
Introduction and Motivation

Related Work

Work Completed

Parallel Processing of Large-Scale XML-Based

Application Documents on Multi-core

Architectures with PiXiMaL

Michael R. Head

Madhusudhan Govindaraju

Department of Computer Science

Grid Computing Research Laboratory

Binghamton University

mike@cs.binghamton.edu

mgovinda@cs.binghamton.edu

December 7-12, 2008

1 / 35

http://www.binghamton.edu
http://www.cs.binghamton.edu/~mike
http://www.cs.binghamton.edu/~mike
http://www.cs.binghamton.edu/~mike
http://www.cs.binghamton.edu/~mike
http://www.cs.binghamton.edu/~mgovinda
http://www.cs.binghamton.edu
http://grid.cs.binghamton.edu
http://www.binghamton.edu
mailto:mike@cs.binghamton.edu
mailto:mgovinda@cs.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

Outline

1 Introduction and Motivation

XML and SOAP

Ubiquity of Multi-processing Capabilities

2 Related Work

High Performance XML Processing Approaches

3 Work Completed

PIXIMAL: Parallel Approach for Processing XML

2 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

XML and SOAP

Ubiquity of Multi-processing Capabilities

XML Defined

Text based (usually UTF-8 encoded)

Tree structured

Language independent

Generalized data format

3 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

XML and SOAP

Ubiquity of Multi-processing Capabilities

Motivation from SOAP

Generalized RPC mechanism (supports other models, too)

Broad industrial support

Web Services on the Grid

OGSA: Open Grid Services Architecture

WSRF: Web Services Resource Framework

At bottom, SOAP depends on XML

4 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

XML and SOAP

Ubiquity of Multi-processing Capabilities

XML Exclusive of SOAP

General structured data format

Becoming standard for many scientific datasets

HapMap - mapping genes

Protein Sequencing

NASA astronomical data

Many more instances

5 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

XML and SOAP

Ubiquity of Multi-processing Capabilities

Explosion of Data

Enormous increase in data from sensors, satellites,

experiments, and simulations∗

Use of XML to store these data is also on the rise

XML is in use in ways it was never really intended (GB and

large size files)

6 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

XML and SOAP

Ubiquity of Multi-processing Capabilities

Prevalence of Parallel Machines

All new high end and mid range CPUs for desktop- and

laptop-class computers have at least two cores

The future of AMD and Intel performance lies in increases

in the number of cores

Despite extant SMP machines, many classes of software
applications remain single threaded

Multi-threaded programming considered “hard”

Reinforced in the current curricula and by existing

languages and tools

7 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

XML and SOAP

Ubiquity of Multi-processing Capabilities

XML and Multi-Core

Most string parsing techniques rely on a serial scanning

process

Challenge: Existing (singly-threaded) XML parsers are

already very efficient [Zhang et al 2006]

8 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

High Performance XML Processing Approaches

High Performance XML Processing Approaches

Look-aside buffers/String caching [gsoap, XPP]

Trie data structure with schema-specific parser [Chiu et al 02,

Engelen 04]

One pass table-driven recursive descent parser [Zhang et al

2006]

Pre-scan and schedule parser [Lu et al 2006]

Parallelized scanner, scheduled post-parser [Pan et al 2007]

9 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

Token-Scanning With a DFA

DFA-based table-driven scanning is both popular and fast

(or at least performance-competitive with other techniques)

Input is read sequentially from start to finish

Each character is used to transition over states in a DFA
Transition may have associated actions

Supports languages that are not “regular”

Commonly used in high performance XML parsers, such
as TDX (C) and Piccolo (Java)

Amenable to SAX parsing

PIXIMAL-DFA uses this approach

10 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

DFA Used in PIXIMAL-DFA

0

1

2

3

4

5

6

7

8

9

10

whitespace

’ < ’

’/’

name start

’ > ’

whitespace

name char

’ = ’

name char

’"’

whitespace

’"’

not ’<’ or ’&’

whitespace

name char

’ > ’

’ < ’

char data

name start

name char

space

’ > ’

11 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

Parallel Scanning With a DFA?

DFA-based scanning =⇒ sequential operation

Desire: run multiple, concurrent DFAs throughout the input

Generally not possible because the start state would be

unknown

12 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

Overcoming Sequentiality With an NFA

Problem: start state is unknown

Solution: assume every possible state is a start state

Construct an NFA from the DFA used in PIXIMAL-DFA

Such an NFA can be applied on any substring of the input

PIXIMAL-NFA is the parser that does all of this:

Partition input into segments

Run PIXIMAL-DFA on the initial segment

Run NFA-based parsers on subsequent partition elements

Fix up transitions at partition boundaries and run queued

actions

13 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

PIXIMAL-NFA’s Parameters

split_percent :

The portion of input to be dedicated to the first element of

the partition, expressed as a percentage of the total input

length

number_of_threads:

The number of threads to use on a run

14 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

Preliminary Questions

Is there enough memory bandwidth to allow multiple

automata to concurrently feed each thread its input?

Processing each character along several paths through the

NFA is costly: how does this work scale with the size of the

initial DFA?

Does the overhead of queuing the NFA actions cost a

reasonable amount compared with the cost of DFA-parsing

the first partition element?

15 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

Memory Bandwidth Test

Models the work of partitioning the input the way
PIXIMAL-NFA does

File I/O is via mmap(2)

A thread is created for each partition element which

accumulates each character

A variety of split_percents and number_of_thread are
chosen

Total time to read a large input a fixed number of times is

measured

Input file is SwissProt.xml, which is 109 MB in size

16 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

Memory Bandwidth Test – Experimental Setup

Run several machines, each from a homogeneous class
running 64-bit versions of Linux

2× uniprocessor: 3.2 Ghz Intel Xeon (uniprocessor), 4

GB RAM, Linux kernel 2.6.15, GNU Lib C 2.3.6, GCC 4.0.3

2× dual core: 2.66 Ghz Intel Xeon 5150 (dual core)

CPUs, 8 GB RAM, Linux kernel 2.6.18, GNU Lib C 2.3.6,

GCC 4.1.2

2× quad core: 2.33 Ghz Intel Xeon E5354 (quad-core)

CPUs, 8 GB RAM, Linux kernel 2.6.18, GNU Lib C 2.3.6,

GCC 4.1.2

4 nodes used from the 2× UP cluster, 10 from each of the

other two

Results for each class are averaged across all runs

17 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

2× UP Overall Results

Number of Threads

5

10

15

Sp
lit

 P
er

ce
nt

20

40

60
80

T
im

e (s)

12

14

16

18

20

18 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

2× DC Overall Results

Number of Threads

5

10

15

Sp
lit

 P
er

ce
nt

20

40

60
80

T
im

e (s)

6

8

10

19 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

2× QC Overall Results

Number of Threads

5

10

15

Sp
lit

 P
er

ce
nt

20

40

60
80

T
im

e (s)

4

6

8

10

12

20 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

Conclusions From Overall Results

Even when doing very little per-character processing,

performance gains possible by adding threads

Returns do diminish rapidly

More cores lead to smoother results

Adding “too many” threads does not hurt performance in

this test

How much gain in terms of speedup?

Calculated by T1

TP

21 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

2× DC Speedup For Best split_percents

2.0 2.5 3.0 3.5 4.0

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

Number of threads

S
pe

ed
up

●

●

●

●

●

●

●

●

●

Split Percent

52 %
36 %
28 %

22 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

2× QC Speedup For Best split_percents

2 3 4 5 6 7 8

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Number of threads

S
pe

ed
up

●
●

● ● ● ● ●

●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

Split Percent

52 %
36 %
24 %
20 %
12 %
16 %
4 %

23 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

Conclusions From Speedup Cross Sections

Reaffirmation that speedup is possible

Returns diminish for these machines at around 6 threads

Overall, access to main memory is not an immediate

bottleneck

Putting the results from the best split_percents for each

architecture...

24 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

Comparison of Best split_percent Per Class

2 3 4 5 6 7 8

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Number of threads

S
pe

ed
up

●
●

●

●
●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

cores (split %)

2 (52 %)
4 (28 %)
8 (12 %)

25 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

State Scalability Test

Models the additional work done by the NFA threads by

following multiple execution paths through the table

Each NFA thread now must remember the state and
calculate the next state for each character and for each
start state

The DFA need only remember and calculate one state per

input character

Does not model the memory used, actions stored, or

garbage state elimination

26 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

2× UP Overall Raw Results

N
um

be
r

of
 D

F
A

 s
ta

te
s

5

10

15

Number of threads 5
10

15

T
im

e (s)

20

25

30

35

40

27 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

2× DC Overall Results – Best Times

N
um

be
r

of
 D

F
A

 s
ta

te
s

5

10

15

Number of threads 5
10

15

T
im

e (s)

15

20

25

30

35

28 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

2× QC Overall Results – Best Times

N
um

be
r

of
 D

F
A

 s
ta

te
s

5

10

15

Number of threads 5
10

15

T
im

e (s)

10

20

30

40

29 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

Conclusions From State Scalability Overall Results

Two major conclusions:

The speedup on the 2× quad-core machines appears

stable as the number of threads increases

There is a significant steepening when the DFA has 6-7

states

Performance reaches its max when the number of threads
match the number of processing cores available

Each new thread adds substantial extra work compared

with the memory bandwidth test

Plotting speedup for certain split_percents

30 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

2× DC – Best Speedup for DFA Sizes

2.0 2.5 3.0 3.5 4.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Number of Threads

S
pe

ed
up

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

DFA state size (w/split %)

2 states, 28 %
4 states, 32 %
6 states, 36 %
8 states, 56 %
10 states, 60 %
12 states, 64 %

31 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

2× QC – Best Speedup for DFA Sizes

2 3 4 5 6 7 8

1
2

3
4

5

Number of Threads

S
pe

ed
up

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

DFA state size (w/split %)

2 states, 12 %
4 states, 16 %
6 states, 20 %
8 states, 36 %
10 states, 40 %
12 states, 40 %

32 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

Conclusions From State Scalability Test

The extra work of pushing characters through the multiple

execution paths of the NFA is not in itself a limiting factor

There is a “sweet spot” for DFA size: around 6-7 states
which allows for the greatest language complexity and the
best scalability

This is a crossover point where the O(N) extra NFA work

overcomes the the O(1) work of simply reading the input

33 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

Thank you for your time.

34 / 35

http://www.binghamton.edu

Introduction and Motivation

Related Work

Work Completed

PIXIMAL: Parallel Approach for Processing XML

Questions?

35 / 35

http://www.binghamton.edu

Extra Slides

The following slides are additional and not part of the

presentation.

36 / 35

http://www.binghamton.edu

	Introduction and Motivation
	XML and SOAP
	Ubiquity of Multi-processing Capabilities

	Related Work
	High Performance XML Processing Approaches

	Work Completed
	Piximal: Parallel Approach for Processing XML

	Appendix

