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Abstract 
 

There is a critical need to design and develop tools 
that abstract away the fundamental complexity of XML 
based Web services specifications and toolkits, and 
provide an elegant, intuitive, simple, and powerful 
query based invocation system to end users. Web 
services based tools and standards have been designed 
to facilitate seamless integration and development for 
application developers. As a result, current 
implementations require the end user to have intimate 
knowledge of Web services and related toolkits, and 
users often play an informed role in the overall Web 
services execution process We employ a set of 
algorithms and optimizations to match user queries 
with corresponding operations in Web services, invoke 
the operations with the correct set of parameters, and 
present the results to the end user. Our system uses the 
Semantic Web and Ontologies in the process of 
automating Web services invocation and execution.1  
 
 
Key Words: Automatic Invocation, Web services, 
Query matching, Semantic Web, Ontology. 
 
1. Introduction 
 

The Web services model has emerged as a 
standard for representation, discovery, and invocation 
of services in a distributed environment. A Web 
service can be defined as an interface to application 
functionality that is accessible using well-known 
Internet standards and is independent of any operating 
system or programming language. The widespread 
adoption of Web services is enabled by a set of flexible 
and extensible XML based standards including the 
Web Service Description Language (WSDL), which is 
the widely used specification to describe Web services. 
Web services are widely expected to simplify the 
design of distributed applications that are amenable to 

                                                        
1 Supported in part by NSF grants IIS-0414981 and CNS-0454298 

automated discovery, composition, and invocation. The 
use of XML facilitates in moving towards loosely-
coupled applications that provide greater 
interoperability in distributed heterogeneous 
environments. However, the current XML based 
specifications provide only syntactical descriptions of 
the functionality provided by Web services. Even 
though a wide variety of tools are available to invoke 
Web services, the lack of semantics associated with 
Web service descriptions requires user intervention in 
the decision make process and understanding of the 
complex interfaces, contexts, composition, and 
invocation. It is currently required for application 
developers to have some knowledge of the intricacies 
of Web services: know-how about the list of available 
operations, the input and output parameter types, the 
set of ports and service endpoints, apart from usage 
details of their particular Web services toolkit (WSIF 
[1], gSOAP [2], Axis [3], for example). Though an 
important motivation of Web services is to promote 
ease-of-use for application developers, the requirement 
that end users also be familiar with the design and 
some implementation details makes its usage difficult 
for end users. Our work addresses this problem by 
simplifying the user interaction with Web services. We 
have developed several algorithms and optimization 
techniques that map user queries to relevant operations 
in domain specific Web services. Our system presents 
a simple interface, similar to HTML based search 
engines, which accepts user queries and presents the 
end user with results after invoking and executing 
relevant Web services. We employ several query 
matching techniques including Semantic Web [4] and 
ontology technologies such as OWL [5], as well as 
tools such as WordNet [6], to retrieve contextual 
information from queries and determine the set of Web 
services that need to be invoked for any user query. 
The details of Web services specification and 
implementations are hidden from the user.  For 
example, suppose a user wants to check the weather for 
a trip from Boston to Chicago. In our system, the user 
needs to enter a query "weather for travel from Boston 
to Chicago". Our system will employ various 
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algorithms to understand the query and obtain the 
required information by invoking the appropriate Web 
services. Unlike other Web service implementations, 
the user does not have to fill detailed forms for each 
service. Our system takes into consideration results of 
past Web service invocations and utilizes it to improve 
performance for subsequent user queries in the same 
domain. Our system also supports memorized 
optimization, which uses the knowledge of certain or 
entire parts of previously made queries for the benefit 
of future queries. 
 
2. Design and Implementation 
 

Figure 1 shows the components and control flow of 
our system. We describe each component in detail. 
 
2.1. WSDL Processor 
 

The WSDL Processor populates the data structures 
for all the WSDL files stored in the WSDL Repository 
with operation names, comments and annotations, part 
names, input and output parameters, the port types and 
the service endpoints corresponding to a particular 
WSDL file. The WSDL Processor is invoked only 
once at the start of the system and all the 
aforementioned WSDL file details are cached to 
improve performance for each subsequent client query. 
 
2.2. User Query Interface 
 

Our approach is to provide a simple user interface 
for invoking Web services. We have designed a 
general interface, as opposed to the use of forms 
specific to each domain as is currently implemented by 
many Web services invocation systems. In our system, 
depending on the results of the query matching 
algorithms, relevant Web services are invoked and 
executed without further involvement of the user in the 
overall process. 
 
2.3. Query Processor 
 

The Query Processor processes each user query 
and updates its learning engine whenever it encounters 
a new query.  Since a user query cannot be predicted in 
advance, for the matching algorithms to succeed, the 
query has to first be normalized [7]. Words denoting a 
single concept can be depicted differently in a user 
query. We considered using Levenshtein Algorithm [9] 
to determine the similarity factor between the user 
query and the operation names in the WSDL files. Our 
results showed that it does not produce desirable 
matching results due to the diversity of user queries. 

The normalization steps in our approach are: 
• Non-content or stop words (such as "add”, 

"fetch", “find”, “check”, and “what”) are removed 
from the query string because they do not add any 
semantic value in our current processing system, and 
instead waste valuable processing time.  

• All non-alphanumeric characters are not 
replaced with a space character. For example, a query 
like "list of available hotels @ Salt Lake City on 
Monday" is converted to "list of available hotels at Salt 
Lake City on Monday", taking into account the 
significance of '@' in context with the user query. In a 
query such as "today's $ to # conversion rate", the 
characters $ and # contribute to the contextual 
information. The query processor stores a list of non-
alphanumeric characters that can be replaced with 
alphanumeric characters to better understand the query. 

• Contents in parentheses are not removed. The 
information in parentheses provided by the user query 
can play a vital role in the OWL vocabulary for more 
accurate determination of the relevant Web services. 
For example, in a query string like "Today's forecast 
(weather) at San Francisco", the word "forecast" can 
be interpreted in different senses as a noun or a verb, 
which have different meanings. Since the user has 
provided the term "weather" in parentheses, it can be 
inferred that she is referring to today's weather 
condition at San Francisco. 

• Our system uses word variants or stemming 
technology [8], which not only searches for the words 
present in the user query but also for similar words. 
This is implemented by domain independent 
technologies like thesaurus matching as well as by the 
use of Semantic Web and ontology technologies. 

• Unlike popular search engines for HTML 
based Web pages; we do not automatically exclude 
common words like "to", "from" and "at" because such 
words in a user query can help determine the context of 
the query. For example, in the query "Will it rain at 
Washington tomorrow?” the preposition "at" indicates 
that the user wants to find out tomorrow's weather 
condition at some location. So we argue that 
prepositions including "to", "from", "at" and others can 
be vital indicators of the context of a particular query. 

• Abbreviations are extended: for a query string 
like "flight booking to NYC", our system interprets it 
as "flight booking to New York City". 

After the processing is done, the query words are 
stored in the Query Words Repository. 

 
2.4. Lexicon 
 

The Lexicon Block is built using the WordNet 2.0 
Dictionary [6]. Our system uses JWNL 1.3 API [10] to 
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access the WordNet Dictionary. The functionalities 
provided by this block are extensively used by the 
Match Processor and the Relevance Checker in later 
stages. Apart from the dictionary methods, we also 
utilize the glossary feature provided by WordNet in the 
Relevance Checker module. 
 

 
Figure 1: Design of the query processing system. 
 
2.5. Spell Checker 
 

The Spell Checker is taken into account to verify 
the correctness of the query words by both the Match 
Processor and the Relevance Checker, when no 
matches can be found for a particular query string. This 
helps in refining the user query. For example, consider 
the case when a query is "chaepst fare from Chicago to 
Seattle" instead of "cheapest fare from Chicago to 
Seattle". In this case, if the correct spelling of the word 
"cheapest" is found, it will result in a match, which 
otherwise would not have been possible. The Spell 
Checker itself can be implemented by invoking the 
doSpellingSuggestion() operation of the Google Web 
service API. However, this will incur an expensive 
overhead of making a remote invocation. The efficient 
alternative is to locally incorporate the Soundex [11] 
and Metaphone [12] algorithms. 
 
2.6. Match Processor 
 

The query words from the Query Words 
Repository are then fed to the Match Processor. The 
Match Processor consists of an ontology based 

processor namely Ontology Matcher and a thesaurus 
based processor called Dictionary Matcher. 
 
2.6.1. Ontology Matcher. We have built ontologies to 
define popular search domains including "travel", 
"location", "currency", and "weather" in the initial 
experiments. We chose OWL [5] over RDF [13]/RDFS 
[14] because RDFS imposes loose constraints on 
vocabularies. For example, in RDFS, we can neither 
provide information that two properties are disjoint nor 
can we restrict the cardinality of a specific property. 
OWL, on the other hand, provides more accurate, 
precise, and complete representation of a domain. We 
have currently chosen OWL Lite to keep the ontology 
definitions simple. We plan to compare the 
performance with other OWL types in future work. 

The Ontology Repository stores the vocabularies 
for a wide variety of domains. The ontology definitions 
are modeled in the Ontology Matcher using Jena [15]. 
Jena is a framework for building Semantic Web [4] 
applications. It provides a simple OWL API for 
processing vocabularies. The query words, fed to the 
Match Processor, are searched in the ontology models. 
These models consist of statements where each 
statement is made up of Subject, Predicate and Object. 
We do not search a query word in the ontology models 
if the word is a preposition. Instead, we indicate the 
presence of the preposition such as "at", "in", "of", 
"on", "from", "to" by a flag because these words can be 
vital indicators of the context of a particular query. For 
example, if we have a query string like "Best price for 
flight from Los Angeles to San Francisco on Sunday", 
we may infer from the prepositions that Los Angeles 
and San Francisco are geographic locations. If an 
ontology model is lit up by the query words that are 
searched in the models, then the corresponding 
sentence is returned and the query words are stored 
against the ontology domain. For example, Figure 2 
shows how a simple query string ("flight from Los 
Angeles to San Francisco") lights up the travel 
ontology model. We can also deduce from the use of 
the prepositions "from" and "to" in the client query that 
Los Angeles is the originating location and San 
Francisco is the destination. 

Within the Ontology Matcher, the Lexicon block 
is used and its features are employed to obtain better 
contextual information relevant to the client query. 
Initially, the query words are matched using direct 
keyword matching with the Subject, Object and 
Predicate of each ontology statement. Irrespective of 
the matches found, we use the Lexicon block to 
employ synonym, hypernym2, and hyponym3 matching 

                                                        
2 Hypernym – A word whose meaning denotes super class. 
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techniques. By taking into consideration different 
senses of a particular word, we can ensure that the 
selected ontology file has the closest relevance to the 
client query string. We plan to study the effectiveness 
of Metanym Matching [16] in future work. 

We consider only root words in the user query to 
avoid redundancy. For example, if a user query is "Will 
it be snowing in Buffalo tomorrow?” the word 
"snowing" in the client query string gets stemmed to 
the root word "snow", which is then retrieved from the 
Lexicon block. This approach is adopted because we 
presume that both the Lexicon and our ontology files 
will contain the corresponding root word. 

For synonym matching, four different search 
outcomes are possible. 

• Neither the query word nor the synonym 
words are present in any of the ontology models. 

• Some of the synonyms are present, but not the 
query word. 

• The query word is present, but not its 
synonyms. 

• Both the query word and its synonyms are 
present in the ontology model. 

We collect these outcomes, shown in Figure 3, and 
use them to extend the ontology models, thus enriching 
the model. We have designed a learning module that 
stores the knowledge and information of a previously 
made query (the semantics of which are not in our 
ontology) to later queries for predicting more accurate 
results. If both the query word and its synonym are not 
found, the ontology model does not get extended. The 
same condition applies when the query word and its 
synonym are both found within the ontology model. 
However, the ontology file is extended when a 
synonym of a particular word yields a match. We can 
infer that since a synonym of the query word is present 
in the ontology file, the query word very likely has 
contextual relevance to the ontology model. 

Suppose we have a query "temperature at 
Binghamton" and we do not have the keyword 
"temperature" in our present ontology model. Further 
assume that from the Lexicon we can infer that 
"weather" is a synonym of temperature and "weather" 
is already present in the ontology model. It can then be 
inferred that "temperature" has a meaning which is 
semantically similar to "weather" and should be 
included in the ontology model. So we regenerate the 
weather ontology model and incorporate the keyword 
"temperature" in the ontology file. Each time any of 
the ontology models is updated, we create and read the 
new ontology model again so that the changes are 
incorporated. However, if a keyword from the user 
                                                                                      
3 Hyponym – A word whose meaning denotes a subordinate or 
subclass. Cat is a hyponym of animal. It is the opposite of hypernym. 

query string is present in the ontology model, every 
synonym of it does not qualify to be incorporated into 
the ontology model. For example, for the query string 
"weather at Binghamton", instead of "temperature at 
Binghamton", we will get "endure" as a synonym for 
weather from Lexicon. Since "endure" is not present in 
the ontology file, we cannot extend the model because 
the word "endure" carries a different sense that is not 
relevant to the present context of "weather". 

 

 
 
Figure 2: A query "flight from Los Angeles to San 

Francisco" lights up the travel ontology model. 
 

In the first case of Figure 3, where the query word 
and its synonyms do not yield any positive result, the 
word is searched in a cached list of valid locations with 
the assumption that the word could be a valid location 
or a proper noun. We also inspect the first character of 
a query word to detect if it is in upper case. If so, it can 
possibly be inferred as a proper noun. If the word is 
found in the list of locations then the actual context 
information of the word can be obtained. Otherwise, 
we look up in Lexicon or invoke a location Web 
service [17] to determine if the query word denotes a 
corresponding location. 

If the result is positive, the word is added in the 
cached list of locations. If the result is not positive, the 
Spell Checker is used to determine whether the query 
word is correctly spelled or not. We take into 
consideration varied senses of each query word to 
minimize the chances that more than one ontology 
model is selected for each search string. 

 
2.6.2. Dictionary Matcher. If it is not possible to 
determine the context of the user query based on the 
ontology files, the Dictionary Matcher is used to obtain 
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appropriate Web service operations. The matching 
algorithms it uses are:  

• Stop words like "get", "add" and "fetch" are 
stripped from operation names and then the client 
query is matched with the operation names. 

• Each value string is matched, ignoring its 
case, with the operation names. For example, 
getTemperature is matched with "temperature". 

• Direct and Dictionary Level Matching is 
employed. 

 
Query 
Word Synonym Result 

0 0 Continue 

0 1 Extend OWL file with 
query word 

1 0 Continue,  Synonyms may 
have different senses 

1 1 Continue 
 

Figure 3: Ontology Extension Table. 
 

Our matching algorithms employed in the 
Dictionary Matcher works as follows:  
Direct Matching – This is implemented by direct 
keyword matching. The client query is matched 
directly with the operation names and the stripped 
operation names. The stripping of the operation names 
is achieved by removing the stop words from the 
operation names. On a positive match, the operation 
names are stored in a specific data structure along with 
their WSDL file names. 
Stripped Matching – The client query words are 
stripped and matched with the actual operation names 
as well as the stripped operation names. On a positive 
match, the WSDL files and associated operation names 
are stored. 
Dictionary Level Matching - The matching algorithm 
uses Dictionary Level Matching, which includes 
synonym, hypernym, and hypernym of a particular key 
word. Here, synonyms of the query words are fetched 
and matched with the operation names and the stripped 
operation names. If the synonym match fails to provide 
a positive result then hypernyms and hyponyms of the 
query words are retrieved and matched with the 
operation names. On a positive match, operation names 
and corresponding WSDL files are stored. 
 
2.7. Relevance Checker 
 

If no match is found by the Match Processor, the 
system checks the glossary provided by the Lexicon as 
well as the input and output parameters of the methods, 
the part names and the comments and annotations in 
the WSDL files. This aspect of the system flow is 

executed by the Relevance Checker. The Lexicon 
component provides a detailed glossary for each word. 
It is possible that the query word cannot be found using 
ontology or direct, synonym, hypernym, and hyponym 
matching, but may be present in the glossary. For 
example, consider the query string "forecast for 
Binghamton today". We consider the query word 
"forecast" which contains the main contextual 
information in the user query. Suppose the word 
"forecast" is neither in the ontology model nor can it be 
found by dictionary level matching, because the 
Lexicon block does not provide any word related to 
weather in both cases. However, if the glossary of 
"forecast" is considered, "a prediction about something 
(as the weather) will develop" will be found. Therefore 
it can be deduced that "forecast" is related to weather, 
which helps in the invocation and execution process. 
Others features like input and output parameters and 
part names can also be beneficial in the matching 
process. 

A feature that is often ignored but has relevance 
for query processing is comments and annotations in 
the WSDL file. If the operation names in the WSDL 
file do not truly reflect their actual cause but are 
annotated with suitable comments in the WSDL file, 
then it helps in determining which method to invoke to 
get an appropriate response. To facilitate automatic 
invocation of Web services, we recommend WSDL 
developers to use meaningful names and annotations in 
the WSDL file. For example, a weather-related WSDL 
file with an operation name getWeatherForecast, input 
message named as getWeatherForecastRequest, and 
output message named as 
getWeatherForecastResponse, will very likely be 
accessed by our query mapping system. 
 
2.8. WS Invocation Preprocessor 
 
After the Match Processor and Relevance Checker 
generate match results, we then search the selected 
WSDL files to check if there is enough information 
available in the query words so that an operation can 
be invoked. The semantics of operations present in the 
WSDL files are helpful in this case. The domain 
information gathered from the user query is matched 
with the semantic definitions of the signature of 
operations declared in the WSDL file. For example, the 
user query "weather at Detroit", when processed, gives 
us valuable information that the weather domain has 
been selected and the query is related to a geographic 
location. So any operation that takes a location 
attribute such as State, City or ZipCode as input 
parameter can possibly be invoked. In case of failure, 
text based searches are performed on the operation 
names. When all the inputs necessary to invoke a Web 
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service, such as Operation Name, its Input Messages, 
Output Messages, PortTypes, Service Endpoints are 
made available, they are passed on to the WS Invoker 
module. 
 
2.9. WS Invoker 
 

The WS Invoker is used to invoke and execute the 
selected operation and Web service. This module, 
which uses the Axis toolkit, creates the SOAP payload 
necessary to invoke the chosen Web service and 
presents the parsed results to the user. 
 
2.10. Fallback Invocation Behavior 
 

We compare query words with WSDL file names 
and if we cannot determine the set of operations to 
invoke, the user is presented with a form with links to 
methods for invocation. The user can then select any of 
the operation names and invoke the Web service. The 
information provided by the user is auto-filled in the 
form.  If none of these techniques are successful and no 
matches can be found, the user is notified and 
requested to refine her query. This default behavior is 
similar to the capabilities of existing Web services 
invocation tools. 
 
3. Experimental Results 
 
We conducted experiments on a Dell D620 with an 
Intel T2300 processor @ 1.66 GHz and 1 GB of RAM 
running Microsoft Windows XP. We created a list of 
representative queries of varying non stop word 
lengths (from 1 to 10): “Seattle”, “Binghamton’s 
weather”, “Temperature at Chicago”, “How hot is it at 
Boston today?”, “Will it be raining at Dallas 
tomorrow?”, “Flight Details from Los Angeles to San 
Francisco”, “Today’s conversion rate from Euro to 
Dollar”, “Stopovers from NYC to Philadelphia when 
traveling by bus”, “Cost of hotel booking for one-night 
stay at NYC”, and “Best price for flight from 
Pittsburgh to Buffalo on Sunday”.  

Figure 4 shows that if query results in a match in 
the ontology model, the total time required for 
invocation and execution of a Web service is less as 
opposed to a scenario where the user query does not 
yield a match in the ontology model and has to flow 
through secondary back-up matching techniques like 
dictionary level matching in the Match Processor. We 
expect that in most of the cases, an ontology model 
will be selected for a client query. In cases when the 
ontology model does not help in matching the query, 
the additional overhead of the Lexicon block will be 
incurred and increase the response time.  

We present the performance results for memoized 
query strings in Figure 4. If a certain part of the user 
string, or the string in its entirety, is fed to the system 
for subsequent queries, performance improvement is 
significant as the Ontology Level and Dictionary Level 
matching blocks can be skipped. 
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Figure 4: Queries that hit in the Ontology Matcher 

resolve more quickly than those requiring both 
Ontology and Dictionary Matcher. 

 
Figure 4 also illustrates that the time required for 

Ontology and Dictionary Level Matching increase 
proportionally with the length of the client query 
strings. Since a larger query string with more non stop 
words provides better context information, it also 
results in more accurate processing. 
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Figure 5: The Lexicon block adds a significant 
overhead to the query matching process. 

 
Figure 5 illustrates that the time spent in finding 

the synonyms of client query words and the synsets4 
for extending the ontology models is a major 

                                                        
4 A synset (synonym set) represents a concept and contains a set of 
words; each of which is synonymous with the other words in the 
synset.  
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bottleneck in the overall process. Our analysis showed 
that a major portion of the time is spent in loading the 
JWNL API implementation for generation of the 
synsets for each client query word. Implementing and 
incorporating the self-learning capabilities of the 
system, with the extension of the ontology models, is 
time consuming. Though the overhead ranges from 
85% to 90%, it results in faster response time and 
enhanced accuracy. 
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Figure 6: When the query words are extended to 

the Ontology Model, the query performance 
significantly improves. The performance improves 

as the length of the query is increased. 
 

Figure 6 shows significant performance 
improvement, when the new query words are extended 
to the ontology model. The performance enhancements 
range from 20% to 82%. Note that the improvement is 
more pronounced with the increase in the length of the 
query string. This is because the time to generate 
synonym sets for each client query word is a 
significant overhead that multiplies proportionately 
with the increase in the size of the query string. So, the 
incorporation of self-learning features like extension of 
the ontology models plays an important part in our 
query matching system. 
 
4. Related Work 
 

Eberhart at al. describe WSDF [24], a 
representative mechanism and a runtime system 
architecture, which allows a client to invoke a service 
based solely on ontology without prior knowledge of 
the API. This work overcomes the drawback of the 
approaches presented in OWL-S and BPEL4WS. 
WSDF provides semantic annotations to Web services 
allowing ad-hoc invocation of a service. Patil et al. 
have developed MWSAF, a Web service annotation 
framework [18] that performs both element and 

structural level matching for Web services. The 
element level matching is bound on a combination of 
Porter Stemmer algorithm for root word selection, 
WordNet dictionary for synonyms, abbreviation 
directory to handle acronyms, and NGram algorithm 
for linguistic similarity of the names of two concepts. 
Sycara et al. have developed one of the earliest 
ontology-based semantic matchmaking engines, 
MatchMaker [19], which uses capability-based 
semantic match and various IR-based filters. Another 
related effort is Racer [20], which focuses solely on 
service capability-based semantic matches for 
application in e-commerce systems. Syeda-Mahmood 
et al. [21] explore the use of domain-independent and 
domain-specific ontologies for finding matching 
service descriptions. Domain-independent relationships 
are derived using an English thesaurus after 
tokenization and part-of-speech tagging, while domain-
specific ontological similarities are derived by 
inferring semantic annotations associated with Web 
service descriptions. A combination of the matches due 
to the two cues is done to determine an overall 
semantic similarity score. Our work extends the work 
by Syeda-Mahmood et al. [21], but dynamically 
learning from previous match making results, 
extending the ontological vocabulary, and applying the 
knowledge to subsequent queries Agarwal et al. 
propose a solution Synthy [22] for the composition of 
Web services using domain-dependent ontologies. The 
system provides semantic reasoning and planning but it 
does not include domain-independent cues such as 
thesaurus and text analysis techniques such as stop 
word filtering. Syeda-Mahmood et al. describe  
Minelink in [23], which uses bipartite graph for 
modeling Web service compositions and solves a 
maximum matching problem using domain-
independent cues and text analysis techniques. 
 
5. Conclusions and Future Work 
 

We presented a system that matches user queries 
with operations in Web services. The system uses 
lexical analysis, domain-independent matching 
techniques, domain-specific ontologies and a set of 
specialized algorithms and optimizations to match 
simple free-form queries to WSDL operations. The 
system also provides a self-learning mechanism that 
utilizes the knowledge of previously made queries and 
enhances the efficiency of the system by a range of 
20% - 82%. Our system provides the ease-of-use of 
popular Web search engines, enhanced with the ability 
to combine and retrieve information related to user 
queries.  
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In future work, we plan to enrich the vocabulary 
and ontology, and extend the number of domains in our 
experiments. We also plan to conduct a detailed 
accuracy study of our system. 
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