Parallel Processing of Large-Scale XML-Based
Application Documents on Multi-core
Architectures with PiXiMaL

Michael R. Head
Madhusudhan Govindaraju

Department of Computer Science
Grid Computing Research Laboratory
Binghamton University
mike@cs.binghamton.edu
mgovinda@cs.binghamton.edu

December 7-12, 2008

http://www.binghamton.edu
http://www.cs.binghamton.edu/~mike
http://www.cs.binghamton.edu/~mike
http://www.cs.binghamton.edu/~mike
http://www.cs.binghamton.edu/~mike
http://www.cs.binghamton.edu/~mgovinda
http://www.cs.binghamton.edu
http://grid.cs.binghamton.edu
http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu

Outline

Q Introduction and Motivation
@ XML and SOAP
@ Ubiquity of Multi-processing Capabilities

e Related Work
@ High Performance XML Processing Approaches

e Work Completed
@ PixIMAL: Parallel Approach for Processing XML

State University of New York

2/35

http://www.binghamton.edu

Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities

XML Defined

@ Text based (usually UTF-8 encoded)
@ Tree structured

@ Language independent

@ Generalized data format

UNIVERSITY

State University of New York

3/35

http://www.binghamton.edu

Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities

Motivation from SOAP

@ Generalized RPC mechanism (supports other models, too)

@ Broad industrial support
@ Web Services on the Grid
@ OGSA: Open Grid Services Architecture
o WSRF: Web Services Resource Framework

@ At bottom, SOAP depends on XML

http://www.binghamton.edu

Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities

XML Exclusive of SOAP

@ General structured data format
@ Becoming standard for many scientific datasets
e HapMap - mapping genes
@ Protein Sequencing
@ NASA astronomical data
e Many more instances

UNIVERSITY

State University of New York

5/35

http://www.binghamton.edu

Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities

Explosion of Data

@ Enormous increase in data from sensors, satellites,
experiments, and simulations*

@ Use of XML to store these data is also on the rise

@ XML is in use in ways it was never really intended (GB and
large size files)

UNIVERSITY
State University of New York

6/35

http://www.binghamton.edu

Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities

Prevalence of Parallel Machines

@ All new high end and mid range CPUs for desktop- and
laptop-class computers have at least two cores

@ The future of AMD and Intel performance lies in increases
in the number of cores

@ Despite extant SMP machines, many classes of software
applications remain single threaded
e Multi-threaded programming considered “hard”
e Reinforced in the current curricula and by existing
languages and tools

http://www.binghamton.edu

Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities

XML and Multi-Core

@ Most string parsing techniques rely on a serial scanning
process

@ Challenge: Existing (singly-threaded) XML parsers are
already very efficient [zhang et al 2006]

http://www.binghamton.edu

Related Work High Performance XML Processing Approaches

High Performance XML Processing Approaches

@ Look-aside buffers/String caching [gsoap, XPP]

@ Trie data structure with schema-specific parser [Chiu et al 02,
Engelen 04]

@ One pass table-driven recursive descent parser [Zhang et al
2006]

@ Pre-scan and schedule parser [Lu et al 2006]
@ Parallelized scanner, scheduled post-parser [Pan et al 2007]

State University of New York

9/35

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML
Work Completed

Token-Scanning With a DFA

@ DFA-based table-driven scanning is both popular and fast
o (or at least performance-competitive with other techniques)
@ Input is read sequentially from start to finish

e Each character is used to transition over states in a DFA
e Transition may have associated actions

@ Supports languages that are not “regular”

@ Commonly used in high performance XML parsers, such
as TDX (C) and Piccolo (Java)
@ Amenable to SAX parsing
@ PixIMAL-DFA uses this approach

UNIVERSITY

State University of New York

10/35

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML
Work Completed

DFA Used in PIXIMAL-DFA

whitespace

name char

whitespace

name char

name start

‘ whitespace
. o

char data

name char

name start

whitespace

Q

name char L,
not ‘<’ or '&

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML
Work Completed

Parallel Scanning With a DFA?

@ DFA-based scanning = sequential operation

@ Desire: run multiple, concurrent DFAs throughout the input

e Generally not possible because the start state would be
unknown

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML
Work Completed

Overcoming Sequentiality With an NFA

@ Problem: start state is unknown

@ Solution: assume every possible state is a start state

e Construct an NFA from the DFA used in PIXIMAL-DFA
@ Such an NFA can be applied on any substring of the input

@ PIXIMAL-NFA is the parser that does all of this:

Partition input into segments

Run PixiMAL-DFA on the initial segment

Run NFA-based parsers on subsequent partition elements
Fix up transitions at partition boundaries and run queued
actions

UNIVERSITY

State University of New York

13/35

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML
Work Completed

PixiIMAL-NFA’s Parameters

@ split_percent:

e The portion of input to be dedicated to the first element of
the partition, expressed as a percentage of the total input
length

@ number_of_threads:
e The number of threads to use on a run

State University of New York

14/35

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML
Work Completed

Preliminary Questions

@ Is there enough memory bandwidth to allow multiple
automata to concurrently feed each thread its input?

@ Processing each character along several paths through the
NFA is costly: how does this work scale with the size of the
initial DFA?

@ Does the overhead of queuing the NFA actions cost a
reasonable amount compared with the cost of DFA-parsing
the first partition element?

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML
Work Completed

Memory Bandwidth Test

@ Models the work of partitioning the input the way
PixIMAL-NFA does

e File I/O is via mmap(2)

@ A thread is created for each partition element which
accumulates each character
@ A variety of split_percents and number_of_thread are
chosen
e Total time to read a large input a fixed number of times is

measured
e Input file is SwissProt.xml, which is 109 MB in size

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML
Work Completed

Memory Bandwidth Test — Experimental Setup

@ Run several machines, each from a homogeneous class
running 64-bit versions of Linux

@ 2x uniprocessor: 3.2 Ghz Intel Xeon (uniprocessor), 4
GB RAM, Linux kernel 2.6.15, GNU Lib C 2.3.6, GCC 4.0.3

e 2x dual core: 2.66 Ghz Intel Xeon 5150 (dual core)
CPUs, 8 GB RAM, Linux kernel 2.6.18, GNU Lib C 2.3.6,
GCC4.1.2

@ 2x quad core: 2.33 Ghz Intel Xeon E5354 (quad-core)
CPUs, 8 GB RAM, Linux kernel 2.6.18, GNU Lib C 2.3.6,
GCC4.1.2

@ 4 nodes used from the 2x UP cluster, 10 from each of the

other two
@ Results for each class are averaged across all runs

State University of New York

17/35

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML

Work Completed

2x UP Overall Results

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML

Work Completed

2x DC Overall Results

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML

Work Completed

2x QC Overall Results

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML
Work Completed

Conclusions From Overall Results

@ Even when doing very little per-character processing,
performance gains possible by adding threads

@ Returns do diminish rapidly
@ More cores lead to smoother results

@ Adding “too many” threads does not hurt performance in
this test

@ How much gain in terms of speedup?
o Calculated by -

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML
Work Completed

2x DC Speedup For Best split_percents

Split Percent
2 1] - 52%
36 %
-- 28%
N
N
o
o o
o o
=l
kel
(7
2
©
(2
© ° I o o --alo
@
< |
— o
o
T T T T T
2.0 2.5 3.0 35 4.0

Number of threads

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML
Work Completed

2x QC Speedup For Best split_percents

Split Percent S
---- 52% Py
36 % /
o - 24%
20 % R
rrrrr 12 % e
16 % R
| 4% | s

25

Speedup

2.0
|

15

1.0

Number of threads

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML
Work Completed

Conclusions From Speedup Cross Sections

@ Reaffirmation that speedup is possible
@ Returns diminish for these machines at around 6 threads

@ Overall, access to main memory is not an immediate
bottleneck

@ Putting the results from the best split_percents for each
architecture...

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML
Work Completed

Comparison of Best split_percent Per Class

n
™ o . _
cores (split %) RN
- 2(52%) S,
o 4(28%) o
-- 8(12%)
v o
2 o
> o
e} ,
(]
Q , o o ©
o ,
0 o o °
(.\i] ’
ooc
0 , R
— - ol
° °
i | T T T T T T
2 3 4 5 6 7 8

Number of threads

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML
Work Completed

State Scalability Test

@ Models the additional work done by the NFA threads by
following multiple execution paths through the table

@ Each NFA thread now must remember the state and
calculate the next state for each character and for each
start state

@ The DFA need only remember and calculate one state per
input character

@ Does not model the memory used, actions stored, or

garbage state elimination

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML

Work Completed

2x UP Overall Raw Results

State University of New York

27135

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML

Work Completed

2x DC Overall Results — Best Times

State University of New York

28/35

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML

Work Completed

2x QC Overall Results — Best Times

State University of New York

29/35

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML
Work Completed

Conclusions From State Scalability Overall Results

@ Two major conclusions:
@ The speedup on the 2x quad-core machines appears
stable as the number of threads increases
e There is a significant steepening when the DFA has 6-7
states
@ Performance reaches its max when the number of threads
match the number of processing cores available
e Each new thread adds substantial extra work compared
with the memory bandwidth test

@ Plotting speedup for certain split_percents

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML
Work Completed

2x DC — Best Speedup for DFA Sizes

S - |DFA state size (w/split %)
---- 2 states, 28 % ¢
4 states, 32 % e
o | -- 6 states, 36 %
o 8 states, 56 % T
''''' 10 states, 60 % . e
12 states, 64 % |-- P
a < | DL) L
=] o B -
T - -
@ L
Q P P
& P -
7]) .- -
[e g
— . - o
I e
34 s
o |07
o T : ‘ : ‘
2.0 25 3.0 3.5 4.0

Number of Threads

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML
Work Completed

2x QC — Best Speedup for DFA Sizes

© - |DFA state size (w/split %)
---- 2 states, 12 % L °
4 states, 16 % LetT e
-« - -~ 6 states, 20 % ot
8 states, 36 % T e o
''''' 10 states, 40 % o’ -7
12 states, 40% |-
S o - e o
el -
[o P
[.
Q. ° o
%) o Zo
P o7
N . o’ PiRie
I I - S °
T T T T T T T
2 3 4 5 6 7 8

Number of Threads

32/35

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML
Work Completed

Conclusions From State Scalability Test

@ The extra work of pushing characters through the multiple
execution paths of the NFA is not in itself a limiting factor
@ There is a “sweet spot” for DFA size: around 6-7 states
which allows for the greatest language complexity and the
best scalability
e This is a crossover point where the O(N) extra NFA work
overcomes the the O(1) work of simply reading the input

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML

Work Completed

Thank you for your time.

http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML

Work Completed

Questions?

http://www.binghamton.edu

Extra Slides

The following slides are additional and not part of the
presentation. }

http://www.binghamton.edu

	Introduction and Motivation
	XML and SOAP
	Ubiquity of Multi-processing Capabilities

	Related Work
	High Performance XML Processing Approaches

	Work Completed
	Piximal: Parallel Approach for Processing XML

	Appendix

