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ABSTRACT

Very large scientific datasets are increasingly becoming avail-
able in XML formats. At the same time, multi-core pro-
cessing is increasingly becoming available on desktop- and
laptop-class computing machines. Unfortunately, most XML
parsers are still using algorithms that are inherently serial,
which show little improvement on newer computing hard-
ware. The current XML implementation landscape does
not adequately meet the performance requirements of large
scale applications. Thus far, applications using Web services
(in the grid community, for example) have largely focused
on XML protocol standardization and tool building efforts,
and not on addressing the performance bottlenecks when
dealing with large volumes of XML data. Generic parallel
parsing has been studied in depth over the past thirty years.
However, as yet, these results have not been applied to the
problem of XML parsing. XML documents have some struc-
tural properties that make it more amenable to parallelized
parsing than general context-free languages. As has been
previously shown, XML parsers spend a large percentage of
time tokenizing the input in an inherently serial process, typ-
ically running a deterministic finite automaton on the input.
Our initial approach, described here, separates the process
of parsing the XML from the process of reading the input.
We take a well-known high performance parser, Piccolo, and
apply two different strategies, Runahead and Piped, and ex-
amine the timing of the file read time and hence the overall
time to parse large scientific XML files. Under the condi-
tions tested here, performance decreases.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming
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1. INTRODUCTION

The widespread adoption of Web services in grid middle-
ware and large scale distributed applications is primarily due
its rich features including extensibility, flexibility, names-
pace qualification, data-binding to various languages, and
support for wide variety of types. The focus thus far in grid
middleware and distributed application design has been on
how the service-oriented functionality can be achieved us-
ing Web services standards. However, performance consid-
erations for Web services is now of critical importance as
the volume of XML data used for specification, communi-
cation, and data representation has steadily increased over
the years in both grid and business applications. For ex-
ample, the MetaData Catalog Service (MCS) [16] runs on
top of a Web service that provides functionality to store
and retrieve descriptive information (metadata) on millions
of data items. Workflows based on the XML format have
emerged as critical tools to facilitate in the development of
complex large-scale scientific applications such as mesoscale
meteorology [6]. The eBay Web service specification has a
few thousand elements and a few hundred complex type def-
initions. Communication with eBay via the SOAP protocol
requires processing of large XML documents |4].

A recent trend in computer architecture is the rapid move-
ment of the microprocessor industry towards chip multi-
processors (CMPs), commonly referred to as multi-core pro-
cessors and multi-threaded cores. Web services based appli-
cations will extensively be deployed on multi-core proces-
sors. Use of the currently available Web services implemen-
tation stacks can result in a severe impact on performance
of applications when run on CMPs. In our previous work we
showed that most implementations of Web services do not
scale well when the size of the XML document that needs
to be processed is increased [8} |9], and the performance lim-
itations will be exacerbated on multi-core processors simply
because unithreaded processes will see smaller gains as chip-
level performance is achieved through more parallelism.

A significant transformation is necessary in the design of
Web services toolkits to adapt to the change in hardware
technology. There exists a need for programming models
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that support concurrency natively with efficient constructs
for synchronization among the multiple threads of execu-
tion. To address this concern, we have devised new XML
processing algorithms that take into account the growing
volume of XML data and aim to provide efficient and scal-
able processing solutions that are tailored to the needs of
current and emerging applications.

A few fundamental challenges have to be addressed in or-
der to design an efficient XML processing toolkit for multi-
core processors. An endpoint typically supports a wide
variety of Web services. The services have complex inter-
dependencies and as a result a thorough analysis is required
to understand the resulting memory access patterns, syn-
chronization between the various executing threads, and au-
tomatic detection of independent modules. Another signif-
icant factor that can affect the performance is fair and ef-
ficient allocation of shared resources such as memory and
communication bandwidth among the executing concurrent
threads. Additionally, the performance of processing XML
documents should scale gracefully with the increase in doc-
ument size and the number processing cores per node.

The thrust of our research is the study and development of
new techniques for parallelizing parsers for very large XML
documents. Parallel compilation has been studied for many
years |1}, [3} |7}, |10], investigating both compilers that gener-
ate parallel code as well as compilers that divide work across
multiple processors. Yet despite this work, little has been
applied to related problems in XML parsing of large docu-
ments (with some notable exceptions [11],[12]). There are a
number of reasons for this:

e modern processors are “fast enough” for most parsing
tasks,

e XML parsing often represents a small part of the over-
all execution profile of applications, and

e a large percentage of the work done by parsers is con-
cerns the inherently serial scanning task.

Recent work by Zhang et al. has demonstrated that it
is possible to achieve high performance serialized parsing.
They have developed a table driven parser that combines
the parsing and validating an XML document in a very ef-
ficient way [17]. While this technique works well for serial
processing, it is not tailored for processing on multi-core
nodes, especially for very large document sizes.

The work presented in this paper is based on our hypoth-
esis that the scanning task can be parallelized in an efficient
way for large XML documents. The motivating factor for
our work is the fact that enormous XML files (upwards of
1GB) are becoming prevalent in scientific applications, and
new tools need to be developed to address this challenge.
Additionally, with the popularization of multi-core proces-
sors and the disparity between processor and memory speed,
we expect that substantial benefits can be uncovered by uti-
lizing more cores during file processing.

2. ARCHITECTURAL CHANGES

In approaching this problem, we examined a number of
parsers. From our previous work [8 9], we learned about
the performance characteristics of a number of XMLparsers.
Based on the results in Figure [, 2] [B}] we can conclude
that XML parsers do not scale well when the size of the
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Figure 1: Performance of Java-based parsers on

some large grid applications. Files sizes range
from 277KBytes (workflow_PIW.xml) to 4.9MBytes
(hapmap_1797SNPs.xml) and are parsed 20 times in
succession.

Parsing Performance for SOAP Payloads of int Arrays
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Figure 2: Scalability of Java-based parsers over ar-
rays of integers in SOAP payloads. We see that
Piccolo and XPP3 perform the best in this test.

document to be processed is very large. Also, among the
widely used Java-based XML parsers, Piccolo [13| has the
best performance for typical payloads such as SOAP-based
serialization of arrays for integers and strings, and example
XML documents used in grid applications. For our project,
we wanted to work with a high performance parser, and also
one that uses scanner and parser generators such as Flex [5]
and Bison |2]. A table-driven, automata-based parser is nec-
essary to analyze the manipulate the lexical analyzer, and a
generator-based implementation affords a more generally ap-
plicable solution — improving the performance of code made
by a generator may be applicable to more parsers than just
the one under investigation. After studying some cumber-
some C-based parsers, we decided to switch to Java and use
Piccolo |13|, which is designed for high performance serial
processing, and is implemented using scanner and parser
generators.

Piccolo’s lexical analyzer is a single-threaded table-driven
state machine. The input is fed through the state machine
to generate the lexical chunks (words), which are fed into the



Parsing Performance for SOAP Payloads of string Arrays

4000 ; T T T T ' '
s piccolo -
Z 3500 [kerces-j-dom |
= | kerces-j-sax TR 7
§ 3000 op3 &
E 2500 | |
N
= I i
5 2000
2 1500 :
& 1000 -
5 s00 o
A [ e ]
0 b ) L L L L L ! !
S =) =) = = S S 8 8 g 8
S S =3 S S =3 S 3 2 g
S S S S S S = S 3 S
S S S S S 3 IS4 2 K S
= Q A = " © = *® < =

Number of Elements in the Array

Figure 3: Scalability of Java-based parsers over ar-
rays of strings in SOAP payloads. The elements in
the arrays are text strings, as opposed to textual
representations of numbers.

parser. The parser determines the grammatical structure of
the input. The output of the parser is either a sequence of
SAX events or DOM tree.

One of the goals of this project is to modify the lexical an-
alyzer so that it can scan the input using multiple threads,
which run on multiple cores, though still within the same
JVM/address space. Recent Java implementations on re-
cent Linux threading implementations effectively schedule
runnable threads across multiple cores. This can be ob-
served by, for example, running top when a multithreaded
application is running and noticing that the %CPU field for
the application rises above 100%. The solutions presented
below are the result of two separate, but related designs,
and an unmodified base case. These are the Base, Runa-
head, and Piped parsers. The Base parser is simply the un-
modified Piccolo parser, whose design will not be discussed
further.

e The Runahead parser is a two-threaded design that
starts an additional thread, called the runahead thread,
when the parsing begins, in addition to the main thread
where the actual scanning and parsing takes place.
These threads do not communicate at all. In fact, the
main thread is equivalent to that of the Base parser.
The entire purpose of the runahead thread is to at-
tempt to preload the contents of the input file before
main thread attempts to read those bits. There is no
attempt made (and no need) to ensure that the two
threads are aligned or synchronized in any way.

e The Piped parser is another two-threaded design,
however in this case a readahead thread is started. The
readahead thread reads blocks of bytes from the disk
and writes them into a pipe which is read by the main
thread. The main thread is equivalent to the Base
parser with one significant difference: the main thread
reads from a pipe rather than directly from a file. The
only synchronization between the threads occurs when
they access the pipe. The goal is to manually load the
input into an application-managed data buffer, rather
than simply using the operating system’s file cache as
the Runahead parser does.

We run the three parsers through three sets of tests. In
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each test, we use the same large input file. The tests report
just the time the parser spends scanning and parsing the
input, without the interference of user code.

e The precached data test runs each parser on input
that is cached entirely in memory. The measures the
performance of the parsers in the absence of disk I/O.

e The uncached data test is run to expose differences
between the parsers when disk I/O is required to read
the input file.

The trending data set of tests fill in the points in
between the two previous tests. The file is parsed an
increasing number of times, from 1 to 20, from an un-
cached source file to expose the trends as the 1/O costs
of the first run are amortized over successive runs.

3. PERFORMANCE RESULTS

These initial performance measurements were taken on a
Dell Precision 390 Workstation with an Intel Core 2 CPU
6600 clocked at 2.40GHz with 1GB of dual-banked 1.9ns
PC2-4200 SDRAM. The hard drive is a 160GB SATA run-
ning at 7200RPM with a 8MB on-drive cache. We use a
683MB XML file representing a protein sequence database [14]
located on the local hard drive to eliminate network traffic
complications. We use the latest available release of Java
runtime at the time: 1.6.0-b105, and the version of Pic-
colo we modified is 1.04. The underlying operating system
for these tests is Ubuntu 6.10 (Edgy). We had exclusive
access to the machine during the test runs to minimize ex-
ternal system effects on our results. Because we are using a
Java runtime, which has a progressive just-in-time compiler
(JIT), we ensured to “warm up” the JIT to reduce the chance
that run-time compilation processes will interfere with our
measurements. We use R [15] to analyze and plot the re-
sults.

The test code is the same for all tests, though the pa-
rameters such as number of times to run the internal loops
are varied via commandline options. The tests follow this
simple algorithm:

1. Warm up the JIT and parse a given warmup file once.
For cached cases, this is the same file that will be
timed, for uncached cases, this is a different very large
file.

2. For the number of parses specified, run the parser on

the test file, timing inside the loop using System.nanoTime ()

to achieve the highest resolution timer available in
Java.

3. The parser uses a SAX event-based interface, which
requires callbacks to be implemented. The callbacks
functions do not conduct any processing, and allow us
to time just the actions of the parser itself.

For each of the different tests, we loop this code a varying
number of times. We run three distinct sets of tests.

3.1 Precached Data

In this test, we run the timing loop 20 times per parser,
with 20 parses per loop, on the psd7003.xml input, also
using it as the warmup file to ensure that it was in the sys-
tem cache. The results of this test are shown in figure
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Figure 4: Parse time averaged over 20 runs when the
file was precached in file cache. The overhead of the
extra thread causes the Runahead case to perform
slightly worse than the Base case, while the overhead
of thread synchronization causes the Piped case to
perform the worst.

The results are normalized by dividing each data point by
20 (the number of parses per loop) to get a number that is
comparable to the other results. Almost without exception,
the Base parser performs better than the Runahead parser,
and both always perform better than the Piped parser. The
Piped parser’s file reader passes the entire contents of the
file through a pipe to the actual XML parser. The nature
of this constant inter-thread communication adds synchro-
nization overhead. Since the input file should be entirely
in cache, there’s little benefit in using the pipe because it
merely duplicates data already existing in memory.

3.2 Uncached Data

In this test, we run the timing loop 10 times per parser,
with 1 parse per loop, on the psd7003.xml input. We use
a bit-wise copy of the same file to warm up the JIT as well
as to clear the cache as best as possible. The results are
displayed in figure The first thing we notice is that the
Runahead parser is significantly slower this time. One possi-
ble explanation is that main thread and the runahead thread
are competing for disk I/O, due to the blocking nature of
read (). Another difference between this and figure [is that
the data appears smoother in this case, but this is an illusion
of scale. The data is just as noisy, but the view is zoomed
out by a factor of approximately 10.

3.3 Trending Data

Because of the disparity in the results between the first
two data sets, we devised a test to reveal where the crossover
point is. In order to do this, we run 20 sets of tests. For
each of the 20 tests, the timing loop runs 10 times per parser
and varies the number of parses per loop from 1 to 20. We
use the same warmup file as in the uncached case to repeat
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Figure 5: Here we show the performance of each
parser when reading a large uncached file. In con-
trast to figure |4, the Runahead case performs much
worse, due to competition for disk I/O between
threads.
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Figure 6: In order to uncover the crossover point
indicated by figures [4] and [5], we run the uncached
test with an increasing number of parses per run,
from 1 to 20. The absolute values are presented
here.



Mean Parse Time (Normalized)

& —— Runahead
—— Piped
Q —— Base
o [aV)
o
©
g _
2
[0]
o
P _
e)
c
8 o
8 _
» [aV)
© _|
®
© |
©

T T T T
5 10 15 20

Number of consecutive parses

Figure 7: Here the results show in figure [6] are nor-
malized to show the number of seconds each parse
takes in a test run, thus when 10 parses are made
in a run, the absolute result is divided by 10.

the circumstances demonstrated in figure |5} As the number
of parses increases, the test case comes closer to the cached
case. This is because the cost of loading the file into the
cache the first time was amortized over the rest of the runs.
Once these runs are complete, we take the mean of each
run’s timings for each parser and plot it a few ways. Fig-
ure [6] shows the raw data, matching the number of times
the file is parsed to the time the entire timing loop takes
in the expected linear fashion. Even so, we can see that
the Runahead parser starts out performing worse than the
Piped parser and ends up performing better by the end.

We perform two operations on the data. First we normal-
ize the data by dividing the raw value as shown in ﬁgure@by
the number of parses in each run in a manner analogous to
the normalization performed for figure [4} The result is pre-
sented in figure[7] The crossover at about 5 on the x-axis is
clear, and while the data for the Runahead parser is a little
noisy around 10, the trend is clear. We show the overhead
of the two multi-threaded parsers relative to the Base parser
in figure [8] For this case, we take the absolute values from
figure[6] and for each point on the x-axis, we divide the time
for the parser of interest by the time for the Base parser.
We can see that the Piped parser has a constant overhead
of about 5%, while the Runahead parser’s overhead drops
from around 45% to about 4% as the cost of caching the file
is amortized.

4. CONCLUSION

The goal of this work is not to immediately improve on
XML parsing performance, but to begin to attack the prob-
lem with a performance data-oriented approach. One useful
result here is that, for files of this large size, the overhead
of pipe synchronization is constant and reasonable (5%).
This means that pipes (using java.io.PipedOutputStream
and java.io.PipedInputStream in Java 1.6) could be a feasi-
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Figure 8: In this case we take the results from[6 and
calculate the overhead of the Runahead and Piped
parsers relative to the Base parser by dividing the
absolute results of the parser by the absolute results
of the Base parser. This indicates that the the Piped
parser has a roughly constant overhead of 5%.

ble communication mechanism for future multithreaded de-
signs. It should be noted that the implementations of those
classes in Java 1.5 is not suitable as they were rewritten for
performance in 1.6. This was actually a problem early on
when we were using a Java 1.5 runtime.

Another point to highlight here is that the Piped parser
has a much smoother performance profile than the Runa-
head parser. We can conclude that not only is a piped
communication mechanism useful, but that the overhead of
synchronization actually provides this nice feature. On top
of this, while the pipe implementation used here performs
well, it may be possible to write an optimized byte array
transfer mechanism that outperforms the generic pipes used
here. We plan to investigate this in our future work.

One other result is that when parsing large uncached files,
attempting to preload the file in a separate thread is not
helpful for performance. This result is weaker because of the
way our tests are structured. It’s possible that the Runahead
parser could have a better result if the SAX event handling
code written by the user did something other than return
immediately. Because of this, we conjecture that there is
little chance for the Runahead thread to do much useful
preloading work and it ends up competing with the parser
thread for bytes of the file from the filesystem.

S. FUTURE WORK

In the immediate future, we plan to test on more sys-
tems and add a few more cases of large XML based doc-
uments used in real applications. We would like to study
how these strategies apply on processors with hyperthread-
ing technology and classic symmetric multi-processors, as
well as uniprocessors. It would be useful to investigate how
these strategies affect cases when the user code actually runs



during the parsing phase, and see if the performance pro-
file for the Runahead case changes. We plan to add new
cases to our current test suite including tests against other
pipe implementations and tests involving using cached data
with the tests from §3.3] It will also be interesting to inte-
grate these parsers with our comprehensive XML benchmark
suite, XMLBench [9], and compare them to all the parsers
used for the benchmark evaluation. Similarly, it would also
be interesting to apply the Piped and Runahead cases to
other high performance parsers in C and C++.

For really enormous files, there is also the possibility of
coming up with a parser that parallelizes across address
spaces and the network.
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