
re

ad
er

m
on

o−
do

m

lib
xm

l2
−

sa
x

lib
xm

l2
−

do
m

gs
oa

p

ex
pa

t

P
ar

se
 ti

m
e

ov
er

 2
0

ru
ns

 (
m

s)

Parser

All Parsers, Overhead Test

24 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Performance of C and C++-based Parsers

hapmap_1797SNPs.xml
molecule_1kzk.pretty.xml
workflow_Atype.xml
workflow_PIW.xml

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

xe
rc

es
−

c−
sa

x

xe
rc

es
−

c−
do

m

lib
xm

l2
−

sa
x

lib
xm

l2
−

do
m

gs
oa

p

ex
pa

t

P
ar

se
 ti

m
e

ov
er

 2
0

ru
ns

 (
m

s)

Parser

C/C++ Parsers, Application−level Inputs

25 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

C Parser Performance Over SOAP Payloads

0

1000

2000

3000

4000

5000

6000

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

Pa
rs

e
T

im
e

fo
r

20
 r

un
s

(m
s)

Number of Elements in the Array

Parsing Performance for SOAP Payloads of int Arrays

expat
gsoap
libxml2-dom
libxml2-sax
qt4-sax
xerces-c-dom
xerces-c-sax

26 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Performance of Java-based Parsers

hapmap_1797SNPs.xml
molecule_1kzk.pretty.xml
workflow_Atype.xml
workflow_PIW.xml

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

xp
p3

xe
rc

es
−

j−
sa

x

xe
rc

es
−

j−
do

m

pi
cc

ol
o

P
ar

se
 ti

m
e

ov
er

 2
0

ru
ns

 (
m

s)

Parser

Java Parsers, Application−level Inputs

27 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

XMLBench Conclusions

Low overhead =⇒ gSOAP and Expat, XPP3

gSOAP performs well with namespaces due to look-aside
buffers

Piccolo and XPP3 have comparable performance in Java

28 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Outline

1 Introduction and Motivation
XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

2 Related Work
High Performance XML Processing Approaches

3 Work Completed
XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

4 Proposed Work

29 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Readahead/Runahead

Explore OS level caching effects
Offload disk input to another thread/core
Published in SOCP Workshop at HPDC [Head et al 2007]

30 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Reading ahead

Introduce two parsers which extend the existing, high
performance Piccolo parser [Head et al 2006]

Runahead: opens two file descriptors for the input file
Start a thread that repeatedly calls read() on one of the file
descriptors
Pass the other file descriptor to the existing Piccolo parser in
the main thread

Readahead: opens one file descriptor for the input file, and
one pipe

Start a thread that reads from the file descriptor and writes
to the pipe
Pass the pipe to the existing Piccolo parser in the main
thread

31 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Test run

Run each parser (Piccolo, Runahead, and Readahead)
on a large (GB-scale) XML file

Specifically, a protein sequence database file,
psd7003.xml

No user code is run for any SAX event – just the parser
itself is tested
File cache is cleared between each run running a separate
process that reads multiple gigabyte files
Each test is run 50 times for each parser
Hotspot is warmed by running the parser on another input
file with identical content before timing begins

32 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Two Environmental Conditions Tested

Architectures
UP: Classic Uniprocessor P4-based machine (Dell
workstation)
SMP: Classic Symmetrical MultiProcessing P4-based
machine (has server-class I/O system) (IBM e-server)
CMP: Modern Chip MultiProcessing Core 2 Duo-based
machine (Dell workstation)

System conditions
Cached: The input file is read (hence loaded into the
system file cache) before timing begins
Uncached: The input file is not read before timing begins
(and flushed between each run)

33 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Data Analysis

Speedup for both of the proposed parsers is computed to
compare across architectures
Baseline value is computing by averaging the times for
each run of the unmodified Piccolo parser
Speedup for each run is computed by dividing the baseline
by the time at each test point

34 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

0 10 20 30 40 50

0.
55

0.
60

0.
65

0.
70

Run Number

R
el

at
iv

e
S

pe
ed

up
Speedup for the Readahead Parser Relative to Architecture

 (Input Resides in Filesystem Cache)

●

●

●

●

● ●

●

● ●
●

●

●

●
●

●

●

●
● ●

●
●

●

●

● ●

● ●
●

●

●

● ● ●

● ●
● ●

● ●
●

●

●

● ● ● ●

●
●

●

●

●
●

● ● ●
●

● ● ●

● ● ● ●
● ● ●

●
●

●
●

●

●
● ●

●
●

●

●
●

●

● ●

●
● ●

●
●

●
●

●
● ●

●
●

●

● ●

● ●
●

●

●

●

● ●
●

●

●

●
● ●

●
●

●

● ● ● ● ●
●

● ● ● ● ●
● ● ●

●

●

●

●

● ● ● ● ● ●
● ● ● ●

●

●

●
●

● ● ● ●

CMP
UP
SMP

35 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

0 10 20 30 40 50

0.
96

0.
98

1.
00

1.
02

1.
04

Run Number

R
el

at
iv

e
S

pe
ed

up
Speedup for the Runahead Parser Relative to Architecture

 (Input Resides in Filesystem Cache)

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●
● ●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
● ● ● ●

●

● ●

● ●
●

● ●

● ●

●

● ●
●

●

● ●

● ●

●

●

●

●
●

● ●
●

● ●

●

●

● ●

●
●

● ●
●

● ●

●

●

CMP
SMP
UP

36 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

0 10 20 30 40 50

0.
6

0.
8

1.
0

1.
2

1.
4

Run Number

R
el

at
iv

e
S

pe
ed

up
Speedup for the Runahead Parser Relative to Architecture

 (Input Flushed from Filesystem Cache)

● ● ●
●

●
●

●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ● ● ● ● ● ● ● ● ●

● ●

●

●

●

●

●
●

●
● ● ●

● ● ●

● ●

●

● ●
●

● ●

● ●
●

●

●

●
●

●
● ●

● ●

●

●

● ●
● ●

●
●

●

●

● ●

●
● ●

●
●

●
● ●

●

●

●

● ●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●
●

●

●

SMP
CMP
UP

37 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

0 10 20 30 40 50

0.
7

0.
8

0.
9

1.
0

1.
1

Run Number

R
el

at
iv

e
S

pe
ed

up
Speedup for the CMP Architecture Relative to Parser Type

 (Input Flushed from Filesystem Cache)

●
●

●

●

●

●

●

●
●

● ●
● ● ●

● ● ●
● ● ●

● ● ● ● ●

● ● ●
● ●

●
●

●
●

● ● ● ●

●

●

●
● ● ● ● ●

●
● ● ●

● ● ● ●
●

●

●
●

●
● ● ● ● ●

●
● ● ●

●
●

● ●
●

●
●

●

● ● ●
●

●

●
●

●

●
● ● ● ● ●

● ● ● ●

●
●

●

●
●

●

Runahead
Readahead

38 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Readahead Conclusions

On systems with available memory and an available
processing core with fresh inputs, this approach can
provide some performance wins.

39 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Outline

1 Introduction and Motivation
XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

2 Related Work
High Performance XML Processing Approaches

3 Work Completed
XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

4 Proposed Work

40 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Token-Scanning With a DFA

DFA-based table-driven scanning is both popular and fast
(or at least performance-competitive with other techniques)

Input is read sequentially from start to finish
Each character is used to transition over states in a DFA
Transition may have associated actions

Supports languages that are not “regular”

Commonly used in high performance XML parsers, such
as TDX (C) and Piccolo (Java)

Amenable to SAX parsing
PIXIMAL-DFA uses this approach

41 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

DFA Used in PIXIMAL-DFA

0

1

2

3

4

5

6

7

8

9

10

whitespace

’ < ’

’/’

name start

’ > ’

whitespace

name char

’ = ’

name char

’"’

whitespace

’"’

not ’<’ or ’&’

whitespace

name char

’ > ’

’ < ’

char data

name start

name char

space

’ > ’

42 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Parallel Scanning With a DFA?

DFA-based scanning =⇒ sequential operation

Desire: run multiple, concurrent DFAs throughout the input
Generally not possible because the start state would be
unknown

43 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Overcoming Sequentiality With an NFA

Problem: start state is unknown

Solution: assume every possible state is a start state
Construct an NFA from the DFA used in PIXIMAL-DFA
Such an NFA can be applied on any substring of the input

PIXIMAL-NFA is the parser that does all of this:
Partition input into segments
Run PIXIMAL-DFA on the initial segment
Run NFA-based parsers on subsequent partition elements
Fix up transitions at partition boundaries and run queued
actions

44 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

PIXIMAL-NFA’s Parameters

split_percent :
The portion of input to be dedicated to the first element of
the partition, expressed as a percentage of the total input
length

number_of_threads:
The number of threads to use on a run

45 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Preliminary Questions

Is there enough memory bandwidth to allow multiple
automata to concurrently feed each thread its input?

Processing each character along several paths through the
NFA is costly: how does this work scale with the size of the
initial DFA?

Does the overhead of queuing the NFA actions cost a
reasonable amount compared with the cost of DFA-parsing
the first partition element?

46 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Memory Bandwidth Test

Models the work of partitioning the input the way
PIXIMAL-NFA does

File I/O is via mmap(2)

A thread is created for each partition element which
accumulates each character
A variety of split_percents and number_of_thread are
chosen

Total time to read a large input a fixed number of times is
measured
Input file is SwissProt.xml, which is 109 MB in size

47 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Memory Bandwidth Test – Experimental Setup

Run several machines, each from a homogeneous class
running 64-bit versions of Linux

2× uniprocessor: 3.2 Ghz Intel Xeon (uniprocessor), 4
GB RAM, Linux kernel 2.6.15, GNU Lib C 2.3.6, GCC 4.0.3
2× dual core: 2.66 Ghz Intel Xeon 5150 (dual core)
CPUs, 8 GB RAM, Linux kernel 2.6.18, GNU Lib C 2.3.6,
GCC 4.1.2
2× quad core: 2.33 Ghz Intel Xeon E5354 (quad-core)
CPUs, 8 GB RAM, Linux kernel 2.6.18, GNU Lib C 2.3.6,
GCC 4.1.2

4 nodes used from the 2× UP cluster, 10 from each of the
other two
Results for each class are averaged across all runs

48 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

2× UP Overall Results

Number of Threads

5

10

15

Sp
lit

 P
er

ce
nt

20

40

60
80

T
im

e (s)

12

14

16

18

20

49 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

2× DC Overall Results

Number of Threads

5

10

15

Sp
lit

 P
er

ce
nt

20

40

60
80

T
im

e (s)

6

8

10

50 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

2× QC Overall Results

Number of Threads

5

10

15

Sp
lit

 P
er

ce
nt

20

40

60
80

T
im

e (s)

4

6

8

10

12

51 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Conclusions From Overall Results

Even when doing very little per-character processing,
performance gains possible by adding threads
Returns do diminish rapidly
More cores lead to smoother results
Adding “too many” threads does not hurt performance in
this test

How much gain in terms of speedup?
Calculated by T1

TP

52 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

2× DC Speedup For Best split_percents

2.0 2.5 3.0 3.5 4.0

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

Number of threads

S
pe

ed
up

●

●

●

●

●

●

●

●

●

Split Percent

52 %
36 %
28 %

53 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

2× QC Speedup For Best split_percents

2 3 4 5 6 7 8

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Number of threads

S
pe

ed
up

●
●

● ● ● ● ●

●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

Split Percent

52 %
36 %
24 %
20 %
12 %
16 %
4 %

54 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Conclusions From Speedup Cross Sections

Reaffirmation that speedup is possible
Returns diminish for these machines at around 6 threads
Overall, access to main memory is not an immediate
bottleneck

Putting the results from the best split_percents for each
architecture...

55 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Comparison of Best split_percent Per Class

2 3 4 5 6 7 8

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Number of threads

S
pe

ed
up

●
●

●

●
●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

cores (split %)

2 (52 %)
4 (28 %)
8 (12 %)

56 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

State Scalability Test

Models the additional work done by the NFA threads by
following multiple execution paths through the table
Each NFA thread now must remember the state and
calculate the next state for each character and for each
start state

The DFA need only remember and calculate one state per
input character

Does not model the memory used, actions stored, or
garbage state elimination

57 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

2× DC Overall Results – Best Times

N
um

be
r

of
 D

F
A

 s
ta

te
s

5

10

15

Number of threads 5
10

15

T
im

e (s)

15

20

25

30

35

58 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

2× QC Overall Results – Best Times

N
um

be
r

of
 D

F
A

 s
ta

te
s

5

10

15

Number of threads 5
10

15

T
im

e (s)

10

20

30

40

59 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Conclusions From State Scalability Overall Results

Two major conclusions:
The speedup on the 2× quad-core machines appears
stable as the number of threads increases
There is a significant steepening when the DFA has 6-7
states

Performance reaches its max when the number of threads
match the number of processing cores available

Each new thread adds substantial extra work compared
with the memory bandwidth test

Plotting speedup for certain split_percents

60 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

2× DC – Best Speedup for DFA Sizes

2.0 2.5 3.0 3.5 4.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Number of Threads

S
pe

ed
up

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

DFA state size (w/split %)

2 states, 28 %
4 states, 32 %
6 states, 36 %
8 states, 56 %
10 states, 60 %
12 states, 64 %

61 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

2× QC – Best Speedup for DFA Sizes

2 3 4 5 6 7 8

1
2

3
4

5

Number of Threads

S
pe

ed
up

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

DFA state size (w/split %)

2 states, 12 %
4 states, 16 %
6 states, 20 %
8 states, 36 %
10 states, 40 %
12 states, 40 %

62 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Conclusions From State Scalability Test

The extra work of pushing characters through the multiple
execution paths of the NFA is not in itself a limiting factor
There is a “sweet spot” for DFA size: around 6-7 states
which allows for the greatest language complexity and the
best scalability

This is a crossover point where the O(N) extra NFA work
overcomes the the O(1) work of simply reading the input

63 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Serial NFA Tests

Test hypothesis: the extra work required by using an NFA is
offset by dividing processing work across multiple threads
Run each automaton-parser sequentially and
independently
Divide the work as usual, with a range of split_percents
and number_of_threads
Time each component independently
Completely parses the input, generating the correct
sequence of SAX events

The maximum time for all components to complete (plus fix
up time) represents an upper bound on the time
PIXIMAL-NFA would take with components running
concurrently

64 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Differences From Previous Tests

Entirely sequential (no concurrency)
Full XML parsing takes place
Input file is different

“Interop” test from SOAPBench and XMLBench
SOAP-encoded arrays of various data types: integers,
strings, and MIOs
Array size is scaled between 10 and 50,000 elements for
each type

65 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Serial NFA Test: 10,000 Integers By Thread Count

2 3 4 5 6 7 8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Thread Count

P
ot

en
tia

l S
pe

ed
up

●

●

●
●

● ●

●

● ● ●
● ● ● ●

Max Speedup
Mean Speedup
Min Speedup

66 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Serial NFA Test: 10,000 Integers By Split Percent

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Split Percent

P
ot

en
tia

l S
pe

ed
up

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●●

●●●●●●●●
●

●
●

●●●●●
●●●

●●
●

●
●

●
●

●●
●

●
●

●
●●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

Max Speedup
Mean Speedup
Min Speedup

67 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Serial NFA Test: 10,000 Integers State Histogram

0 1 2 3 4 5 6 7 8 9 10

DFA State

F
re

qu
en

cy

0
20

00
0

40
00

0
60

00
0

68 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Conclusions From Integer Results

Speedup is possible in this case
Choice of split point is critical for achieving any speedup at
all
Characters in content sections account for roughly 60% of
the input characters

Input is 117 KB in length
Consists mainly of
...<i>1234</i><i>1235</i><i>1236</i>...

69 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Serial NFA Test: 10,000 Strings By Thread Count

2 3 4 5 6 7 8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Thread Count

P
ot

en
tia

l S
pe

ed
up

●

●

●

●

●
●

●

●
●

● ●
●

●

●

Max Speedup
Mean Speedup
Min Speedup

70 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Serial NFA Test: 10,000 Strings By Split Percent

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Split Percent

P
ot

en
tia

l S
pe

ed
up

●●●●●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●
●●

●
●●

●●
●●●●●●●●●●●●●●●●●

●●●●●●●●

●

●
●

●
●

●●●●●
●

●
●●●

●

●●●
●

●
●

●●●
●

●●
●●●

●
●

●

●●
●●●●●

Max Speedup
Mean Speedup
Min Speedup

71 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Serial NFA Test: 10,000 Strings State Histogram

0 1 2 3 4 5 6 7 8 9 10

DFA State

F
re

qu
en

cy

0
40

00
00

80
00

00
12

00
00

0

72 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Conclusions from String Results

This sort of input is much more amenable to this approach
In maximum potential speedup achieved
In number of cases where speedup is > 1

Split point is much less important here
Characters in content sections account for roughly 99% of
the input characters

Input is 1.4 MB in size (though similar results are seen in
inputs that are 117 KB)
Consists mainly of ...<i>String content for the array

element number 0. This is long to test the

hypothesis that longer content sections are better

for the NFA.</i>...

73 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Conclusions from Serial NFA Test

Shape of the input strongly determines the efficacy of the
PIXIMAL approach

MIO has similar state usage and mix of content and tags as
the integer and PIXIMAL has a similar performance profile
there
PIXIMAL works well on inputs with longer content sections
punctuated by short tags

Starting in a content section helps because the ‘<’
character eliminates a large number of execution paths
through the NFA

If ‘>’ could be treated similarly by the parser, starting in a
tag would be less harmful

74 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

Re-Run Benchmarks and Investigate Memory Allocation
Pthread Penalty and Further Serial NFA Analysis
Define Restrictions on XML for Parallel Parsing

Outline

1 Introduction and Motivation
XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

2 Related Work
High Performance XML Processing Approaches

3 Work Completed
XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

4 Proposed Work

75 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

Re-Run Benchmarks and Investigate Memory Allocation
Pthread Penalty and Further Serial NFA Analysis
Define Restrictions on XML for Parallel Parsing

Proposed Work

Re-run benchmarks, normalize analysis and plotting

SOAPBench and XMLBench results should be re-run. Plots
should be rebuilt to match the rest of the figures.

Investigate memory allocation issues

Heap contention is a well known problem for applications with
concurrent memory allocations. We plan to investigate the
effect of a variety of allocators on PIXIMAL.

76 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

Re-Run Benchmarks and Investigate Memory Allocation
Pthread Penalty and Further Serial NFA Analysis
Define Restrictions on XML for Parallel Parsing

Proposed Work Continued

Examine “pthread penalty” associated with glibc
During PIXIMAL development, we encountered some issues
involving the the performance of malloc once a thread (even a
thread with an empty start_routine) was created. We plan to
investigate and report on this in detail.

Analyze a broader range of data from the serial NFA test

The serial NFA tests show a small portion of the data collected
in that test. There is a wealth of information to uncover about
the efficacy of this approach in the data.

77 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

Re-Run Benchmarks and Investigate Memory Allocation
Pthread Penalty and Further Serial NFA Analysis
Define Restrictions on XML for Parallel Parsing

Proposed Work Continued

Define characteristics of a restricted subset of XML documents:
“PXML”
Based on the above results, we can design a language which
works best with PIXIMAL-NFA. Potential targets include
eliminating ‘>’ from content sections, removing CDATA sections,
disallowing extra whitespace in tags, and perhaps eliminating
attributes altogether.

78 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

Re-Run Benchmarks and Investigate Memory Allocation
Pthread Penalty and Further Serial NFA Analysis
Define Restrictions on XML for Parallel Parsing

Thank you for your time.

79 / 80

http://www.binghamton.edu

Introduction and Motivation
Related Work

Work Completed
Proposed Work

Re-Run Benchmarks and Investigate Memory Allocation
Pthread Penalty and Further Serial NFA Analysis
Define Restrictions on XML for Parallel Parsing

Questions?

80 / 80

http://www.binghamton.edu

Extra Slides

The following slides are additional and not part of the
presentation.

81 / 80

http://www.binghamton.edu

Overcoming Sequentiality With an NFA

Problem: start state is unknown

Solution: assume every possible state is a start state
Construct an NFA from the DFA used in PIXIMAL-DFA

1 Mark every state as a start state
2 Remove all the garbage state and all transitions to it
3 Create an queue for each start state to store actions that

should be performed
Such an NFA can be applied on any substring of the input

PIXIMAL-NFA is the parser that does all of this:
Partition input into segments
Run PIXIMAL-DFA on the initial segment
Run NFA-based parsers on subsequent partition elements
Fix up transitions at partition boundaries and run queued
actions

82 / 80

http://www.binghamton.edu

PIXIMAL-DFA Implementation Details

mmap(2)s input file to save memory
Uses {length, pointer} string representation

Strings (for tagnames, attribute values) point into the
mapped memory
All the way through the SAX-style event interface

DFA is encoded as two tables
Table of “next” state numbers indexed by state number and
input character
Table of boolean “action required” indicators indexed by
“current” state and “next” state

Action required =⇒ a function is called to decode and
execute the required action

DFA table is generated at compile time using a separate
generator program

83 / 80

http://www.binghamton.edu

	Introduction and Motivation
	XML and SOAP
	Ubiquity of Multi-processing Capabilities
	Contributions and Thesis Statement

	Related Work
	High Performance XML Processing Approaches

	Work Completed
	XML and SOAP Benchmarks
	Investigating System Cache Effects
	Piximal: Parallel Approach for Processing XML

	Proposed Work
	
	
	

	Appendix

