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Explosion of Data

@ Enormous increase in data from sensors, satellites,
experiments, and simulations*

@ Use of XML to store these data is also on the rise

@ XML is in use in ways it was never really intended (GB and
large size files)
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Limitations of XML

@ Poor CPU and space efficiency when processing scientific
data with mostly numeric data [Chiu et al 2002]

@ Features such as nested namespace shortcuts don’t scale
well with deep hierachies

e May be found in documents aggregating and nesting data
from disparate sources

@ Character stream oriented (not record oriented): initial

parse inherently serial

@ Still ultimately useful for sharing data divorced of its
application

Michael R. Head, Madhusudhan Govindaraju Parallel XML


http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu

Motivation Prevalence of Large XML Documents
Multi-Core
Optimizations

Prevalence of Parallel Machines

@ All new high end and mid range CPUs for desktop- and
laptop-class computers have at least two cores

@ The future of AMD and Intel performance lies in increases
in the number of cores

@ Despite extant SMP machines, many classes of software
applications remain single threaded
e Multi-threaded programming considered “hard”
e Reinforced in the current curricula and by existing
languages and tools
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XML and Multi-Core

@ Most string parsing techniques rely on a serial scanning
process

@ Challenge: Existing (singly-threaded) XML parsers are
already very efficient [Zhang et al 2006]

Michael R. Head, Madhusudhan Govindaraju Parallel XML


http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu

Motivation Prevalence of Large XML Documents
Multi-Core
Optimizations

Research directions

@ Pre-scan and schedule parser [Lu et al 2006]
@ Parallelized scanner

Requires some communication/buffering between threads
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But first...

@ Try some easy, generic techniques
@ Offload disk input to another thread/core

@ Introduce two parsers which extend the existing, high
performance Piccolo parser [Head et al 2006]
e Runahead: opens two file descriptors for the input file
@ Start a thread that repeatedly calls read () on one of the file
descriptors
@ Pass the other file descriptor to the existing Piccolo parser in
the main thread

o Readahead: opens one file descriptor for the input file, and

one pipe
@ Start a thread that reads from the file descriptor and writes
to the pipe
@ Pass the pipe to the existing Piccolo parser in the main  [IEETINEEN
thread” prowre——
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Test run

@ Run each parser (Piccolo, Runahead, and Readahead)
on a large (GB-scale) XML file

e Specifically, a protein sequence database file,
pdf7003.xml

@ No user code is run for any SAX event — just the parser
itself is tested

@ File cache is cleared between each run running a separate
process that reads multiple gigabyte files

@ Each test is run 50 times for each parser

@ Hotspot is warmed by running the parser on another input
file with identical content before timing begins
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Two Environmental Conditions Tested

@ Architectures

e UP: Classic Uniprocessor P4-based machine (Dell
workstation)

e SMP: Classic Symmetrical MultiProcessing P4-based
machine (has server-class I/O system) (IBM e-server)

° : Modern Chip MultiProcessing Core 2 Duo-based
machine (Dell workstation)

@ System conditions
e Cached: The input file is read (hence loaded into the
system file cache) before timing begins
e Uncached: The input file is not read before timing begins
(and flushed between each run)
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Data Analysis

@ Speedup for both of the proposed parsers is computed to
compare across architectures

@ Baseline value is computing by averaging the times for
each run of the unmodified Piccolo parser

@ Speedup for each run is computed by dividing the baseline
by the time at each test point

@ Data presented is from the most recent tests (same
systems as in the paper, but with an equitable amount of
RAM in the machine)
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Speedup for the Readahead Parser Relative to Architecture
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Speedup for the CMP Architecture Relative to Parser Type
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Limitations

@ Haven't yet tested against a suite of differently sized and
structured XML files

@ Haven't yet examined effect on system (CPU utilization, 1/O
load)

@ Very simple optimization (for just 2 cores), may cause an
overall slowdown in an application which may be able to
use the core more effectively
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Summary

@ Still, in some cases, the benefit is surprisingly substantial
for such a simple change
o Compare performance against more complicated
approaches
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