PERFORMANCE ENHANCEMENT WITH SPECULATIVE
EXEcCUTION BASED PARALLELISM FOR PROCESSING
LARGE-SCALE XML-BASED APPLICATION DATA

Michael R. Head and Madhusudhan Govindaraju

Grid Computing Research Laboratory
Department of Computer Science
Binghamton University
http://www.cs.binghamton.edu/~{mike,mgovinda}

HPDC 2009
Thursday, June 11, 2009

State University of New Yark

1/40

http://www.binghamton.edu
http://www.cs.binghamton.edu/~mike/
http://www.cs.binghamton.edu/~mike/
http://www.cs.binghamton.edu/~mike/
http://www.cs.binghamton.edu/~mike
http://www.cs.binghamton.edu/~mgovinda
http://grid.cs.binghamton.edu
http://www.cs.binghamton.edu
http://www.binghamton.edu
http://www.cs.binghamton.edu/~mike
http://:www.cs.binghamton.edu/~mgovinda
http://www.lrz-muenchen.de/hpdc2009/

OUTLINE

@ InrrobUCTION
@ Large XML Data
@ Ubiquity of Multi-processing Capabilities
@ SAX-based parsing

© ParaLLEL XML
@ PixiMAL: Parallel Approach for Processing XML
@ Serial NFA Tests

© Concrusions
@ Final Remarks

http://www.binghamton.edu

INTRODUC
NG CAPABILITIES

OUTLINE

@ InrrobUCTION
@ Large XML Data

http://www.binghamton.edu

LARGE XML DATA

UBIQUITY OF MULTI-PROCESSING CAPABILITIES

@ Text based (usually UTF-8 encoded)
@ Tree structured
@ Language independent

@ Generalized data format

http://www.binghamton.edu

INTRODUCTION
OCESSING CAPABILITIES

MOTIVATION FROM SOAP

@ Generdlized RPC mechanism (supports other models, too)
@ Broad industrial support

@ Web Services on the Grid

@ OGSA: Open Grid Services Architecture
@ WSRF: Web Services Resource Framework

@ At bottom, SOAP depends on XML

http://www.binghamton.edu

INTRODUCTION LARGE XML DATA
UBIQUITY OF MULTI-PROCESSING CAPABILITIES
SAX-BASED PARSING

IMPORTANCE OF HiGH PERFORMANCE XML PROCESSORS

@ Becoming standard for many scientific datasets
e HapMap - mapping genes
@ Protein Sequencing
@ NASA astronomical data
@ Many more instances

http://www.binghamton.edu

LARGE XML DATA

UBIQUITY OF MULTI-PROCESSING CAPABILITIES

XML PERFORMANCE LIMITATIONS

@ Compared o “‘legacy’’ formats
o Text-based

@ Lacks any “‘header blocks’” (ex. TCP headers), so must scan every
character to tokenize
@ Numeric types take more space and conversion time

o Lacks indexing

@ Unable to quickly skip over fixed-length records

http://www.binghamton.edu

INTRODUCTION XML DATA
OF MULTI-PROCESSING CAPABILITIES
'ARSING

LiMIiTATIONS OF XML

@ Poor CPU and space efficiency when processing scientific data
with mostly numeric data (Chiu et al 2002)
@ Features such as nested namespace shortcuts don’t scale well
with deep hierarchies
e May be found in documents aggregating and nesting data from
disparate sources
@ Character stream oriented (not record oriented): initial parse
inherently serial

@ Sfill ultimately useful for sharing data divorced of its application

State University of New York

8740

http://www.binghamton.edu

LARGE XML DATA

UBIQUITY OF MULTI-PROCESSING CAPABILITIES

EXPLOSION OF DATA

@ Enormous increase in data from sensors, satellites, experiments,
and simulations

@ Use of XML to store these data is also on the rise

@ XML is in use in ways it was never really intended (GB and large
size files)

http://www.binghamton.edu

INTRODUC LARGE XML DATA
UBIQUITY OF MULTI-PROCESSING CAPABILITIES
SAX-BASED PARSING

OUTLINE

@ InrrobUCTION

@ Ubiquity of Multi-processing Capabilities

http://www.binghamton.edu

INTRODUCTION

PREVALENCE OF PARALLEL MACHINES

@ All new high end and mid range CPUs for desktop- and
laptop-class computers have at least two cores

@ The future of AMD and Intel performance lies in increases in the
number of cores

@ Despite extant SMP machines, many classes of software
applications remain single threaded

http://www.binghamton.edu

LARGE XML DATA
UBIQUITY OF MULTI-PROCESSING CAPABILITIES
S/ ASED PA

XML AND MULTI-CORE

@ Most string parsing techniques rely on a serial scanning process

@ Chadllenge: Existing (singly-threaded) XML parsers are already very
efficient (Zhang et al 2006)

http://www.binghamton.edu

INTRODUCTIO XML DATA
UITY OF MULTI-PRO NG CAPABILITIES
SAX-BASED PARSING

OUTLINE

@ InrrobUCTION

@ SAX-based parsing

13740

http://www.binghamton.edu

IL DATA
UBIQUITY OF MULTI-PROCESSING CAPABILITIES
SAX-BASED PARSING

SAX-STYLE XML PARSING

@ Sequential processing model
@ Program invokes parser with a set of callback functions
o Parser scans input from start to finish
@ <element attributes...>
@ content
@ </element>
@ Invokes callbacks in file order
@ startElement ()
@ content ()
@ endElement ()

http://www.binghamton.edu

PIXIMAL: PARALLEL APPROACH FOR PROCESSING XML

ParALLEL XML SERIAL NFA TESTS

OUTLINE

© ParaLLEL XML
@ PixiMAL: Parallel Approach for Processing XML

http://www.binghamton.edu

PIXIMAL: PARALLEL APPROACH FOR PROCESSING XML

ParALLEL XML SERIAL NFA TESTS

TOREN-SCcANNING WITH A DFA

@ DFA-based table-driven scanning is both popular and fast
e (or at least performance-competitive with other techniques)
@ Input is read sequentially from start to finish

e Each character is used to transition over states in a DFA
e Transition may have associated actions

@ Supports languages that are not “‘regular’”

@ Commonly used in high performance XML parsers, such as TDX (C)
and Piccolo (Java)
@ Amenable to SAX parsing
o PixiMAL-DFA uses this approach

State University of New York

16/ 40

http://www.binghamton.edu

PIXIMAL: PARALLEL APPROACH FOR PROCESSING XML
PARALLEL < A TR
SERIAL NFA TESTS

DFA UseD IN PiximaL-DFA

whitespace

name char

whitespace

name char

name start

name char

name char

not '<’ or '&’

char data

17/ 40

http://www.binghamton.edu

PIXIMAL: PARALLEL APPROACH FOR PROCESSING XML

ParALLEL XML SERIAL NFA TESTS

PixiMAL-DFA IMPLEMENTATION DETAILS

@ mmap (2) s input file to save memory
@ Uses {length, pointer} string representation
e Strings (for tagnames, afttribute values) point intfo the mapped
memory
o All the way through the SAX-style event interface
@ DFA is encoded as two tables

o Table of “‘next’’ state numbers indexed by state number and input
character

o Table of boolean **action required’’ indicators indexed by
“‘current’’ state and “'next’’ state

@ Action required = a function is called to decode and execute
the required action

o DFA table is generated at compile time using a separate generator

program

State University of New York

187/ 40

http://www.binghamton.edu

PIXIMAL: PARALLEL APPROACH FOR PROCESSING XML

ParALLEL XML SERIAL NFA TESTS

PARALLEL SCANNING WITH A DFA?

@ DFA-based scanning = sequential operation

@ Desire: run multiple, concurrent DFAs throughout the input
e Generally not possible because the start state would be unknown

State University of New York

19/40

http://www.binghamton.edu

PIXIMAL: PARALLEL APPROACH FOR PROCESSING XML
SERIAL NFA TESTS

PARALLEL XML

OVERCOMING SEQUENTIALITY WITH AN NFA

@ Problem: start state is unknown

@ Solution: assume every possible state is a start state
@ Construct an NFA from the DFA used in PIXIMAL-DFA
@ Mark every state as a start state
© Remove all the garbage state and all transitions to it
@ Create an queue for each start state to store actions that should be
performed

@ Such an NFA can be applied on any substring of the input

@ PixiMAL-NFA is the parser that does all of this:

o Partition input info segments

@ Run PiXIMAL-DFA on the initial segment

@ Run NFA-based parsers on subsequent partition elements

e Fix up transitions at partition boundaries and run queued ‘llilN(‘H

State University of New York

AMTON

RSITY

20/40

http://www.binghamton.edu

PIXIMAL: PARALLEL APPROACH FOR PROCESSING XML

ParALLEL XML SERIAL NFA TESTS

PixiIMAL-NFA’s PARAMETERS

@ split_percent:
@ The portion of input to be dedicated to the first element of the
partition, expressed as a percentage of the total input length
@ number_of_threads:

@ The number of threads to use on a run
e The final (100 — split_percent)% of the input is divided evenly
across the remaining (number_of_threads — 1) partitions
@ The final partition element gets up to number_of_threads — 2 fewer
characters

State University of New York

21/40

http://www.binghamton.edu

PIXIMAL: EL APPROACH FOR I

PARALLEL XML SeRIAL NFA TESTS

OUTLINE

© ParaLLEL XML

@ Serial NFA Tests

22/40

http://www.binghamton.edu

PIXIMAL: PARALLEL APPROACH FOR PROCESS

PARALLEL XML SeRIAL NFA TESTS

SERIAL NFA TESTS

@ Test hypothesis: the exira work required by using an NFA is offset
by dividing processing work across multiple threads

@ Run each automaton-parser sequentially and independently

o Divide the work as usual, with a range of split_percents and
number_of_threads

@ Time each component independently

e Completely parses the input, generating the correct sequence of
SAX events

@ The maximum time for all components to complete (plus fix up
time) represents an upper bound on the time PXIMAL-NFA would
take with components running concurrently

State University of New York

23/40

http://www.binghamton.edu

PIXIMAL: PARALLEL APPROACH FOR PROCESSING XML

PARALLEL XML SeRIAL NFA TESTS

TEST CONDITIONS

@ Synthetic data

e Arrays of Infegers, Strings, Mesh Interface Objects
o SOAP encoded
@ Same as previously presented in benchmarks

@ Across a cluster (faking mean of results)
@ Range of input sizes

@ Range of parameters (split_percent, number_of_threads)

State University of New York

24/40

http://www.binghamton.edu

PIXIMAL: PARALLEL APPROACH FOR P!

PARALLEL XML SeRIAL NFA TESTS

MODEST SPEEDUP SCALABILITY FOR 10,000 INTEGERS

0 _
N
-v-- Max Speedup

o _| |'--- Mean Speedup v
s O —/A— Min Speedup vV
= =
(0] LO | _/_/v__ 7
8_ — _/V/ v
n - -
©
= 9
S -
- -
S -

0 _| el imm = -

S -

— A ——A
A — = — A
o |a——-A—"
© T T T T T T T
2 3 4 5 6 7

Thread Count

http://www.binghamton.edu

PIXIMAL: PARALLEL APPROACH FOR PROCESSING XML

PARALLEL XML SERIAL NFA TESTS

Split_Percent CRITICAL FOR SPEEDUP FOR 10,000 INTEGERS

o _

™M

o | -v-- Max Speedup

@ -=-- Mean Speedup
o v | —/— Min Speedup
S o
D
o o | v
o« v -
%) v Y
] v _ y\ ""'| /I\ ‘,l Yy\y
5 C vTi o Ty i e
o o _| II\I' o AR \%
- v W ’\' 67 : ”YV' \'i |I \Y\“Z N Y

! Lo VA

2 NCRAR T KA

>) R YA

- AAAA@L S &AZZA%%&\&AA&AAAA%M

S H I I I T I

0 20 40 60 80

State University of New York

Split Percent

26 /40

http://www.binghamton.edu

PIXIMAL: PARALLEL APPROACH FOR PROCESSING XML

PARALLEL XML SERIAL NFA TESTS

INCONSISTENT SPEEDUP OVER A RANGE OF ARRAY LENGTHS

o ||
N \
Vo
|/ N, ~
o N -'Ii" = ,,“\ -~ / N\ —\
2 ~|r AN AN VRN
(6] \/' - .
g w | -
(%)) —
s
s 5 -—-- Max Speedup
% — 7] -=-- Mean Speedup
o — — Min Speedup
o0 |
o N RS . R L _
o |t ———
© | T T T T |
0 10000 20000 30000 40000

Array Size

http://www.binghamton.edu

PIXIMAL: PARALLEL APPROACH FOR P!

PARALLEL XML SeRIAL NFA TESTS

CHARACTERS IN 10,000 INTEGERS IN A RANGE OF STATES

o
)
O_
o
©
)
> O
[8) o
5 o
g <
o
g _
L
L o
)
O_
o
IV
o__ D____—.

o 1 2 3 4 5 6 7

DFA State

http://www.binghamton.edu

PIXIMAL: PARALLEL APPROACH FOR P!

PARALLEL XML SERIAL NFA TESTS

ConcLusioNs FrRoM INTEGER RESULTS

Speedup is possible in this case

Choice of split point is critical for achieving any speedup at alll

Characters in content sections account for roughly 60% of the
input characters

Input is 117 KB in length

Consists mainly of
...<1>1234</1><i>1235</i><i>1236</1>...

http://www.binghamton.edu

PIXIMAL: PARALLEL APPROACH FOR PROCESSING XML

PARALLEL XML SeRIAL NFA TESTS

SPEEDUP IMPROVES WITH Thread_Count FOR 10,000 STRINGS

Te}
@ -v-- Max Speedup -
8. - [--- Mean Speedup _-7
—A— Min Speedu v
g o p p e
o~ —
EI:)_ 5 /_/V’
n o /,/V/
£ wl e
g - |\v =T -
g o | -7
— P A
o) Y- S
o A — 2 o A— -
o A — T
o | | | | | | |
2 3 4 5 6 7

Thread Count

http://www.binghamton.edu

PIXIMAL: PARALLEL APPROACH FOR PROCESSING XML
SERIAL NFA TESTS

PARALLEL XML

Split_Percent LESS CRITICAL FOR 10,000 STRINGS

Y -v-- Max Speedup
,W‘. VA ---- Mean Speedup
| ,V VK;/ —A— Min Speedup

Potential Speedup
00 05 10 15 20 25 3.0 35

0 20 40 60 80

a
BINGHAMTON

UNIVERSITY

State University of New York

Split Percent

31/40

http://www.binghamton.edu

PIXIMAL: PARALLEL APPROACH FOR P!

PARALLEL XML SERIAL NFA TESTS

CONSISTENT SPEEDUP OVER A RANGE OF INPUT SIZES

S
™ V.
Ne—_ e—m L e .
o | TN P NN
@ 7 - N
S w |
g N
2 o -—-- Max Speedup
0 o 7 -=-- Mean Speedup
S — — Min Speedup
g <,
° o i, i m = . -
o I - - :
Lo}
O. I S~
o | | ‘__’____/»_/———\/\/———-\\
o | | | | | |
0 10000 20000 30000 40000

Array Size

http://www.binghamton.edu

PIXIMAL: PARALLEL APPROACH FOR P!

PARALLEL XML SERIAL NFA TESTS

CHARACTERS IN 10,000 STRINGS ARE MAINLY IN CONTENT

o
o
o
O p—
o
N
—
o

>~ O

Q o

c o

% o
3]

o

q') p—

L

LL o
o
o _|
o
o
<
o - —_—nm—m—_ D —_— . e

DFA State

http://www.binghamton.edu

PIXIMAL: PARALLEL APPROACH FOR Pr

PARALLEL XML SeRIAL NFA TESTS

CONCLUSIONS FROM STRING RESULTS

This sort of input is much more amenable to this approach
@ In maximum potential speedup achieved
@ In number of cases where speedup is > 1

Split point is much less important here

Characters in content sections account for roughly 99% of the
input characters

Input is 1.4 MB in size (though similar results are seen in inputs that
are 117 KB)

Consists mainly of . . .<i>String content for the array
element number 0. This is long to test the
hypothesis that longer content sections are better
for the NFA.</i>...

http://www.binghamton.edu

PIXIMAL: PARALLEL APPROACH FOR PROCESSING XML

PARALLEL XML SeRIAL NFA TESTS

CONCLUSIONS FROM SERIAL NFA TEST

@ Shape of the input strongly determines the efficacy of the PIXIMAL
approach
@ MIO has similar state usage and mix of content and tags as the
integer and PiXIMAL has a similar performmance profile there
o PiximAL works well on inputs with longer content sections
punctuated by short tags

@ Starting in a content section helps because the ‘<’ character
eliminates a large number of execution paths through the NFA
e If *>" could be treated similarly by the parser, starting in a tag
would be less harmful

State University of New York

35/40

http://www.binghamton.edu

FINAL REMARKS
CONCLUSIONS

OUTLINE

© Concrusions
@ Final Remarks

36740

http://www.binghamton.edu

FINAL REMARKS
CONCLUSIONS

CONCLUSIONS

@ Scientific applications strain existing XML infrastructure

@ A parallel parsing approach is necessary to achieve increased
parser performance as document sizes grow

@ Restricting XML slightly should provide better performance at a low
semantic cost

@ PixiMAL’s applicability is dependent on the characteristics of the
input file

http://www.binghamton.edu

FINAL REMARKS
CONCLUSIONS

SUMMARY

@ InrrobUCTION
@ Large XML Data
@ Ubiquity of Multi-processing Capabilities
@ SAX-based parsing

© ParaLLEL XML
@ PixiMAL: Parallel Approach for Processing XML
@ Serial NFA Tests

© Concrusions
@ Final Remarks

http://www.binghamton.edu

FINAL REMARKS

CONCLUSIONS

Thank you for your time.

39740

http://www.binghamton.edu

FINAL REMARKS

Questions?

mike@cs.binghamton.edu

40/ 40

http://www.binghamton.edu

APPENDIX

EXTRA SLIDES

The following slides are additional and not part of the presentation. J

http://www.binghamton.edu

PIXIMAL LIMITATIONS
APPENDIX RELATED WORK
COMPARISON WITH EXPAT AND TCMALLOC, GLIBC AND TCMALLOC

LIMITATIONS

@ PThread overhead during concurrent runs
@ Restrictions on XML format
o Namespaces
CDATA
Unicode
Processing Instructions
Validation

®© 6 o o

@ Optimal splitting algorithm unknown

http://www.binghamton.edu

PIXIMAL LIMITATIONS
APPENDIX RELATED WORK
COMPARISON WITH EXPAT AND TCMALLOC, GLIBC AND TCMALLOC

RELATED WORK IN HIGH PERFORMANCE XML PROCESSING

Look-aside buffers/String caching (gsoap. XPP)

Trie data structure with schema-specific parser (Chiu et al 02, Engelen
04)

One pass table-driven recursive descent parser (Zzhang et al 2006)

Pre-scan and schedule parser (Lu et al 2006)

Parallelized scanner, scheduled post-parser (Pan et al 2007)

http://www.binghamton.edu

’IXIMAL LIMITATIONS
APPENDIX RELATED WORK
COMPARISON WITH EXPAT AND TCMALLOC, GLIBC AND TCMALLOC

COMPARISON WITH EXPAT

Input file Expat | Piximal-dfa | Piximal-nfa
psd-7003 || 15.51 17.47 14.18

TABLE: Parse time, in seconds per parse, of high performance parsers

State University of New York

44740

http://www.binghamton.edu

LIMITATIONS
APPENDIX R D WORK
COMPARISON WITH EXPAT AND TCMALLOC, GLIBC AND TCMALLOC

CoMPARISON BETWEEN GLIBC AND TCMALLOC

—
pe
Selected allocator
& 4 -%7-- GNU libc 2.7 malloc
s\ ~A— Google TCMalloc
Q / \\ .
T o] / \ e N
2 N / N\
= / R v
- V—-—-—v \% L\
NI AN
/
//A\ / \
& T / \ / \
/ \ / \
\ / \
A A——-A A
T T T T T T T
2 3 4 5 6 7 8

BINGHAMTON
UNIVERSITY

Number of threads e

45740

http://www.binghamton.edu

APPENDIX

SON WITH EXPAT AND TCMALLOC, GLIBC AND TCMALLOC
PERSPECTIVE PLOT FOR 10,000 INTEGERS

uay0d
20 L
o

dnp@o

State University of New Yark

46/ 40

http://www.binghamton.edu

PiIxiMAL I A
APPENDIX RELATED WORK
COMPARISON WITH EXPAT AND TCMALLOC, GLIBC AND TCMALLOC

PERSPECTIVE PLOT FOR 10,000 STRINGS

State University of New Yark

47/40

http://www.binghamton.edu

	Introduction
	Large XML Data
	Ubiquity of Multi-processing Capabilities
	SAX-based parsing

	Parallel XML
	Piximal: Parallel Approach for Processing XML
	Serial NFA Tests

	Conclusions
	Final Remarks

	Appendix
	Appendix
	
	
	

