A Query-based System for Automatic Invocation of Web Services

Chaitali Gupta, Rajdeep Bhowmik, Michael R. Head, Madhusudhan Govindaraju, Weiyi Meng
Department of Computer Science, State University of New York (SUNY) at Binghamton, NY
{cguptal, rbhowmil }@binghamton.edu {mike, mgovinda, meng}@cs.binghamton.edu

Abstract

There is a critical need to design and develop tools
that abstract away the fundamental complexity of XML
based Web services specifications and toolkits, and
provide an elegant, intuitive, simple, and powerful
query based invocation system to end users. Web
services based tools and standards have been designed
to facilitate seamless integration and development for
application developers. As a result, current
implementations require the end user to have intimate
knowledge of Web services and related toolkits, and
users often play an informed role in the overall Web
services execution process We employ a set of
algorithms and optimizations to match user queries
with corresponding operations in Web services, invoke
the operations with the correct set of parameters, and
present the results to the end user. Our system uses the
Semantic Web and Ontologies in the process of
automating Web services invocation and execution.”

Key Words: Automatic Invocation, Web services,
Query matching, Semantic Web, Ontology.

1. Introduction

The Web services model has emerged as a
standard for representation, discovery, and invocation
of services in a distributed environment. A Web
service can be defined as an interface to application
functionality that is accessible using well-known
Internet standards and is independent of any operating
system or programming language. The widespread
adoption of Web services is enabled by a set of flexible
and extensible XML based standards including the
Web Service Description Language (WSDL), which is
the widely used specification to describe Web services.
Web services are widely expected to simplify the
design of distributed applications that are amenable to

! Supported in part by NSF grants 11S-0414981 and CNS-0454298

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007 IEEE

automated discovery, composition, and invocation. The
use of XML facilitates in moving towards loosely-

coupled applications that provide greater
interoperability in distributed heterogeneous
environments. However, the current XML based

specifications provide only syntactical descriptions of
the functionality provided by Web services. Even
though a wide variety of tools are available to invoke
Web services, the lack of semantics associated with
Web service descriptions requires user intervention in
the decision make process and understanding of the
complex interfaces, contexts, composition, and
invocation. It is currently required for application
developers to have some knowledge of the intricacies
of Web services: know-how about the list of available
operations, the input and output parameter types, the
set of ports and service endpoints, apart from usage
details of their particular Web services toolkit (WSIF
[1], gSOAP [2], Axis [3], for example). Though an
important motivation of Web services is to promote
ease-of-use for application developers, the requirement
that end users also be familiar with the design and
some implementation details makes its usage difficult
for end users. Our work addresses this problem by
simplifying the user interaction with Web services. We
have developed several algorithms and optimization
techniques that map user queries to relevant operations
in domain specific Web services. Our system presents
a simple interface, similar to HTML based search
engines, which accepts user queries and presents the
end user with results after invoking and executing
relevant Web services. We employ several query
matching techniques including Semantic Web [4] and
ontology technologies such as OWL [5], as well as
tools such as WordNet [6], to retrieve contextual
information from queries and determine the set of Web
services that need to be invoked for any user query.
The details of Web services specification and
implementations are hidden from the user. For
example, suppose a user wants to check the weather for
a trip from Boston to Chicago. In our system, the user
needs to enter a query "weather for travel from Boston
to Chicago". Our system will employ various

COMPUTER
SOCIETY

IEE |-:

algorithms to understand the query and obtain the
required information by invoking the appropriate Web
services. Unlike other Web service implementations,
the user does not have to fill detailed forms for each
service. Our system takes into consideration results of
past Web service invocations and utilizes it to improve
performance for subsequent user queries in the same
domain. Our system also supports memorized
optimization, which uses the knowledge of certain or
entire parts of previously made queries for the benefit
of future queries.

2. Design and Implementation

Figure 1 shows the components and control flow of
our system. We describe each component in detail.

2.1. WSDL Processor

The WSDL Processor populates the data structures
for all the WSDL files stored in the WSDL Repository
with operation names, comments and annotations, part
names, input and output parameters, the port types and
the service endpoints corresponding to a particular
WSDL file. The WSDL Processor is invoked only
once at the start of the system and all the
aforementioned WSDL file details are cached to
improve performance for each subsequent client query.

2.2. User Query Interface

Our approach is to provide a simple user interface
for invoking Web services. We have designed a
general interface, as opposed to the use of forms
specific to each domain as is currently implemented by
many Web services invocation systems. In our system,
depending on the results of the query matching
algorithms, relevant Web services are invoked and
executed without further involvement of the user in the
overall process.

2.3. Query Processor

The Query Processor processes each user query
and updates its learning engine whenever it encounters
anew query. Since a user query cannot be predicted in
advance, for the matching algorithms to succeed, the
query has to first be normalized [7]. Words denoting a
single concept can be depicted differently in a user
query. We considered using Levenshtein Algorithm [9]
to determine the similarity factor between the user
query and the operation names in the WSDL files. Our
results showed that it does not produce desirable
matching results due to the diversity of user queries.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007 IEEE

The normalization steps in our approach are:

e Non-content or stop words (such as "add”,
"fetch", “find”, “check”, and “what”) are removed
from the query string because they do not add any
semantic value in our current processing system, and
instead waste valuable processing time.

e All non-alphanumeric characters are not
replaced with a space character. For example, a query
like "list of available hotels @ Salt Lake City on
Monday" is converted to "list of available hotels at Salt
Lake City on Monday", taking into account the
significance of '@' in context with the user query. In a
query such as "today's § to # conversion rate", the
characters $§ and # contribute to the contextual
information. The query processor stores a list of non-
alphanumeric characters that can be replaced with
alphanumeric characters to better understand the query.

e Contents in parentheses are not removed. The
information in parentheses provided by the user query
can play a vital role in the OWL vocabulary for more
accurate determination of the relevant Web services.
For example, in a query string like "Today's forecast
(weather) at San Francisco", the word "forecast" can
be interpreted in different senses as a noun or a verb,
which have different meanings. Since the user has
provided the term "weather" in parentheses, it can be
inferred that she is referring to today's weather
condition at San Francisco.

e Our system uses word variants or stemming
technology [8], which not only searches for the words
present in the user query but also for similar words.
This is implemented by domain independent
technologies like thesaurus matching as well as by the
use of Semantic Web and ontology technologies.

e Unlike popular search engines for HTML
based Web pages; we do not automatically exclude
common words like "to", "from" and "at" because such
words in a user query can help determine the context of
the query. For example, in the query "Will it rain at
Washington tomorrow?” the preposition "at" indicates
that the user wants to find out tomorrow's weather
condition at some location. So we argue that
prepositions including "to", "from", "at" and others can
be vital indicators of the context of a particular query.

e Abbreviations are extended: for a query string
like "flight booking to NYC", our system interprets it
as "flight booking to New York City".

After the processing is done, the query words are
stored in the Query Words Repository.

2.4. Lexicon

The Lexicon Block is built using the WordNet 2.0
Dictionary [6]. Our system uses JWNL 1.3 API [10] to

COMPUTER
SOCIETY

IEE |-:

access the WordNet Dictionary. The functionalities
provided by this block are extensively used by the
Match Processor and the Relevance Checker in later
stages. Apart from the dictionary methods, we also
utilize the glossary feature provided by WordNet in the
Relevance Checker module.

User Query
Interface
WSDL
user Processor
query
v - v
words Match
Query P| Processor mach | WSDL WSDL
Processor P Invocation | Invoker
Ontology found Preprocessor
Matcher

stripping stop
words

Web
Spell Service

Dictionary Checker invoked
Matcher match and result
o presented

to the user

Query Words
epository

No match found

4

Lexicon

Relevance
Checker
user notified that no
Web Service can be
called with the
provided query

No match
found

Figure 1: Design of the query processing system.
2.5. Spell Checker

The Spell Checker is taken into account to verify
the correctness of the query words by both the Match
Processor and the Relevance Checker, when no
matches can be found for a particular query string. This
helps in refining the user query. For example, consider
the case when a query is "chaepst fare from Chicago to
Seattle" instead of "cheapest fare from Chicago to
Seattle". In this case, if the correct spelling of the word
"cheapest" is found, it will result in a match, which
otherwise would not have been possible. The Spell
Checker itself can be implemented by invoking the
doSpellingSuggestion() operation of the Google Web
service API. However, this will incur an expensive
overhead of making a remote invocation. The efficient
alternative is to locally incorporate the Soundex [11]
and Metaphone [12] algorithms.

2.6. Match Processor
The query words from the Query Words

Repository are then fed to the Match Processor. The
Match Processor consists of an ontology based

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007 IEEE

processor namely Ontology Matcher and a thesaurus
based processor called Dictionary Matcher.

2.6.1. Ontology Matcher. We have built ontologies to
define popular search domains including "travel",
"location", "currency", and "weather" in the initial
experiments. We chose OWL [5] over RDF [13]/RDFS
[14] because RDFS imposes loose constraints on
vocabularies. For example, in RDFS, we can neither
provide information that two properties are disjoint nor
can we restrict the cardinality of a specific property.
OWL, on the other hand, provides more accurate,
precise, and complete representation of a domain. We
have currently chosen OWL Lite to keep the ontology
definitions simple. We plan to compare the
performance with other OWL types in future work.

The Ontology Repository stores the vocabularies
for a wide variety of domains. The ontology definitions
are modeled in the Ontology Matcher using Jena [15].
Jena is a framework for building Semantic Web [4]
applications. It provides a simple OWL API for
processing vocabularies. The query words, fed to the
Match Processor, are searched in the ontology models.
These models consist of statements where each
statement is made up of Subject, Predicate and Object.
We do not search a query word in the ontology models
if the word is a preposition. Instead, we indicate the
presence of the preposition such as "at", "in", "of",
"on", "from", "to" by a flag because these words can be
vital indicators of the context of a particular query. For
example, if we have a query string like "Best price for
flight from Los Angeles to San Francisco on Sunday",
we may infer from the prepositions that Los Angeles
and San Francisco are geographic locations. If an
ontology model is lit up by the query words that are
searched in the models, then the corresponding
sentence is returned and the query words are stored
against the ontology domain. For example, Figure 2
shows how a simple query string ("flight from Los
Angeles to San Francisco") lights up the travel
ontology model. We can also deduce from the use of
the prepositions "from" and "to" in the client query that
Los Angeles is the originating location and San
Francisco is the destination.

Within the Ontology Matcher, the Lexicon block
is used and its features are employed to obtain better
contextual information relevant to the client query.
Initially, the query words are matched using direct
keyword matching with the Subject, Object and
Predicate of each ontology statement. Irrespective of
the matches found, we use the Lexicon block to
employ synonym, hypernym?, and hyponym® matching

? Hypernym — A word whose meaning denotes super class.

COMPUTER
SOCIETY

IEE |-:

techniques. By taking into consideration different
senses of a particular word, we can ensure that the
selected ontology file has the closest relevance to the
client query string. We plan to study the effectiveness
of Metanym Matching [16] in future work.

We consider only root words in the user query to
avoid redundancy. For example, if a user query is "Will
it be snowing in Buffalo tomorrow?” the word
"snowing" in the client query string gets stemmed to
the root word "snow", which is then retrieved from the
Lexicon block. This approach is adopted because we
presume that both the Lexicon and our ontology files
will contain the corresponding root word.

For synonym matching, four different search
outcomes are possible.

e Neither the query word nor the synonym
words are present in any of the ontology models.

e Some of the synonyms are present, but not the
query word.

e The query word is present, but not its
synonyms.

e Both the query word and its synonyms are
present in the ontology model.

We collect these outcomes, shown in Figure 3, and
use them to extend the ontology models, thus enriching
the model. We have designed a learning module that
stores the knowledge and information of a previously
made query (the semantics of which are not in our
ontology) to later queries for predicting more accurate
results. If both the query word and its synonym are not
found, the ontology model does not get extended. The
same condition applies when the query word and its
synonym are both found within the ontology model.
However, the ontology file is extended when a
synonym of a particular word yields a match. We can
infer that since a synonym of the query word is present
in the ontology file, the query word very likely has
contextual relevance to the ontology model.

Suppose we have a query "temperature at
Binghamton" and we do not have the keyword
"temperature" in our present ontology model. Further
assume that from the Lexicon we can infer that
"weather" is a synonym of temperature and "weather"
is already present in the ontology model. It can then be
inferred that "temperature" has a meaning which is
semantically similar to "weather" and should be
included in the ontology model. So we regenerate the
weather ontology model and incorporate the keyword
"temperature" in the ontology file. Each time any of
the ontology models is updated, we create and read the
new ontology model again so that the changes are
incorporated. However, if a keyword from the user

* Hyponym — A word whose meaning denotes a subordinate or
subclass. Cat is a hyponym of animal. It is the opposite of hypernym.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007 IEEE

query string is present in the ontology model, every
synonym of it does not qualify to be incorporated into
the ontology model. For example, for the query string
"weather at Binghamton", instead of "temperature at
Binghamton", we will get "endure" as a synonym for
weather from Lexicon. Since "endure" is not present in
the ontology file, we cannot extend the model because
the word "endure" carries a different sense that is not
relevant to the present context of "weather".

Flight Domain

hasTicket

Destination

A 4

hasDateOfIssue
y

Date

Figure 2: A query "flight from Los Angeles to San
Francisco" lights up the travel ontology model.

In the first case of Figure 3, where the query word
and its synonyms do not yield any positive result, the
word is searched in a cached list of valid locations with
the assumption that the word could be a valid location
or a proper noun. We also inspect the first character of
a query word to detect if it is in upper case. If so, it can
possibly be inferred as a proper noun. If the word is
found in the list of locations then the actual context
information of the word can be obtained. Otherwise,
we look up in Lexicon or invoke a location Web
service [17] to determine if the query word denotes a
corresponding location.

If the result is positive, the word is added in the
cached list of locations. If the result is not positive, the
Spell Checker is used to determine whether the query
word is correctly spelled or not. We take into
consideration varied senses of each query word to
minimize the chances that more than one ontology
model is selected for each search string.

2.6.2. Dictionary Matcher. If it is not possible to
determine the context of the user query based on the
ontology files, the Dictionary Matcher is used to obtain

COMPUTER
SOCIETY

IEE |-:

appropriate Web service operations. The matching
algorithms it uses are:

e Stop words like "get", "add" and "fetch" are
stripped from operation names and then the client
query is matched with the operation names.

e FEach value string is matched, ignoring its
case, with the operation names. For example,
getTemperature is matched with "temperature".

e Direct and Dictionary Level Matching is
employed.

?Vl:)?;iy Synonym | Result

0 0 Continue

0 1 Extend OWL file with
query word

1 0 Continue, Synonyms may
have different senses

1 1 Continue

Figure 3: Ontology Extension Table.
Our matching algorithms employed in the
Dictionary Matcher works as follows:

Direct Matching — This is implemented by direct
keyword matching. The client query is matched
directly with the operation names and the stripped
operation names. The stripping of the operation names
is achieved by removing the stop words from the
operation names. On a positive match, the operation
names are stored in a specific data structure along with
their WSDL file names.

Stripped Matching — The client query words are
stripped and matched with the actual operation names
as well as the stripped operation names. On a positive
match, the WSDL files and associated operation names
are stored.

Dictionary Level Matching - The matching algorithm
uses Dictionary Level Matching, which includes
synonym, hypernym, and hypernym of a particular key
word. Here, synonyms of the query words are fetched
and matched with the operation names and the stripped
operation names. If the synonym match fails to provide
a positive result then hypernyms and hyponyms of the
query words are retrieved and matched with the
operation names. On a positive match, operation names
and corresponding WSDL files are stored.

2.7. Relevance Checker

If no match is found by the Match Processor, the
system checks the glossary provided by the Lexicon as
well as the input and output parameters of the methods,
the part names and the comments and annotations in
the WSDL files. This aspect of the system flow is

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007 IEEE

executed by the Relevance Checker. The Lexicon
component provides a detailed glossary for each word.
It is possible that the query word cannot be found using
ontology or direct, synonym, hypernym, and hyponym
matching, but may be present in the glossary. For
example, consider the query string "forecast for
Binghamton today". We consider the query word
"forecast" which contains the main contextual
information in the user query. Suppose the word
"forecast" is neither in the ontology model nor can it be
found by dictionary level matching, because the
Lexicon block does not provide any word related to
weather in both cases. However, if the glossary of
"forecast" is considered, "a prediction about something
(as the weather) will develop" will be found. Therefore
it can be deduced that "forecast" is related to weather,
which helps in the invocation and execution process.
Others features like input and output parameters and
part names can also be beneficial in the matching
process.

A feature that is often ignored but has relevance
for query processing is comments and annotations in
the WSDL file. If the operation names in the WSDL
file do not truly reflect their actual cause but are
annotated with suitable comments in the WSDL file,
then it helps in determining which method to invoke to
get an appropriate response. To facilitate automatic
invocation of Web services, we recommend WSDL
developers to use meaningful names and annotations in
the WSDL file. For example, a weather-related WSDL
file with an operation name getWeatherForecast, input
message named as getWeatherForecastRequest, and
output message named as
getWeatherForecastResponse, will very likely be
accessed by our query mapping system.

2.8. WS Invocation Preprocessor

After the Match Processor and Relevance Checker
generate match results, we then search the selected
WSDL files to check if there is enough information
available in the query words so that an operation can
be invoked. The semantics of operations present in the
WSDL files are helpful in this case. The domain
information gathered from the user query is matched
with the semantic definitions of the signature of
operations declared in the WSDL file. For example, the
user query "weather at Detroit", when processed, gives
us valuable information that the weather domain has
been selected and the query is related to a geographic
location. So any operation that takes a location
attribute such as State, City or ZipCode as input
parameter can possibly be invoked. In case of failure,
text based searches are performed on the operation
names. When all the inputs necessary to invoke a Web

COMPUTER
SOCIETY

IEE |-:

service, such as Operation Name, its Input Messages,
Output Messages, PortTypes, Service Endpoints are
made available, they are passed on to the WS Invoker
module.

2.9. WS Invoker

The WS Invoker is used to invoke and execute the
selected operation and Web service. This module,
which uses the Axis toolkit, creates the SOAP payload
necessary to invoke the chosen Web service and
presents the parsed results to the user.

2.10. Fallback Invocation Behavior

We compare query words with WSDL file names
and if we cannot determine the set of operations to
invoke, the user is presented with a form with links to
methods for invocation. The user can then select any of
the operation names and invoke the Web service. The
information provided by the user is auto-filled in the
form. Ifnone of these techniques are successful and no
matches can be found, the user is notified and
requested to refine her query. This default behavior is
similar to the capabilities of existing Web services
invocation tools.

3. Experimental Results

We conducted experiments on a Dell D620 with an
Intel T2300 processor @ 1.66 GHz and 1 GB of RAM
running Microsoft Windows XP. We created a list of
representative queries of varying non stop word
lengths (from 1 to 10): “Seattle”, “Binghamton’s
weather”, “Temperature at Chicago”, “How hot is it at
Boston today?”, “Will it be raining at Dallas
tomorrow?”, “Flight Details from Los Angeles to San
Francisco”, “Today’s conversion rate from Euro to
Dollar”, “Stopovers from NYC to Philadelphia when
traveling by bus”, “Cost of hotel booking for one-night
stay at NYC”, and “Best price for flight from
Pittsburgh to Buffalo on Sunday”.

Figure 4 shows that if query results in a match in
the ontology model, the total time required for
invocation and execution of a Web service is less as
opposed to a scenario where the user query does not
yield a match in the ontology model and has to flow
through secondary back-up matching techniques like
dictionary level matching in the Match Processor. We
expect that in most of the cases, an ontology model
will be selected for a client query. In cases when the
ontology model does not help in matching the query,
the additional overhead of the Lexicon block will be
incurred and increase the response time.

We present the performance results for memoized
query strings in Figure 4. If a certain part of the user
string, or the string in its entirety, is fed to the system
for subsequent queries, performance improvement is
significant as the Ontology Level and Dictionary Level
matching blocks can be skipped.

4000

3600 A
g 3200 ¥ |
§ 2800 Y
= 2400
E 2000 {
c
£ 1600 1
Q
1200
£
£ 800 /:/
400 e e e e
0

1 2 3 4 5 6 7 8 9 10

Length of Client Query excluding stop words

—&— Memoized Optimization Time
—#— Invocation and Execution time with Ontology Matcher

—#— Invocation and Execution time with Ontology and Dictionary
Matcher

Figure 4: Queries that hit in the Ontology Matcher
resolve more quickly than those requiring both
Ontology and Dictionary Matcher.

Figure 4 also illustrates that the time required for
Ontology and Dictionary Level Matching increase
proportionally with the length of the client query
strings. Since a larger query string with more non stop
words provides better context information, it also
results in more accurate processing.

4000

3600 -
3200 A
2800 A
2400 A
2000 A
1600 1
1200 1

800 4

Time (in millisecs)

—0

400 A
0

1 2 3 4 5 6 7 8 9 10

Length of Client Query excluding stop words

—e— Invocation and Execution time after updating Ontology File

—m— Invocation and Execution time with Ontology Matcher

Figure 5: The Lexicon block adds a significant
overhead to the query matching process.

Figure 5 illustrates that the time spent in finding
the synonyms of client query words and the synsets*
for extending the ontology models is a major

4 A synset (synonym set) represents a concept and contains a set of
words; each of which is synonymous with the other words in the
synset.

IEE I-'

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007 IEEE

COMPUTER
SOCIETY

bottleneck in the overall process. Our analysis showed
that a major portion of the time is spent in loading the
JWNL API implementation for generation of the
synsets for each client query word. Implementing and
incorporating the self-learning capabilities of the
system, with the extension of the ontology models, is
time consuming. Though the overhead ranges from
85% to 90%, it results in faster response time and
enhanced accuracy.

4000

3600 -
3200 -
~
g 2800 //;‘
£ 2400 —
€ 2000
E oo 5
<16
€ 1200 =l
F 500 Pl
400 | =
0
1 2 3 4 5 6 7 8 9 10

Length of Client Query excluding stop words

—e— Time spent in Lexicon block by the Ontology Matcher

—m— Invocation and Execution time with Ontology Matcher

Figure 6: When the query words are extended to
the Ontology Model, the query performance
significantly improves. The performance improves
as the length of the query is increased.

Figure 6 shows significant performance
improvement, when the new query words are extended
to the ontology model. The performance enhancements
range from 20% to 82%. Note that the improvement is
more pronounced with the increase in the length of the
query string. This is because the time to generate
synonym sets for each client query word is a
significant overhead that multiplies proportionately
with the increase in the size of the query string. So, the
incorporation of self-learning features like extension of
the ontology models plays an important part in our
query matching system.

4. Related Work

Eberhart at al. describe WSDF [24], a
representative mechanism and a runtime system
architecture, which allows a client to invoke a service
based solely on ontology without prior knowledge of
the API. This work overcomes the drawback of the
approaches presented in OWL-S and BPEL4WS.
WSDF provides semantic annotations to Web services
allowing ad-hoc invocation of a service. Patil et al.
have developed MWSAF, a Web service annotation
framework [18] that performs both element and

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007 IEEE

structural level matching for Web services. The
element level matching is bound on a combination of
Porter Stemmer algorithm for root word selection,
WordNet dictionary for synonyms, abbreviation
directory to handle acronyms, and NGram algorithm
for linguistic similarity of the names of two concepts.
Sycara et al. have developed one of the earliest
ontology-based semantic matchmaking engines,
MatchMaker [19], which uses capability-based
semantic match and various IR-based filters. Another
related effort is Racer [20], which focuses solely on
service capability-based semantic matches for
application in e-commerce systems. Syeda-Mahmood
et al. [21] explore the use of domain-independent and
domain-specific ontologies for finding matching
service descriptions. Domain-independent relationships
are derived using an English thesaurus after
tokenization and part-of-speech tagging, while domain-
specific ontological similarities are derived by
inferring semantic annotations associated with Web
service descriptions. A combination of the matches due
to the two cues is done to determine an overall
semantic similarity score. Our work extends the work
by Syeda-Mahmood et al. [21], but dynamically
learning from previous match making results,
extending the ontological vocabulary, and applying the
knowledge to subsequent queries Agarwal et al.
propose a solution Synthy [22] for the composition of
Web services using domain-dependent ontologies. The
system provides semantic reasoning and planning but it
does not include domain-independent cues such as
thesaurus and text analysis techniques such as stop
word filtering. Syeda-Mahmood et al. describe
Minelink in [23], which uses bipartite graph for
modeling Web service compositions and solves a
maximum matching problem using domain-
independent cues and text analysis techniques.

5. Conclusions and Future Work

We presented a system that matches user queries
with operations in Web services. The system uses
lexical analysis, domain-independent matching
techniques, domain-specific ontologies and a set of
specialized algorithms and optimizations to match
simple free-form queries to WSDL operations. The
system also provides a self-learning mechanism that
utilizes the knowledge of previously made queries and
enhances the efficiency of the system by a range of
20% - 82%. Our system provides the ease-of-use of
popular Web search engines, enhanced with the ability
to combine and retrieve information related to user
queries.

COMPUTER
SOCIETY

IEE I-'

In future work, we plan to enrich the vocabulary
and ontology, and extend the number of domains in our
experiments. We also plan to conduct a detailed
accuracy study of our system.

6. References

[1] M. J. Duftler et al., “Web Services Invocation Framework
(WSIF)” in OOPSLA Workshop on Object Oriented Web
Services, October 2001

[2] R. van Engelen, “A Framework for service-oriented
computing with C and C++ Web service components”, ACM
Transactions on Internet Technologies, 2007.

[3] Axis: “WebServices — Axis” Web Page. Available:
http://ws.apache.org/axis/

[4] “Semantic =~ Web”
http://www.w3.0rg/2001/sw

Web Page. Available:

[5] "OWL Web Ontology Language Overview" Web Page.
Available: http://www.w3.org/TR/owl-features/

[6] G. A. Miller, "WordNet: A Lexical Database for the
English Language" in Comm. ACM 1983

[7] Hai He et al., "An Automated Integrator of Web Search
Interfaces for E-commerce" in VLDB Journal, Vol.13, No.3,
pp-256-273, September 2004

[8] M. F. Porter, “An algorithm for suffix stripping”, in
Program, 14(3) pp 130—137, 1980

[9] V. L. Levenshtein, “Binary Codes Capable of Correcting
Deletions, Insertions and Reversals” in Soviet Physics
Doklady, Vol. 10, p.707, 1966.

[10] "JWNL 1.3" Web
http://jwordnet.sourceforge.net/

Page. Available:

[11] Charles P. Bourne, Donald F. Ford, “A Study of
Methods for Systematically Abbreviating English Words and
Names” in Journal of the ACM Volume 8, Issue 4 (October
1961), Pages: 538 — 552.

[12] “Metaphone” Philips L, “Hanging on the Metaphone.”
Computer Language 1990, 7:39-43.

[13] "Resource Description Framework (RDF)" Web Page.
Auvailable: http://www.w3.org/RDF/

[14] "RDF Vocabulary Description Language 1.0: RDF
Schema" Web Page. Available: http://www.w3.org/TR/rdf-
schema/

[15] "Jena - A Semantic Web Framework for Java" Web
Page. Available: http:/jena.sourceforge.net

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007 IEEE

[16] David Heckerman, Eric Horvitz, “Inferring
Informational Goals from Free-Text Queries: A Bayesian
Approach” in Proceedings of the Conference on Uncertainty
in Artificial Intelligence, July 1998

[17] “Geoplaces.wsdl” Web Service. Available:
http://www.codebump.com/services/placelookup.asmx?wsdl

[18] A. Patil et al., “METEOR-S Web Service Annotation
Framework” in Proc. WWW Conference, pp. 553-562, 2004

[19] K. Sycara et al., “Dynamic service match making among
agents in open information environments” in Journal of the
ACM SIGMOD Record, 1999

[20] L. Li, I. Harrocks, “A Software Framework For
Matchmaking Based on Semantic Web Technology” in Proc.
WWW Conference, 2003

[21] Syeda-Mahmood et al., "Searching Service Repositories
by Combining Semantic and Ontological Matching" in Proc.
of the IEEFE International Conference on Web Services, 2005

[22] V. Agarwal et al., "Synthy. A System for End to End
Composition of Web Services" in Journal of Web Semantics,
Vol. 3, Issue 4, 2005

[23] Syeda-Mahmood et al., "Minelink: Automatic
Composition of Web Services through Schema Matching"
Poster paper WWW Conference, 2004

[24] A. Eberhart, "Ad-hoc Invocation of Semantic Web
Services" in Proc. of the IEEE International Conference on
Web Services, 2004

COMPUTER
SOCIETY

IEE l-:

