Approaching a Parallelized XML Parser
Optimized for Multi-Core Processors*

Michael R. Head' Madhusudhan Govindaraju?

Department of Computer Science
Grid Computing Research Laboratory
Binghamton University (SUNY)
{ 1mj_ke, zmgovinda }@cs.binghamton.edu

Workshop on Service-Oriented Computing Performance:
Aspects, Issues, and Approaches, 2007
*Supported in part by NSF grant CNS-0454298 and DOE grant
DE-FG02-08ER25803 BINGHAMION

UNIVERSITY

State University of New York

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
http://www.cs.binghamton.edu/~mike/papers/socp123-head.pdf
http://www.cs.binghamton.edu/~mike/papers/socp123-head.pdf
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu
http://www.cs.binghamton.edu
http://grid.cs.binghamton.edu
http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu

Outline

0 Motivation
@ Prevalence of Large XML Documents
@ Multi-Core
@ Optimizations

e Experiments and Results
@ Experimental Setup
@ Results

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu

Motivation Prevalence of Large XML Documents
Multi-Core
Optimizations

Explosion of Data

@ Enormous increase in data from sensors, satellites,
experiments, and simulations*

@ Use of XML to store these data is also on the rise

@ XML is in use in ways it was never really intended (GB and
large size files)

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu

Motivation Prevalence of Large XML Documents
Multi-Core
Optimizations

Limitations of XML

@ Poor CPU and space efficiency when processing scientific
data with mostly numeric data [Chiu et al 2002]

@ Features such as nested namespace shortcuts don’t scale
well with deep hierachies

e May be found in documents aggregating and nesting data
from disparate sources

@ Character stream oriented (not record oriented): initial

parse inherently serial

@ Still ultimately useful for sharing data divorced of its
application

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu

Motivation Prevalence of Large XML Documents
Multi-Core
Optimizations

Prevalence of Parallel Machines

@ All new high end and mid range CPUs for desktop- and
laptop-class computers have at least two cores

@ The future of AMD and Intel performance lies in increases
in the number of cores

@ Despite extant SMP machines, many classes of software
applications remain single threaded
e Multi-threaded programming considered “hard”
e Reinforced in the current curricula and by existing
languages and tools

State University of New York

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu

Motivation Prevalence of Large XML Documents
Multi-Core
Optimizations

XML and Multi-Core

@ Most string parsing techniques rely on a serial scanning
process

@ Challenge: Existing (singly-threaded) XML parsers are
already very efficient [Zhang et al 2006]

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu

Motivation Prevalence of Large XML Documents
Multi-Core
Optimizations

Research directions

@ Pre-scan and schedule parser [Lu et al 2006]
@ Parallelized scanner

Requires some communication/buffering between threads

Michael R. Head, Madhus ovindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu

Motivation Prevalence of Large XML Documents
Multi-Core
Optimizations

But first...

@ Try some easy, generic techniques
@ Offload disk input to another thread/core

@ Introduce two parsers which extend the existing, high
performance Piccolo parser [Head et al 2006]
e Runahead: opens two file descriptors for the input file
@ Start a thread that repeatedly calls read () on one of the file
descriptors
@ Pass the other file descriptor to the existing Piccolo parser in
the main thread

o Readahead: opens one file descriptor for the input file, and

one pipe
@ Start a thread that reads from the file descriptor and writes
to the pipe
@ Pass the pipe to the existing Piccolo parser in the main [IEETINEEN
thread” prowre——

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu

Experimental Setup

Experiments and Results Results

Test run

@ Run each parser (Piccolo, Runahead, and Readahead)
on a large (GB-scale) XML file

e Specifically, a protein sequence database file,
pdf7003.xml

@ No user code is run for any SAX event — just the parser
itself is tested

@ File cache is cleared between each run running a separate
process that reads multiple gigabyte files

@ Each test is run 50 times for each parser

@ Hotspot is warmed by running the parser on another input
file with identical content before timing begins

State University of New York

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu

Experimental Setup

Experiments and Results Results

Two Environmental Conditions Tested

@ Architectures

e UP: Classic Uniprocessor P4-based machine (Dell
workstation)

e SMP: Classic Symmetrical MultiProcessing P4-based
machine (has server-class I/O system) (IBM e-server)

° : Modern Chip MultiProcessing Core 2 Duo-based
machine (Dell workstation)

@ System conditions
e Cached: The input file is read (hence loaded into the
system file cache) before timing begins
e Uncached: The input file is not read before timing begins
(and flushed between each run)

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu

Experimental Setup

Experiments and Results Results

Data Analysis

@ Speedup for both of the proposed parsers is computed to
compare across architectures

@ Baseline value is computing by averaging the times for
each run of the unmodified Piccolo parser

@ Speedup for each run is computed by dividing the baseline
by the time at each test point

@ Data presented is from the most recent tests (same
systems as in the paper, but with an equitable amount of
RAM in the machine)

State University of New York

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu

Experimental Setup
Results

Experiments and Results

Speedup for the Readahead Parser Relative to Architecture

o
~
o o
00 .0 0 OO0 ° 0o°. o 0044 o s
- — P — e QO O _ = -=L _Q .y
o\ \/o 3 Oo/ o eOGO \ /oo O 0G0 00 O% eoo{yoo -O-
(¢] o [e)
n
LO_ —
2 o o)
3 L - 209,02 09940, 290025902000%0 0. 0002902900 050000,
g JAYARS) o ol o
< oo /
n
: o °
8 9 —
S S CMP
4 — UP
— SMP
o___o%0o 000,95 © o o 9 00
i | 07600 - 000" 20070, /. Qooofoofo.ga o5 - 9’00650 - 05
=) \ 00
o
T T T T T T
0 10 20 30 40 50
Run Number

(Input Resides in Filesystem Cache)

Michael R. Hea

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu

Experimental Setup
Results

Experiments and Results

Speedup for the Runahead Parser Relative to Architecture

<
o
—
g2 9
° —
@
[}
&
o 8
2 5
<
©
4
©
@
[S]
©
<
IS
T T T T T T
0 10 20 30 40 50
Run Number

(Input Resides in Filesystem Cache)

Michael i j Parallel XM

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu

Experimental Setup
Results

Experiments and Results

Speedup for the Runahead Parser Relative to Architecture

o
o
o © o
< O/\oooooo \ 0o_/ _q° Q
3 4 09 00900 = - - - /=703 s0- 199 - Q70gq - /R0
o o 00,00 \ \ 00
SMP \
— CcMmP
«~ C
G| — v

Relative Speedup
1.0
|

oo o o

@ | 0% o o 00\ / o/\ °o 2o
IS -__GO.O_\ __g‘_oo9_09_____@__09_/_09_1_ o ___

o~ o0\

OO\O/ o OOOOO/ o \

o
© | %o
s \/
o
T T T T T T
0 10 20 30 40 50

Run Number
(Input Flushed from Filesystem Cache)

Michael R. Hea

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu

Experimental Setup
Results

Experiments and Results

Speedup for the CMP Architecture Relative to Parser Type

—
-
L DOQO_ '0‘30.000606 C_)O_OOQO-ODQQO_O 50 0 6°oQQO'°6 ° o-°9°00-°coo-
©
— Runahead
S -4 | — Readahead

Relative Speedup
0.9
|

@
<]
° o oo ° o o

| 60%04__a~0 - _ e e 0Q o 2o .-
- © 05 900000000000 < “09600 e Ooco 6005 ©Og 5
© T T T T T T

0 10 20 30 40 50

Run Number

(Input Flushed from Filesystem Cache)

Michael R. Hea

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu

Summary

Limitations

@ Haven't yet tested against a suite of differently sized and
structured XML files

@ Haven't yet examined effect on system (CPU utilization, 1/O
load)

@ Very simple optimization (for just 2 cores), may cause an
overall slowdown in an application which may be able to
use the core more effectively

State University of New York

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu

Summary

Summary

@ Still, in some cases, the benefit is surprisingly substantial
for such a simple change
o Compare performance against more complicated
approaches

Michael R. Head, Madhus ovindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu

	Motivation
	Prevalence of Large XML Documents
	Multi-Core
	Optimizations

	Experiments and Results
	Experimental Setup
	Results

	Summary

