Proposal Defense:
Analysis and Optimization for Processing
Grid-Scale XML Datasets

Michael R. Head

Department of Computer Science
Grid Computing Research Laboratory
Binghamton University
mike@cs.binghamton.edu

Friday, September 12, 2008

http://www.binghamton.edu
http://www.piximal.org
http://www.piximal.org
mailto:mike@cs.binghamton.edu
http://www.cs.binghamton.edu
http://grid.cs.binghamton.edu
http://www.binghamton.edu
mailto:mike@cs.binghamton.edu

Outline

Q Introduction and Motivation
@ XML and SOAP
@ Ubiquity of Multi-processing Capabilities
@ Contributions and Thesis Statement

9 Related Work
@ High Performance XML Processing Approaches

© Work Completed
@ XML and SOAP Benchmarks
@ Investigating System Cache Effects
@ PIXIMAL: Parallel Approach for Processing XML

e Proposed Work

http://www.binghamton.edu

Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

Outline

@ Introduction and Motivation
@ XML and SOAP

http://www.binghamton.edu

Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

XML Defined

@ Text based (usually UTF-8 encoded)
@ Tree structured

@ Language independent

@ Generalized data format

http://www.binghamton.edu

Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

Motivation from SOAP

@ Generalized RPC mechanism (supports other models, too)
@ Broad industrial support

@ Web Services on the Grid

@ OGSA: Open Grid Services Architecture
o WSRF: Web Services Resource Framework

@ At bottom, SOAP depends on XML

http://www.binghamton.edu

Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

XML Exclusive of SOAP

@ General structured data format

@ Becoming standard for many scientific datasets
HapMap - mapping genes

Protein Sequencing

NASA astronomical data

Many more instances

http://www.binghamton.edu

Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

Explosion of Data

@ Enormous increase in data from sensors, satellites,
experiments, and simulations*

@ Use of XML to store these data is also on the rise

@ XML is in use in ways it was never really intended (GB and
large size files)

http://www.binghamton.edu

Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

Benchmark Motivation

@ Grid applications place a wide range of requirements on
the communication substrate and data formats.

@ Simple and straightforward implementations can have a
severe performance impact.

http://www.binghamton.edu

Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

XML Performance Limitations

@ Compared to “legacy” formats
o Text-based

@ Lacks any “header blocks” (ex. TCP headers), so must scan
every character to tokenize
@ Numeric types take more space and conversion time

e Lacks indexing
@ Unable to quickly skip over fixed-length records

UNIVERSITY

State University of New York

http://www.binghamton.edu

Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

Limitations of XML

@ Poor CPU and space efficiency when processing scientific
data with mostly numeric data [Chiu et al 2002]

@ Features such as nested namespace shortcuts don'’t scale
well with deep hierarchies

e May be found in documents aggregating and nesting data
from disparate sources
@ Character stream oriented (not record oriented): initial
parse inherently serial

@ Still ultimately useful for sharing data divorced of its
application

UNIVERSITY

State University of New York

10/80

http://www.binghamton.edu

Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

Outline

@ Introduction and Motivation

@ Ubiquity of Multi-processing Capabilities

http://www.binghamton.edu

Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

Prevalence of Parallel Machines

@ All new high end and mid range CPUs for desktop- and
laptop-class computers have at least two cores

@ The future of AMD and Intel performance lies in increases
in the number of cores

@ Despite extant SMP machines, many classes of software
applications remain single threaded
e Multi-threaded programming considered “hard”
e Reinforced in the current curricula and by existing
languages and tools

UNIVERSITY
State University of New York

12/80

http://www.binghamton.edu

Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

XML and Multi-Core

@ Most string parsing techniques rely on a serial scanning
process

@ Challenge: Existing (singly-threaded) XML parsers are
already very efficient [Zhang et al 2006]

http://www.binghamton.edu

Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

Outline

@ Introduction and Motivation

@ Contributions and Thesis Statement

http://www.binghamton.edu

Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

Contributions

@ We present the design and implementation of a
comprehensive benchmark suite for XML and SOAP
implementations with standard mechanisms to quantify,
compare, and evaluate the performance of each toolkit and
study the strengths and weaknesses for a wide range of
representative use case scenarios.

@ We present an analysis of pre-fetching and piped
implementation techniques that aim to offset disk 1/0 costs
while processing large-scale XML datasets on multi-core
CPU architectures.

State University of New York

15/80

http://www.binghamton.edu

Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

Contributions Continued

@ We propose techniques to modify the lexical analysis
phase for processing large-scale XML datasets to leverage
opportunities for parallelism. (PIXIMAL)

@ We present an analysis of the scalability that can be
achieved with our proposed parallelization approach as the
number of processing threads and size of XML-data is
increased.

@ We present an analysis on the usage of various states in
the processing automaton to provide insights on why the
performance varies for differently shaped input data files.

State University of New York

16/80

http://www.binghamton.edu

Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities
Contributions and Thesis Statement

Thesis Statement

In this thesis we present a comprehensive benchmark suite that
facilitates the study of the strengths and weaknesses of XML
and SOAP toolkits for a wide range of representative use case
scenarios.

We propose a parallel processing model for some
application-based large-scale XML datasets that can effectively
leverage opportunities for parallelism in emerging multi-core
CPU architectures.

http://www.binghamton.edu

Related Work High Performance XML Processing Approaches

Outline

9 Related Work
@ High Performance XML Processing Approaches

http://www.binghamton.edu

Related Work High Performance XML Processing Approaches

High Performance XML Processing Approaches

@ Look-aside buffers/String caching [gsoap, XPP]

@ Trie data structure with schema-specific parser [Chiu et al 02,
Engelen 04]

@ One pass table-driven recursive descent parser [Zhang et al
2006]

@ Pre-scan and schedule parser [Lu et al 2006]
@ Parallelized scanner, scheduled post-parser [Pan et al 2007]

State University of New York

19/80

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PIXIMAL: Parallel Approach for Processing XML

Outline

© Work Completed
@ XML and SOAP Benchmarks

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PIXIMAL: Parallel Approach for Processing XML

XML Benchmark Suite

@ A chosen set of XML documents
o Low level probes
e Application-based benchmarks
@ A driver application for each XML processor
e Runs the parser on the input, but does not act on the data
@ Eliminates application-level performance differences
@ One for each interface style (SAX/DOM)

© Published in Proceedings of SC’'06 [Head et al 2006]

UNIVERSITY

State University of New York

21/80

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PIXIMAL: Parallel Approach for Processing XML

Benchmark Probes

@ Overhead test

e Minimal XML document

@ (header plus one self-closing element)

@ Buffering

o Repeated use of xsi:type attributes
@ Namespace management

e Gratuitous use of xmins attributes
@ SOAP payloads

o “Interop” test: arrays of integer, string, double, MIO, event
objects

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PIXIMAL: Parallel Approach for Processing XML

Application Benchmarks

@ Ptolemy Workflow documents (which Kepler uses)
@ Genetic data files
o (Large) files from the International HapMap Project

@ Molecular data
@ Mesh interface objects, event streams (WSMGQG)
@ WS-Security documents

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Work Completed

Overhead of Each Parser

All Parsers, Overhead Test

w 8 T T T T T T T
E _
) 7 N
= N
2 6 : -
O ~
N 5 < T
; N
g N
3 4r N N
o NN
g 3r NN]
= < N 2
& 2 : SBE i
5 SN N
0—=—=— L = E % E %
= o
S £E5585:388s8¢% s 88
x 3§ 5 ¢ - 8 o P P L T L o
O | 1 () o | [&] | .- X
()} | N o — 2 < o] _— |
N = | o = | 17} | n
= IS [o o 0 5 %] (]
IS X o c 5] o Q o
X 8 & o o = 9L 3
a = £ 5 2 © %
= g x g
Parser

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Work Completed

Performance of C and C++-based Parsers

C/C++ Parsers, Application-level Inputs

% 12,000 T \ \ \ T \
3] hapmap_1797SNPs.xml M
v 10,000 LJ molecule_Ikzk.pretty.xml R
5 5] workflow_Atype.xml
8 8,000 &Y workflow_PIW.xml |
g
3 6,000 - N
Q 2 N
£ 4,000F : N -
) N N
) N N
< 2,000 ﬂ N N N
o ﬂr‘ N N 2
0 o - 3
I]]
g 3 5 8 3 P
S %) © | | (8]
o I [o T
[= T 0
1S 0 4]
= 3 & ¢
2 =) & £
X E——
Parser

25/80

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PIXIMAL: Parallel Approach for Processing XML

C Parser Performance Over SOAP Payloads

Parsing Performance for SOAP Payloads of int Arrays

6000 ; : 1 T T T T T
. lexpat —
£ 5000 -gsoap |
@ !gxm:%-dom e
5 ibxml2-sax -
2 4000 |
o qt4-sax
N xerces-c-dom
S 3000 ixerces-c-sax e i
Q
E 2000 |
=
% 1000
0
o

Number of Elementsin the Array

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects
PIXIMAL: Parallel Approach for Processing XML

Work Completed

Performance of Java-based Parsers

Java Parsers, Application-level Inputs

= 9,000 T T T T
E 8000 — [hapmap_1797SNPs.xml _|
n ! [molecule_1kzk.pretty.xml
5 7,000~ 3 workflow_Atypexml
S 6,000 NIl workflow_PIW.xml
@ 5,000 -
3
S 4,000 .
£ 3,000 - .
Y N N
o 2,000 N N N N
s N N :
o 1,000 N :\\ N -
0 SEEWN : -
o @ ™
° o %] Q.
I SR
s b §
s =
g £
x
Parser

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PIXIMAL: Parallel Approach for Processing XML

XMLBench Conclusions

@ Low overhead — gSOAP and Expat, XPP3

@ gSOAP performs well with namespaces due to look-aside
buffers

@ Piccolo and XPP3 have comparable performance in Java

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PIXIMAL: Parallel Approach for Processing XML

Outline

© Work Completed

@ Investigating System Cache Effects

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PIXIMAL: Parallel Approach for Processing XML

Readahead/Runahead

@ Explore OS level caching effects
@ Offload disk input to another thread/core

@ Published in SOCP Workshop at HPDC [Head et al 2007]

State University of New York

30/80

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PIXIMAL: Parallel Approach for Processing XML

Reading ahead

@ Introduce two parsers which extend the existing, high
performance Piccolo parser [Head et al 2006]
e Runahead: opens two file descriptors for the input file
@ Start a thread that repeatedly calls read () on one of the file
descriptors
@ Pass the other file descriptor to the existing Piccolo parser in
the main thread
o Readahead: opens one file descriptor for the input file, and
one pipe
@ Start a thread that reads from the file descriptor and writes
to the pipe
@ Pass the pipe to the existing Piccolo parser in the main
thread

UNIVERSITY
State University of New York

31/80

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PIXIMAL: Parallel Approach for Processing XML

Test run

@ Run each parser (Piccolo, Runahead, and Readahead)
on a large (GB-scale) XML file

e Specifically, a protein sequence database file,
Psd7003.xml

@ No user code is run for any SAX event — just the parser
itself is tested

@ File cache is cleared between each run running a separate
process that reads multiple gigabyte files

@ Each test is run 50 times for each parser
@ Hotspot is warmed by running the parser on another input
file with identical content before timing begins

32/80

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PIXIMAL: Parallel Approach for Processing XML

Two Environmental Conditions Tested

@ Architectures

e UP: Classic Uniprocessor P4-based machine (Dell
workstation)

e SMP: Classic Symmetrical MultiProcessing P4-based
machine (has server-class |/O system) (IBM e-server)

° : Modern Chip MultiProcessing Core 2 Duo-based
machine (Dell workstation)

@ System conditions
e Cached: The input file is read (hence loaded into the
system file cache) before timing begins
e Uncached: The input file is not read before timing begins
(and flushed between each run)

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PIXIMAL: Parallel Approach for Processing XML

DEIEWAMEWAIS

@ Speedup for both of the proposed parsers is computed to
compare across architectures

@ Baseline value is computing by averaging the times for
each run of the unmodified Piccolo parser

@ Speedup for each run is computed by dividing the baseline
by the time at each test point

UNIVERSITY

State University of New York

34/80

http://www.binghamton.edu

XML and SOAP Benchmarks
Investlgatlng System Cache Effects

Work Completed AL: Parallel Approach for Processing XML

Speedup for the Readahead Parser Relative to Architecture

o
~
o
n
w' —
[=1 o
3 L_7 _°_°_°_ 22200, 2%02%a00200000 o 092202200 o000
3 f\/ 3 ol o
j=X
3 /
Q)
: 3
« = — CMP
[} o
14 — UP
— SMP
o 0%%0 000 ° ° o0 © ,u o ©
L‘Lnj_ _fnfqonf——ngg—ﬂffwfuaf Qmev—goY:;?’a 7073—%6;0—‘7’60707
=) \ oo
°
T T T T T T
0 10 20 30 40 50
Run Number

(Input Resides in Filesystem Cache)

http://www.binghamton.edu

XML and SOAP Benchmarks
Investlgatlng System Cache Effects

Work Completed L: Parallel Approach for Processing XML

Speedup for the Runahead Parser Relative to Architecture

Relative Speedup

o - -o-o- °-E-° - 5
) o\
o0 \/ o

T T T T T T
0 10 20 30 40 50

Run Number
(Input Resides in Filesystem Cache)

http://www.binghamton.edu

XML and SOAP Benchmarks
Investlgatlng System Cache Effects

Work Completed AAL: Parallel Approach for Processing XML

Speedup for the Runahead Parser Relative to Architecture

o ° o
= _,ng,/,,/, 9&0,3‘1,5’\,,,,,,%,/,\1,,,,os AL T AN T
— o T e v/ o \uoo \ \00
— ° /
SMP .
~ — CMP
= 7] — UP

°
I ©0%- 6250006700 2%°0 6050 609500006 50,0 0005250000600 600

Relative Speedup
1.0
|

oo o o °\
© o \ / \ ° o
o _-_o_‘,°_9f\ __¢°‘_o..°f\ _LEX____,"__OS.O_/_OQ_OZ f\ o ___
. o\l o 00,%, / o W\
o °°
© o
] \/
o
T T T T T T
0 10 20 30 40 50
Run Number

(Input Flushed from Filesystem Cache)

http://www.binghamton.edu

XML and SOAP Benchmarks
Investlgatlng System Cache Effects

Work Completed AL: Parallel Approach for Processing XML

Speedup for the CMP Architecture Relative to Parser Type

=
— o
252 - 5a- 00 s 004 502~ 5007 °s far 9°_°_°;_ 0%0, © oo
B
-
Runahead
S 4 | — Readahead
[=1
>
o
(o]
Q
& o |
0 o
=
k]
[
@
« _]
o
o °
| o220 1,,\,a, 2000n sops s O - v og o -\gm - 56022 0p 2 %o 2o _
~ % ° o ° ° o
© T T T T T T
0 10 20 30 40 50
Run Number

(Input Flushed from Filesystem Cache)

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PIXIMAL: Parallel Approach for Processing XML

Readahead Conclusions

@ On systems with available memory and an available
processing core with fresh inputs, this approach can
provide some performance wins.

UNIVERSITY

State University of New York

39/80

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

Outline

© Work Completed

@ PIXIMAL: Parallel Approach for Processing XML

State University of New York

40/80

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

Token-Scanning With a DFA

@ DFA-based table-driven scanning is both popular and fast
o (or at least performance-competitive with other techniques)
@ Input is read sequentially from start to finish

@ Each character is used to transition over states in a DFA
e Transition may have associated actions

@ Supports languages that are not “regular”

@ Commonly used in high performance XML parsers, such
as TDX (C) and Piccolo (Java)
e Amenable to SAX parsing
e PIXIMAL-DFA uses this approach

UNIVERSITY

State University of New York

41/80

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

DFA Used in PiIxIMAL-DFA

whitespace

name char

whitespace

name char
name start

name char

name start whitespace

whitespace

name char L,
not '<’ or '&

char data

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

Parallel Scanning With a DFA?

@ DFA-based scanning —> sequential operation

@ Desire: run multiple, concurrent DFAs throughout the input

@ Generally not possible because the start state would be
unknown

UNIVERSITY

State University of New York

43/80

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

Overcoming Sequentiality With an NFA

@ Problem: start state is unknown

@ Solution: assume every possible state is a start state

e Construct an NFA from the DFA used in PIXIMAL-DFA
e Such an NFA can be applied on any substring of the input

@ PIXIMAL-NFA is the parser that does all of this:

Partition input into segments

Run PixIMAL-DFA on the initial segment

Run NFA-based parsers on subsequent partition elements
Fix up transitions at partition boundaries and run queued
actions

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

PiXIMAL-NFA’s Parameters

@ split_percent:

e The portion of input to be dedicated to the first element of
the partition, expressed as a percentage of the total input
length

@ number_of threads:
e The number of threads to use on a run

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

Preliminary Questions

@ Is there enough memory bandwidth to allow multiple
automata to concurrently feed each thread its input?

@ Processing each character along several paths through the
NFA is costly: how does this work scale with the size of the
initial DFA?

@ Does the overhead of queuing the NFA actions cost a
reasonable amount compared with the cost of DFA-parsing
the first partition element?

State University of New York

46/80

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

Memory Bandwidth Test

@ Models the work of partitioning the input the way
PiIXIMAL-NFA does

o File I/O is via mmap (2)

@ Athread is created for each partition element which
accumulates each character
@ A variety of split_percents and number_of _thread are
chosen
o Total time to read a large input a fixed number of times is

measured
o Input file is SwissProt.xml, which is 109 MB in size

UNIVERSITY
State University of New York

47/80

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

Memory Bandwidth Test — Experimental Setup

@ Run several machines, each from a homogeneous class
running 64-bit versions of Linux

@ 2x uniprocessor: 3.2 Ghz Intel Xeon (uniprocessor), 4
GB RAM, Linux kernel 2.6.15, GNU Lib C 2.3.6, GCC 4.0.3

@ 2x dual core: 2.66 Ghz Intel Xeon 5150 (dual core)
CPUs, 8 GB RAM, Linux kernel 2.6.18, GNU Lib C 2.3.6,
GCC4.1.2

@ 2x quad core: 2.33 Ghz Intel Xeon E5354 (quad-core)
CPUs, 8 GB RAM, Linux kernel 2.6.18, GNU Lib C 2.3.6,
GCC4.1.2

@ 4 nodes used from the 2x UP cluster, 10 from each of the
other two

@ Results for each class are averaged across all runs

http://www.binghamton.edu

g g Syst cts
PixiMAL: Parallel Approach for Processing XML

Work Completed

2x UP Overall Results

State University of New York

49/80

http://www.binghamton.edu

In gating Sys cts
PixiMAL: Parallel Approach for Processing XML

Work Completed

2x DC Overall Results

State University of New York

50/80

http://www.binghamton.edu

SO
gating Sy cts
PixiMAL: Parallel Approach for Processing XML

Work Completed

2x QC Overall Results

State University of New York

51/80

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

Conclusions From Overall Results

@ Even when doing very little per-character processing,
performance gains possible by adding threads

@ Returns do diminish rapidly
@ More cores lead to smoother results

@ Adding “too many” threads does not hurt performance in
this test

@ How much gain in terms of speedup?
o Calculated by 7-

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

2x DC Speedup For Best split_percents

Split Percent
S| 2%
36 %
== 28%
N]
~N
o o
a o 7
=1
°
Q
2 o
[ZER I
© ° o o o -- o
<9 -
~
— o
T T T T T
2.0 25 3.0 35 4.0

Number of threads

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

2x QC Speedup For Best split_percents

Split Percent . \‘\\\
---- B2% ° e
° 36 % °
o 1] - 2a% 7
20 % e
- 12% T
16 % s
0 | 4% | s
@ ol
[} /e
_g /
gj o /,/
~ o
,
,/'
o
° z //o —-- 0 m----- O ------ 0 ---=-- 0 ------ o
o0 | /
- /
° 4 /
b
o ,/‘
7
.
o |
—
T T T T T T T
2 3 4 5 6 7 8

Number of threads

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

Conclusions From Speedup Cross Sections

@ Reaffirmation that speedup is possible
@ Returns diminish for these machines at around 6 threads

@ Overall, access to main memory is not an immediate
bottleneck

@ Putting the results from the best split_percents for each
architecture...

State University of New York

55/80

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

Comparison of Best split_percent Per Class

n
o 7] 0.
cores (split %) S RN
oo 2(52%) S
3 - 4(28%) e
- 8(12%) 0
w0 | °
2 o
> o
© .
[<F] 7
5] , o) o
Q. ’
0 o . : o
N
o;—>;~;/°<>—<>>0\‘\‘ -
1) STl
-
o °
i T T T T T T 1
2 3 4 5 6 7 8

Number of threads

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

State Scalability Test

@ Models the additional work done by the NFA threads by
following multiple execution paths through the table

@ Each NFA thread now must remember the state and
calculate the next state for each character and for each
start state

e The DFA need only remember and calculate one state per
input character

@ Does not model the memory used, actions stored, or

garbage state elimination

State University of New York

57/80

http://www.binghamton.edu

Work Completed PIXIMAL: Parallel Approach for Processing XML

2x DC Overall Results — Best Times

State University of New York

58/80

http://www.binghamton.edu

cessing XML

State University of New York

59/80

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

Conclusions From State Scalability Overall Results

@ Two major conclusions:
e The speedup on the 2x quad-core machines appears
stable as the number of threads increases
e There is a significant steepening when the DFA has 6-7
states
@ Performance reaches its max when the number of threads
match the number of processing cores available
e Each new thread adds substantial extra work compared
with the memory bandwidth test

@ Plotting speedup for certain split_percents

http://www.binghamton.edu

Work Completed

XML and SOAP Benchmarks
Investigating System Cache Effects
PixiMAL: Parallel Approach for Processing XML

2x DC — Best Speedup for DFA Sizes

Speedup

3.0

25

2.0

15

1.0

0.5

DFA state size (w/split %)
---- 2 states, 28 %
4 states, 32 %
---- 6 states, 36 %
8 states, 56 %
-—— 10 states, 60 %

12 states, 64 % |-~

3.0 35 4.0

Number of Threads

61/80

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

2x QC — Best Speedup for DFA Sizes

v 7 |DFA state size (w/split %) P
---- 2states, 12 % _-°
4 states, 16 % - °
---- 6 states, 20 %
8 states, 36 % Lol e o
-—— 10 states, 40 % o’ P
12 states, 40 % |- e

2 o .
S .
7} o PR
ja} .
o o o
” P -0
P /0"
N~ o’ e e
‘o B g
PR /D/
o -
PR o7
— — o . -
s - -
i o
o -z
5~
T T T T T T T
2 3 4 5 6 7 8

Number of Threads

62/80

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

Conclusions From State Scalability Test

@ The extra work of pushing characters through the multiple
execution paths of the NFA is not in itself a limiting factor

@ There is a “sweet spot” for DFA size: around 6-7 states
which allows for the greatest language complexity and the
best scalability

e This is a crossover point where the O(N) extra NFA work
overcomes the the O(1) work of simply reading the input

State University of New York

63/80

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

Serial NFA Tests

@ Test hypothesis: the extra work required by using an NFA is
offset by dividing processing work across multiple threads

@ Run each automaton-parser sequentially and
independently

@ Divide the work as usual, with a range of split_percents
and number_of _threads

@ Time each component independently

@ Completely parses the input, generating the correct
sequence of SAX events

@ The maximum time for all components to complete (plus fix
up time) represents an upper bound on the time
PiXIMAL-NFA would take with components running HAMITON
concurrentl y rm—————

64/80

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

Differences From Previous Tests

@ Entirely sequential (no concurrency)

@ Full XML parsing takes place
@ Input file is different
o “Interop” test from SOAPBench and XMLBench
e SOAP-encoded arrays of various data types: integers,
strings, and MIOs
o Array size is scaled between 10 and 50,000 elements for
each type

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

Serial NFA Test: 10,000 Integers By Thread Count

n
L
—— Max Speedup
o _| | --- Mean Speedup °
o O —— Min Speedup o/"/
>
°© /
§. 3 n o/o\"
(7] °/
©
= o
5 -
6 - ----
IS o --
P -
L
o /o/c‘/o o ’
7 1 o
© T T T T T T T
2 3 4 5 6 7 8

Thread Count

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

Serial NFA Test: 10,000 Integers By Split Percent

o _
™
o | —— Max Speedup
™ - - - Mean Speedup
a W —— Min Speedup
=] o
2
2 Q- °
N o ©
Z) [} / [}
[o ‘ oy ©
= -] o 0\ o
< o 00 oo
g ° \/ 0% %000
o o _| o - I 8°oﬁg
o - ° ° \ PETIN I\, 0
0, 0 \ \/\ <~ e, °
LQ \/\/‘o / ol\ooo’ ‘°’\° Y] \00 o
© gt Vool un o M Mo I\7 o
O L~ 7.0 N1 o 4 106 ° o ° 0 > ©
o ©,000°0,04 o o° °0% o © o ©
© | | | | |
0 20 40 60 80

Split Percent

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

Serial NFA Test: 10,000 Integers State Histogram

o
o
O_
o
©
o
Pyl o
(&) o -
o o
e <
o
3]
bt
L o
o
O_
o
3%

012345678910

DFA State
68/80

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

Conclusions From Integer Results

@ Speedup is possible in this case

@ Choice of split point is critical for achieving any speedup at
all

@ Characters in content sections account for roughly 60% of
the input characters

@ Inputis 117 KB in length

@ Consists mainly of
L ..<1>1234</1><1>1235</1><1i>1236</i>...

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

Serial NFA Test: 10,000 Strings By Thread Count

o _|
@ —— Max Speedup .
o - -
@ M_ean Speedup /
o —— Min Speedup Y —°
B —
(C/B)- Q_ o/
N
T - Q/ -
§ Fi_o/ ____—"’—
g o _ -7
- ”/ o
o |7 e
o /—o/"/o
o o — °
S T T T T T T T
2 3 4 5 6 7 8

Thread Count

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

Serial NFA Test: 10,000 Strings By Split Percent

n
™
o °\ —— Max Speedup
) | o °
™ A% o - -+ Mean Speedup
a ° ° o —— Min Speedup
3 o 0000 %
[<5] 0© o o0
2 24 °
(%) N I NN °°o
(__ﬁ Lo 1Mo A ! Ve oo o
2 3 N N AN
Q ~ ! ! vy | v 09080
- ! \ W~ \ oo \OBS
o o \ ol I o 9890,
o \—| 1 !] Oo \/ oo0
P 00 0000
7o) \ o 000 000 °
s T ! o 00 o o
o 00000000 ooo 000 °
o o
o I I I I I I
0 20 40 60 80

Split Percent

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

Serial NFA Test: 10,000 Strings State Histogram

o
o
o
o p—
o
N
—

> 8

o o

c o

% o

2 ©

q) p—

bt

L o
o
o _|
o
o
<
o - PR e I S —— R —

0o 1 2 3 4 5 6 7 8

DFA State

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects

Work Completed PixiMAL: Parallel Approach for Processing XML

Conclusions from String Results

@ This sort of input is much more amenable to this approach
e In maximum potential speedup achieved
e In number of cases where speedup is > 1

@ Split point is much less important here

@ Characters in content sections account for roughly 99% of
the input characters

@ Inputis 1.4 MB in size (though similar results are seen in
inputs that are 117 KB)

@ Consists mainIy of ...<i>String content for the array
element number 0. This is long to test the
hypothesis that longer content sections are better
for the NFA.</i>...

State University of New York

73/80

http://www.binghamton.edu

XML and SOAP Benchmarks
Investigating System Cache Effects
Work Completed PixiMAL: Parallel Approach for Processing XML

Conclusions from Serial NFA Test

@ Shape of the input strongly determines the efficacy of the

PIXIMAL approach
e MIO has similar state usage and mix of content and tags as

the integer and PIXIMAL has a similar performance profile

there
o PiIXIMAL works well on inputs with longer content sections

punctuated by short tags
@ Starting in a content section helps because the ‘<’
character eliminates a large number of execution paths
through the NFA
e If >’ could be treated similarly by the parser, starting in a
tag would be less harmful

http://www.binghamton.edu

Re-Run Benchmarks and Investigate Memory Allocation
Pthread Penalty and Further Serial NFA Analysis

Proposed Work Define Restrictions on XML for Parallel Parsing

Outline

0 Proposed Work

75/80

http://www.binghamton.edu

Re-Run Benchmarks and Investigate Memory Allocation
Pthread Penalty and Further Serial NFA Analysis

Proposed Work Define Restrictions on XML for Parallel Parsing

Proposed Work

Re-run benchmarks, normalize analysis and plotting

SOAPBench and XMLBench results should be re-run. Plots
should be rebuilt to match the rest of the figures.

Investigate memory allocation issues

Heap contention is a well known problem for applications with
concurrent memory allocations. We plan to investigate the
effect of a variety of allocators on PIXIMAL.

BINGHAMTON
UNIVERSITY

State University of New York

76/80

http://www.binghamton.edu

Re-Run Benchmarks and Investigate Memory Allocation
Pthread Penalty and Further Serial NFA Analysis
Define Restrictions on XML for Parallel Parsing

Proposed Work

Proposed Work Continued

Examine “pthread penalty” associated with glibc

During PIXIMAL development, we encountered some issues
involving the the performance of malloc once a thread (even a
thread with an empty start_routine) was created. We plan to
investigate and report on this in detail.

Analyze a broader range of data from the serial NFA test

The serial NFA tests show a small portion of the data collected
in that test. There is a wealth of information to uncover about
the efficacy of this approach in the data.

http://www.binghamton.edu

Re-Run Benchmarks and Investigate Memory Allocation
Pthread Penalty and Further Serial NFA Analysis
Define Restrictions on XML for Parallel Parsing

Proposed Work

Proposed Work Continued

Define characteristics of a restricted subset of XML documents:
“PXML”

Based on the above results, we can design a language which
works best with PIXIMAL-NFA. Potential targets include
eliminating ‘>’ from content sections, removing CDATA sections,
disallowing extra whitespace in tags, and perhaps eliminating
attributes altogether.

BINGHAMTON
UNIVERSITY

State University of New York

78/80

http://www.binghamton.edu

Re-Run Benchmarks and Investigate Memory Allocation
Pthread Penalty and Further Serial NFA Analysis
Define Restrictions on XML for Parallel Parsing

Proposed Work

Thank you for your time.

http://www.binghamton.edu

Re-Run Benchmarks and Investigate Memory Allocation
Pthread Penalty and Further Serial NFA Analysis
Define Restrictions on XML for Parallel Parsing

Proposed Work

Questions?

http://www.binghamton.edu

Extra Slides

The following slides are additional and not part of the
presentation. }

State University of New York

81/80

http://www.binghamton.edu

Overcoming Sequentiality With an NFA

@ Problem: start state is unknown

@ Solution: assume every possible state is a start state
e Construct an NFA from the DFA used in PIXIMAL-DFA
@ Mark every state as a start state
@ Remove all the garbage state and all transitions to it
© Create an queue for each start state to store actions that
should be performed

@ Such an NFA can be applied on any substring of the input

@ PiXIMAL-NFA is the parser that does all of this:

Partition input into segments

Run PIXIMAL-DFA on the initial segment

Run NFA-based parsers on subsequent partition elements

Fix up transitions at partition boundaries and run queued
actions sl e

82/80

http://www.binghamton.edu

PIXIMAL-DFA Implementation Details

@ mmap (2) s input file to save memory
@ Uses {length, pointer} string representation
e Strings (for tagnames, attribute values) point into the
mapped memory
o All the way through the SAX-style event interface
@ DFA is encoded as two tables

e Table of “next” state numbers indexed by state number and

input character
e Table of boolean “action required” indicators indexed by

“current” state and “next” state

@ Action required = a function is called to decode and
execute the required action

e DFA table is generated at compile time using a separate

generator program

State University of New York

83/80

http://www.binghamton.edu

	Introduction and Motivation
	XML and SOAP
	Ubiquity of Multi-processing Capabilities
	Contributions and Thesis Statement

	Related Work
	High Performance XML Processing Approaches

	Work Completed
	XML and SOAP Benchmarks
	Investigating System Cache Effects
	Piximal: Parallel Approach for Processing XML

	Proposed Work
	
	
	

	Appendix

