
Motivation
Experiments and Results

Summary

Approaching a Parallelized XML Parser
Optimized for Multi-Core Processors∗

Michael R. Head1 Madhusudhan Govindaraju2

Department of Computer Science
Grid Computing Research Laboratory

Binghamton University (SUNY)
{1mike, 2mgovinda}@cs.binghamton.edu

Workshop on Service-Oriented Computing Performance:
Aspects, Issues, and Approaches, 2007

∗Supported in part by NSF grant CNS-0454298 and DOE grant
DE-FG02-08ER25803

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
http://www.cs.binghamton.edu/~mike/papers/socp123-head.pdf
http://www.cs.binghamton.edu/~mike/papers/socp123-head.pdf
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu
http://www.cs.binghamton.edu
http://grid.cs.binghamton.edu
http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu


Motivation
Experiments and Results

Summary

Outline

1 Motivation
Prevalence of Large XML Documents
Multi-Core
Optimizations

2 Experiments and Results
Experimental Setup
Results

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu


Motivation
Experiments and Results

Summary

Prevalence of Large XML Documents
Multi-Core
Optimizations

Explosion of Data

Enormous increase in data from sensors, satellites,
experiments, and simulations∗

Use of XML to store these data is also on the rise

XML is in use in ways it was never really intended (GB and
large size files)

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu


Motivation
Experiments and Results

Summary

Prevalence of Large XML Documents
Multi-Core
Optimizations

Limitations of XML

Poor CPU and space efficiency when processing scientific
data with mostly numeric data [Chiu et al 2002]

Features such as nested namespace shortcuts don’t scale
well with deep hierachies

May be found in documents aggregating and nesting data
from disparate sources

Character stream oriented (not record oriented): initial
parse inherently serial

Still ultimately useful for sharing data divorced of its
application

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu


Motivation
Experiments and Results

Summary

Prevalence of Large XML Documents
Multi-Core
Optimizations

Prevalence of Parallel Machines

All new high end and mid range CPUs for desktop- and
laptop-class computers have at least two cores
The future of AMD and Intel performance lies in increases
in the number of cores

Despite extant SMP machines, many classes of software
applications remain single threaded

Multi-threaded programming considered “hard”
Reinforced in the current curricula and by existing
languages and tools

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu


Motivation
Experiments and Results

Summary

Prevalence of Large XML Documents
Multi-Core
Optimizations

XML and Multi-Core

Most string parsing techniques rely on a serial scanning
process

Challenge: Existing (singly-threaded) XML parsers are
already very efficient [Zhang et al 2006]

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu


Motivation
Experiments and Results

Summary

Prevalence of Large XML Documents
Multi-Core
Optimizations

Research directions

Pre-scan and schedule parser [Lu et al 2006]

Parallelized scanner

Requires some communication/buffering between threads

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu


Motivation
Experiments and Results

Summary

Prevalence of Large XML Documents
Multi-Core
Optimizations

But first...

Try some easy, generic techniques
Offload disk input to another thread/core

Introduce two parsers which extend the existing, high
performance Piccolo parser [Head et al 2006]

Runahead: opens two file descriptors for the input file
Start a thread that repeatedly calls read() on one of the file
descriptors
Pass the other file descriptor to the existing Piccolo parser in
the main thread

Readahead: opens one file descriptor for the input file, and
one pipe

Start a thread that reads from the file descriptor and writes
to the pipe
Pass the pipe to the existing Piccolo parser in the main
thread∗

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu


Motivation
Experiments and Results

Summary

Experimental Setup
Results

Test run

Run each parser (Piccolo, Runahead, and Readahead)
on a large (GB-scale) XML file

Specifically, a protein sequence database file,
pdf7003.xml

No user code is run for any SAX event – just the parser
itself is tested
File cache is cleared between each run running a separate
process that reads multiple gigabyte files
Each test is run 50 times for each parser
Hotspot is warmed by running the parser on another input
file with identical content before timing begins

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu


Motivation
Experiments and Results

Summary

Experimental Setup
Results

Two Environmental Conditions Tested

Architectures
UP: Classic Uniprocessor P4-based machine (Dell
workstation)
SMP: Classic Symmetrical MultiProcessing P4-based
machine (has server-class I/O system) (IBM e-server)
CMP: Modern Chip MultiProcessing Core 2 Duo-based
machine (Dell workstation)

System conditions
Cached: The input file is read (hence loaded into the
system file cache) before timing begins
Uncached: The input file is not read before timing begins
(and flushed between each run)

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu


Motivation
Experiments and Results

Summary

Experimental Setup
Results

Data Analysis

Speedup for both of the proposed parsers is computed to
compare across architectures
Baseline value is computing by averaging the times for
each run of the unmodified Piccolo parser
Speedup for each run is computed by dividing the baseline
by the time at each test point

Data presented is from the most recent tests (same
systems as in the paper, but with an equitable amount of
RAM in the CMP machine)

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu


Motivation
Experiments and Results

Summary

Experimental Setup
Results

0 10 20 30 40 50

0.
55

0.
60

0.
65

0.
70

Run Number

R
el

at
iv

e 
S

pe
ed

up
Speedup for the Readahead Parser Relative to Architecture

 (Input Resides in Filesystem Cache) 

CMP
UP
SMP

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu


Motivation
Experiments and Results

Summary

Experimental Setup
Results

0 10 20 30 40 50

0.
96

0.
98

1.
00

1.
02

1.
04

Run Number

R
el

at
iv

e 
S

pe
ed

up
Speedup for the Runahead Parser Relative to Architecture

 (Input Resides in Filesystem Cache) 

CMP
SMP
UP

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu


Motivation
Experiments and Results

Summary

Experimental Setup
Results

0 10 20 30 40 50

0.
6

0.
8

1.
0

1.
2

1.
4

Run Number

R
el

at
iv

e 
S

pe
ed

up
Speedup for the Runahead Parser Relative to Architecture

 (Input Flushed from Filesystem Cache) 

SMP
CMP
UP

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu


Motivation
Experiments and Results

Summary

Experimental Setup
Results

0 10 20 30 40 50

0.
7

0.
8

0.
9

1.
0

1.
1

Run Number

R
el

at
iv

e 
S

pe
ed

up
Speedup for the CMP Architecture Relative to Parser Type

 (Input Flushed from Filesystem Cache) 

Runahead
Readahead

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu


Motivation
Experiments and Results

Summary

Limitations

Haven’t yet tested against a suite of differently sized and
structured XML files
Haven’t yet examined effect on system (CPU utilization, I/O
load)
Very simple optimization (for just 2 cores), may cause an
overall slowdown in an application which may be able to
use the core more effectively

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu


Motivation
Experiments and Results

Summary

Summary

Still, in some cases, the benefit is surprisingly substantial
for such a simple change

Compare performance against more complicated
approaches

Michael R. Head, Madhusudhan Govindaraju Parallel XML

http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu

	Motivation
	Prevalence of Large XML Documents
	Multi-Core
	Optimizations

	Experiments and Results
	Experimental Setup
	Results

	Summary

