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Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities

XML Defined

@ Text based (usually UTF-8 encoded)
@ Tree structured

@ Language independent

@ Generalized data format
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Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities

Motivation from SOAP

@ Generalized RPC mechanism (supports other models, too)

@ Broad industrial support
@ Web Services on the Grid
@ OGSA: Open Grid Services Architecture
o WSRF: Web Services Resource Framework

@ At bottom, SOAP depends on XML
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Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities

XML Exclusive of SOAP

@ General structured data format
@ Becoming standard for many scientific datasets
e HapMap - mapping genes
@ Protein Sequencing
@ NASA astronomical data
e Many more instances
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Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities

Explosion of Data

@ Enormous increase in data from sensors, satellites,
experiments, and simulations*

@ Use of XML to store these data is also on the rise

@ XML is in use in ways it was never really intended (GB and
large size files)
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Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities

Prevalence of Parallel Machines

@ All new high end and mid range CPUs for desktop- and
laptop-class computers have at least two cores

@ The future of AMD and Intel performance lies in increases
in the number of cores

@ Despite extant SMP machines, many classes of software
applications remain single threaded
e Multi-threaded programming considered “hard”
e Reinforced in the current curricula and by existing
languages and tools
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Introduction and Motivation XML and SOAP

Ubiquity of Multi-processing Capabilities

XML and Multi-Core

@ Most string parsing techniques rely on a serial scanning
process

@ Challenge: Existing (singly-threaded) XML parsers are
already very efficient [zhang et al 2006]
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Related Work High Performance XML Processing Approaches

High Performance XML Processing Approaches

@ Look-aside buffers/String caching [gsoap, XPP]

@ Trie data structure with schema-specific parser [Chiu et al 02,
Engelen 04]

@ One pass table-driven recursive descent parser [Zhang et al
2006]

@ Pre-scan and schedule parser [Lu et al 2006]
@ Parallelized scanner, scheduled post-parser [Pan et al 2007]
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PIXIMAL: Parallel Approach for Processing XML
Work Completed

Token-Scanning With a DFA

@ DFA-based table-driven scanning is both popular and fast
o (or at least performance-competitive with other techniques)
@ Input is read sequentially from start to finish

e Each character is used to transition over states in a DFA
e Transition may have associated actions

@ Supports languages that are not “regular”

@ Commonly used in high performance XML parsers, such
as TDX (C) and Piccolo (Java)
@ Amenable to SAX parsing
@ PixIMAL-DFA uses this approach
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PIXIMAL: Parallel Approach for Processing XML
Work Completed

DFA Used in PIXIMAL-DFA

whitespace
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whitespace

name char

name start

‘ whitespace
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char data
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name char L,
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Parallel Scanning With a DFA?

@ DFA-based scanning = sequential operation

@ Desire: run multiple, concurrent DFAs throughout the input

e Generally not possible because the start state would be
unknown
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Overcoming Sequentiality With an NFA

@ Problem: start state is unknown

@ Solution: assume every possible state is a start state

e Construct an NFA from the DFA used in PIXIMAL-DFA
@ Such an NFA can be applied on any substring of the input

@ PIXIMAL-NFA is the parser that does all of this:

Partition input into segments

Run PixiMAL-DFA on the initial segment

Run NFA-based parsers on subsequent partition elements
Fix up transitions at partition boundaries and run queued
actions
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PIXIMAL: Parallel Approach for Processing XML
Work Completed

PixiIMAL-NFA’s Parameters

@ split_percent:

e The portion of input to be dedicated to the first element of
the partition, expressed as a percentage of the total input
length

@ number_of_threads:
e The number of threads to use on a run
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PIXIMAL: Parallel Approach for Processing XML
Work Completed

Preliminary Questions

@ Is there enough memory bandwidth to allow multiple
automata to concurrently feed each thread its input?

@ Processing each character along several paths through the
NFA is costly: how does this work scale with the size of the
initial DFA?

@ Does the overhead of queuing the NFA actions cost a
reasonable amount compared with the cost of DFA-parsing
the first partition element?
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Memory Bandwidth Test

@ Models the work of partitioning the input the way
PixIMAL-NFA does

e File I/O is via mmap(2)

@ A thread is created for each partition element which
accumulates each character
@ A variety of split_percents and number_of_thread are
chosen
e Total time to read a large input a fixed number of times is

measured
e Input file is SwissProt.xml, which is 109 MB in size
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Memory Bandwidth Test — Experimental Setup

@ Run several machines, each from a homogeneous class
running 64-bit versions of Linux

@ 2x uniprocessor: 3.2 Ghz Intel Xeon (uniprocessor), 4
GB RAM, Linux kernel 2.6.15, GNU Lib C 2.3.6, GCC 4.0.3

e 2x dual core: 2.66 Ghz Intel Xeon 5150 (dual core)
CPUs, 8 GB RAM, Linux kernel 2.6.18, GNU Lib C 2.3.6,
GCC4.1.2

@ 2x quad core: 2.33 Ghz Intel Xeon E5354 (quad-core)
CPUs, 8 GB RAM, Linux kernel 2.6.18, GNU Lib C 2.3.6,
GCC4.1.2

@ 4 nodes used from the 2x UP cluster, 10 from each of the

other two
@ Results for each class are averaged across all runs
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2x UP Overall Results
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2x DC Overall Results
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2x QC Overall Results
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Conclusions From Overall Results

@ Even when doing very little per-character processing,
performance gains possible by adding threads

@ Returns do diminish rapidly
@ More cores lead to smoother results

@ Adding “too many” threads does not hurt performance in
this test

@ How much gain in terms of speedup?
o Calculated by -
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2x DC Speedup For Best split_percents

Split Percent
2 1] - 52%
36 %
-- 28%
N
N
o
o o
o o
=l
kel
(7
2
©
(2
© ° I o o --alo
@
< |
— o
o
T T T T T
2.0 2.5 3.0 35 4.0

Number of threads


http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML
Work Completed

2x QC Speedup For Best split_percents
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Conclusions From Speedup Cross Sections

@ Reaffirmation that speedup is possible
@ Returns diminish for these machines at around 6 threads

@ Overall, access to main memory is not an immediate
bottleneck

@ Putting the results from the best split_percents for each
architecture...
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Comparison of Best split_percent Per Class
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State Scalability Test

@ Models the additional work done by the NFA threads by
following multiple execution paths through the table

@ Each NFA thread now must remember the state and
calculate the next state for each character and for each
start state

@ The DFA need only remember and calculate one state per
input character

@ Does not model the memory used, actions stored, or

garbage state elimination
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2x UP Overall Raw Results

State University of New York

27135


http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML

Work Completed

2x DC Overall Results — Best Times
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2x QC Overall Results — Best Times
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Conclusions From State Scalability Overall Results

@ Two major conclusions:
@ The speedup on the 2x quad-core machines appears
stable as the number of threads increases
e There is a significant steepening when the DFA has 6-7
states
@ Performance reaches its max when the number of threads
match the number of processing cores available
e Each new thread adds substantial extra work compared
with the memory bandwidth test

@ Plotting speedup for certain split_percents



http://www.binghamton.edu

PIXIMAL: Parallel Approach for Processing XML
Work Completed

2x DC — Best Speedup for DFA Sizes
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2x QC — Best Speedup for DFA Sizes
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Conclusions From State Scalability Test

@ The extra work of pushing characters through the multiple
execution paths of the NFA is not in itself a limiting factor
@ There is a “sweet spot” for DFA size: around 6-7 states
which allows for the greatest language complexity and the
best scalability
e This is a crossover point where the O(N) extra NFA work
overcomes the the O(1) work of simply reading the input
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Thank you for your time.
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Questions?
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Extra Slides

The following slides are additional and not part of the
presentation. }
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