
SOA grid design patterns for computer graphics
animation
Using Alchemi to render POV-Ray animations on a grid

Skill Level: Intermediate

Michael Head (head@acm.org)
Consultant
##

10 Jul 2007

Ray tracing produces high-quality images with realistic reflections, shading, and
perspective. Computational efficiency of rendering is achieved through design patterns
for a grid service model fitted into a Service-Oriented Architecture (SOA). Learn how to
configure and run Alchemi — a grid services model for rendering — build a simple
distributed scene-animation-rendering application using the Alchemi framework, deploy
it with a Web services interface, and test your application with a simple animated
scene.

Section 1. Before you start

About this tutorial

Service-Oriented Architecture (SOA) provides a convenient cross-platform
Internet-scale mechanism for composing software components. Alchemi is a
Microsoft® .NET-based system and framework for building and deploying grid
applications with C# that provides a Web services interface to the application. This
tutorial provides step-by-step instructions for building a Web services-enabled grid
application that renders 3-D computer graphics (CG) animations using Alchemi and
the Persistence of Vision Raytracer (POV-Ray). In addition, it discusses these
concepts in the context of grid computing and SOA.

SOA grid design patterns for computer graphics animation
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 27

mailto:head@acm.org
http://www.ibm.com/legal/copytrade.shtml

Objectives

You will learn how to configure and run Alchemi, build a simple distributed scene
animation-rendering application using the Alchemi framework, deploy it with a Web
services interface, then test your application with a simple animated scene.

Prerequisites

This was written for those with an introductory-level familiarity with Microsoft Visual
Studio® 2005, C#, and Microsoft ASP.NET.

System requirements

To complete all the steps, you need a computer with Microsoft Windows® XP
Professional and Internet Information Services (IIS), along with Visual Studio 2005
and the Microsoft .NET V2.0 framework, including ASP.NET V2.0. You need at least
500 MB of free disk space (depending on how many animation frames you want to
render), Internet access to download Alchemi, and access to install and run
applications on the machine.

Section 2. Introduction

Before diving in, I'd like to discuss the topics in a bit more depth, so you'll have a
better ground in the actions you'll be taking.

The SOA style

The SOA style has gained momentum in recent years. Solutions adhering to this
style consist of loosely coupled services that can be combined and recombined
simply, hiding details like data access and internal software models behind interface
contracts, such as the Web Services Description Language (WSDL) document. The
major benefit is that services within an SOA can more easily interoperate. In this
way, higher-level tools, such as business process modelers, which know nothing
about the underlying services other than their contract, can take advantage of all the
software within an enterprise or even between enterprises. While an SOA solution

developerWorks® ibm.com/developerWorks

SOA grid design patterns for computer graphics animation
Page 2 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://sourceforge.net/project/showfiles.php?group_id=66729
http://www.ibm.com/legal/copytrade.shtml

might use any number of underlying technologies, for the purposes of this tutorial, I
consider SOA to mean a solution based on Web services and SOAP.

Grid computing

Grid computing has been another subject of interest lately. Like SOA, grid computing
has no hard and fast definition. But in general, it refers to combining large numbers
of computers that may or may not be owned and managed by a single entity. In
some communities, this means connecting clusters, supercomputers, and data
centers owned by different universities and research laboratories. In other contexts
— and in the context of this tutorial — it means combining workstations and desktop
computers to achieve a single virtual high-performance computer.

Computer graphics

CG is another broad topic. It can involve interactive 3-D virtual environments,
computer-aided design (CAD) systems, and CG-animated movie rendering, among
many other use cases. This tutorial deals with the case of rendering prepared
scenes with a ray tracer.

Section 3. Design patterns for SOA and grid applications

Design patterns capture common solutions to recurring problems. There are many
well-known patterns, such as singleton and factory, that apply across many domains
because they solve general programming problems. Within a domain, however,
there may be recurring problems that may not be apparent in other domains. The
grid domain includes problems related to node management (how to divide work
across all those machines, for example), as well as to general programming. This
section describes a few patterns.

Embarrassingly parallel

There is a class of computational problems that takes a large amount of
computation, but can trivially be divided into very small chunks. These sorts of
problems are affectionately referred to as embarrassingly parallel. A famous
example is the SETI@Home workload, which divides the task of searching for signs

ibm.com/developerWorks developerWorks®

SOA grid design patterns for computer graphics animation
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 27

http://www.ibm.com/legal/copytrade.shtml

of extraterrestrial life in vast amounts of radio telescope data across millions of
computers with owners willing to donate. In a manner analogous to searching for the
figurative needle in a haystack, small portions of the haystack are given to many
people to search through.

Because it's so easy to break up these problems, they are amenable to grid
solutions. CG rendering is another task that, as you will see, is easily broken up into
small chunks.

CPU scavenging

There are many ways to build large computer systems that can process massive
quantities of data. Such systems can involve specialized hardware, such as is used
in Cray supercomputers, they can involve high-performance networking devices and
dedicated servers in a data center, or they can involve gathering all the computers in
an organization — or even on the Internet — and using all the spare CPU cycles.
Systems built using the latter model are called CPU scavenging systems. CPU
scavenging systems tend to be easy to install and are useful for building programs
that solve embarrassingly parallel problems. Alchemi is one of these systems,
although it can be used with dedicated servers, too.

Grid Web services

Grid Web services can refer to a number of technologies and standards. Here, I
introduce a simple Web services interface to a grid application, but it's important to
mention other definitions. Indiana University's Extreme! Computing Laboratory (see
Resources) started early work on combining Web service and grid computing,
making SOAP and XML more amenable to large-scale scientific computing. Still, the
most common definition of grid Web services is the Web Services Resource
Framework (WSRF) specification, defined by the Globus Alliance and IBM® in 2004
(see Resources).

Section 4. Setting up Alchemi, POV-Ray, MegaPOV, and
the sample code

In this section, you install the software demonstrated in this tutorial. To prepare for
the installation, download the code from the Sample code section, along with the

developerWorks® ibm.com/developerWorks

SOA grid design patterns for computer graphics animation
Page 4 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

following software:

• Alchemi Manager, Executor, and SDK — This tutorial uses V1.0.5 for
Microsoft .NET 2.0.

• POV-Ray scene renderer — This tutorial uses V3.6.1c for Windows.

• MegaPOV, a command-line interface for POV-Ray on Windows — This
tutorial uses V1.2.1 for Windows.

You should have Visual Studio 2005 Professional installed with the ASP.NET
software development kit (SDK).

Install the software

I had some problems with Alchemi V1.0.6 (the release from 16 Oct 2006), so I used
V1.0.5. Specifically, I downloaded the following files:

• Alchemi.Executor-1.0.5-net.2.0.msi

• Alchemi.Manager-1.0.5-net-2.0.msi

• Alchemi-1.0.5-sdk-net-2.0.zip

Note: These instructions prepare the software for one node. To add more computers
to your grid, install each one with Alchemi Executor, POV-Ray, and MegaPOV.

Install Alchemi Manager

To install Alchemi Manager, accept all the installation defaults with the exception of
the Install Alchemi Manager for yourself, or for anyone who uses this
computer option. Choose to install it for Everyone, instead. Then, in the Install
Database window, click Install Database and close the window.

Install the Alchemi Executor

To install the Alchemi Executor, again accept all the defaults with the exception of
installing for Everyone.

Install the Alchemi SDK

Next, extract and install the Alchemi SDK. You can place the contents of this file
anywhere (I left them on the desktop). The compressed file contains a grid
monitoring application and a set of example grid applications and the

ibm.com/developerWorks developerWorks®

SOA grid design patterns for computer graphics animation
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 27

http://sourceforge.net/project/showfiles.php?group_id=66729
http://www.povray.org/download/
http://megapov.inetart.net/download.html
http://www.ibm.com/legal/copytrade.shtml

Alchemi.Core.dll file, which is the assembly required to write grid applications that
take advantage of Alchemi.

Install POV-Ray

The Windows download of POV-Ray (povwin36.exe) is a standard executable
installer. You can accept all the default options.

Install MegaPOV

MegaPOV is packaged into megapov-1.2.1-windows.zip. Extract this file into
C:\Program Files\megapov-1.2.1-windows.

Launch Alchemi

The Alchemi Manager and Alchemi Executor should appear in the Windows Start
menu under Alchemi/Manager/Alchemi Manager and Alchemi/Executor/Alchemi
Executor, respectively. To launch Alchemi:

1. Launch Alchemi Manager so Alchemi Executor has one to connect to.

2. Note the settings and the port, then click Start.

3. Launch Alchemi Executor. If no Alchemi Executor window appears, it may
have created a task bar entry with an E icon. Double-click this icon to
display the Executor window.

4. The Executor should automatically connect to the Manager. If it doesn't,
click Connect.
Note: If you are installing the Executor on a separate node, type the host
name of the Manager in the Manager Node box.

5. By default, the Executor starts in nondedicated mode, so you must click
the Manage Execution tab in the Executor window, and click Start
Executing.

At this point, you should be able to run the sample applications in the SDK.

Extract and use the sample code

The sample code package, SampleCode.zip, contains four files:

developerWorks® ibm.com/developerWorks

SOA grid design patterns for computer graphics animation
Page 6 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• hello.pov

• SceneRenderer.cs

• Service.cs

• Web.Config

You can place the hello.pov file anywhere as long as you remember the location.
The other files should be loaded into an ASP.NET solution in Visual Studio.

To load the Alchemi DLL file and the sample source code:

1. Start Visual Studio 2005.

2. Create a new Web site by clicking File > New > Web Site.

3. Select ASP.NET Web Service, as shown below.
Figure 1. Create a new Web site

4. Right-click the App_Code folder in the Solution Explorer, then click Add
Existing Item.
Figure 2. Add an item to the App_Code folder

ibm.com/developerWorks developerWorks®

SOA grid design patterns for computer graphics animation
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 27

http://www.ibm.com/legal/copytrade.shtml

5. Browse to the folder in which you extracted the sample code, then select
Service.cs and SceneRenderer.cs, as shown below. Note: Accept any
prompts that appear during the import process.
Figure 3. Select the .cs files

6. Right-click the C:\...\WebSite1\ entry in the Solution Explorer, then click
Add Existing Item.
Figure 4. Add an item to the WebSite1 folder

developerWorks® ibm.com/developerWorks

SOA grid design patterns for computer graphics animation
Page 8 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

7. Select the Web.Config file.

8. Right-click the C:\...\WebSite1\ entry in the Solution Explorer, then click
Add Reference.
Figure 5. Add a reference to the Web site

9. Click the Browse tab.

ibm.com/developerWorks developerWorks®

SOA grid design patterns for computer graphics animation
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 27

http://www.ibm.com/legal/copytrade.shtml

10. Navigate to the bin folder in the directory into which you extracted the
Alchemi SDK files.

11. Select Alchemi.Core.dll, then click OK.
Figure 6. Select the Alchemi DLL

12. Select Service.asmx in the Solution Explorer.

13. Click Debug > Start Debugging from the main menu bar.

14. In the Web browser window that appears, click the
RenderSceneToFolder link.
Figure 7. Rendering the scene to a folder

developerWorks® ibm.com/developerWorks

SOA grid design patterns for computer graphics animation
Page 10 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

15. Type the path to the hello.pov file on your computer in the first box.

16. Type the number of frames to render. (Five should be enough for a test
run.)

17. Type an X resolution, such as 800, then type a Y resolution, such as 600.

18. Click Invoke. After a short wait, the service should return a URL similar to
Figure 8.
Figure 8. The returned URL

ibm.com/developerWorks developerWorks®

SOA grid design patterns for computer graphics animation
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 11 of 27

http://www.ibm.com/legal/copytrade.shtml

19. Paste the URL in the entry in the browser.

20. Click the links to see the resulting frames of the animation.
Figure 9. The list of animation frames

Section 5. Using POV-Ray for scene construction and
animation

POV-Ray is a language and a tool for creating and rendering 3-D scenes. The
rendering process can take a long time, particularly for very complex scenes with a
lot of objects. This section describes a bit about how POV-Ray works and provides a
sample (and simple) animated scene.

POV-Ray's rendering model

POV-Ray renders 3-D scenes using ray tracing techniques. This means that light
sources and a camera, representing the viewer's eye, are modelled in the scene
along with the objects themselves. During the rendering process, for each pixel in
the image, a ray is drawn from the eye through the screen at the pixel location into
the scene. The ray reflects and refracts against and through the objects until it hits
one or more light sources. The colors generated by the light sources and those

developerWorks® ibm.com/developerWorks

SOA grid design patterns for computer graphics animation
Page 12 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

found in the scene objects are combined to determine the pixel's value. When this
process has been completed for each pixel, the image is complete.

Animated scenes

You can create animations by tying scene object and light source movements to a
clock. The clock is a number you can use to move, spin, or deform objects. For
example, you can move an object horizontally through the scene by fixing its
X-coordinate to the clock. There are many ways to manipulate the clock, but you'll
be using a simple method: as a number ranging from 0 to 1 equal to the current
frame number being rendered divided by the total number of frames to be rendered.
This makes it easy to render animations during development that use a low number
of frames for faster rendering times, then to switch to a high number of frames for
production while starting and finishing on the same scene.

A sample animated scene

I've put together a simple animated scene to render throughout the tutorial. The
scene has two blocks of text and a flying sphere. The two blocks of text say
"Welcome" in green and "To POV-Ray" in red, and spin around the center of the
scene as the animation unfolds. The sphere is blue and flies across the scene from
right to left, casting a shadow on the text. Two light sources illuminate the scene:
one from behind the scene, one from above the camera.

Listing 1. Hello.pov, a sample POV-Ray scene

#declare DisplayFont = "C:\\WINDOWS\\Fonts\\arial.ttf"

camera {location<0,0,-10> look_at<0,0,0> }

text {ttf DisplayFont "Welcome", 0.25,<0,0,0>
pigment {rgbf<0,1,0,0.5>}
translate <0.66,0,0>
rotate <clock*720,clock*360,0>

}

text {ttf DisplayFont "To POV-Ray", 0.25,0
translate <0,-1,0>
pigment {rgbf<1,0,0,0.5>}
rotate <clock*-720,clock*360>

}

sphere { <2.5-clock*5,0.5,-5>, 0.25
pigment{ rgbf<0,0,1,0.25>}

}

light_source { <0,2,10>, rgb<0,0,1> }
light_source { <0,-2,-10>, rgb<1,1,0> }

ibm.com/developerWorks developerWorks®

SOA grid design patterns for computer graphics animation
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 13 of 27

http://www.ibm.com/legal/copytrade.shtml

Sample rendered images

Figure 10 shows the initial frame in the animation. As specified in Listing 1,
"Welcome" appears green: pigment {rbgf=<0,1,0,0.5>} means the base
color of the object has no red component, 100-percent green component, no blue
component, and a filter component of 50 percent — a measure of transparency.
Similarly, "To POV-Ray" appears in red, because its color vector is <1,0,0,0.5>.
A dark blue sphere appears just above and to the right of the letter e in the word
"Welcome."

All the objects appear in their initial positions because the initial frame is rendered
with the clock variable set to zero. For example, the sphere's location is specified
as <2.5-clock*5,0.5,-5>. If you substitute the value 0 for the variable clock,
you come up with the location <2.5,0.5,-5>, which means that the sphere is
located 2.5 units to the right of the horizontal center of the scene, 0.5 units above the
vertical center of the scene, and 5 units along the Z-axis of the scene. In other
words, it's halfway between the camera (with Z-axis set to -10) and the words,
which have Z-axes set to 0.

Figure 10. Sample scene rendered with the frame clock set at 0

developerWorks® ibm.com/developerWorks

SOA grid design patterns for computer graphics animation
Page 14 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Figure 11 shows the scene when rendered at clock time 0.33, or one-third of the way
through the animation. Note how the words have rotated around the center of the
scene and twirled around a spot between them. This behavior is the result of the
rotate <clock*720,clock*360,0> and rotate
<clock*-720,clock*360,0> elements. The two text elements have both spun
around the vertical axis of the scene by 0.33*360=118.8 degrees. At the same
time, they have spun around an imaginary line between them by
0.33*720=237.60 and -237.60 degrees, respectively, which puts them about
one-third of the way around the scene and puts "Welcome" just underneath "To
POV-Ray."

Figure 11. Sample scene rendered with the frame clock set at 0.33

ibm.com/developerWorks developerWorks®

SOA grid design patterns for computer graphics animation
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 15 of 27

http://www.ibm.com/legal/copytrade.shtml

Notice that the blue sphere has traveled one-third of the way through the scene. You
can calculate its location again. Recalling that its position is defined as
<2.5-clock*5,0.5,-5>, and clock is now 0.33, its position should be
<0.85,0.5,-5> — slightly to the right of the center of the scene at the same
vertical and Z-axis height as before.

Figures 1 and 2 above were rendered using MegaPOV at two different clock times to
show how the frames of the animation shift as time changes. The figures were
generated using the commands in Listing 2. Note that the options use the plus sign
(+) rather than a minus sign (-) or a forward slash (/). Using - often disables a
given option. Here's what each option means:

• +Ihello.pov sets the input file to hello.pov.

• +W500 +H375 sets the dimensions of the image to 500 pixels wide and
375 pixels high.

• +FN sets the output file format to PNG.

developerWorks® ibm.com/developerWorks

SOA grid design patterns for computer graphics animation
Page 16 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• +K0.33 sets the clock value to 0.33.

• +Ofigure1.png sets the output file to figure1.png.

Listing 2. MegaPOV command-line arguments used to generate the images

megapov.exe +Ihello.pov +W500 +H375 +FN +Ofigure1.png
megapov.exe +Ihello.pov +W500 +H375 +FN +K0.33 +Ofigure2.png

Section 6. Building the grid application

Alchemi makes it easy to develop grid applications by presenting the grid thread
abstraction. Grid threads work similar to regular Microsoft .NET threads, except that
you can schedule them on any Executor machine in the cluster.

The design of this grid application is simple: You simply package the scene file,
decide which frame or part of the scene to render in each thread, then launch the
threads you need. When they're all complete, you gather the results and put together
the final scene or animation.

Create the grid application

You're going to build the grid application in two classes: an application manager
(SceneRenderer), of which there's typically one instance, and the grid thread class
(RenderThread), of which there are many instances. The task of the
SceneRenderer is to connect to the Alchemi Manager, authenticate, launch the
threads, and collect the results. Listing 3 shows a snippet with this boilerplate.

Listing 3. Snippet from SceneRenderer.RenderScene showing the grid setup
code

GApplication GridApp = new GApplication();
GridApp.ApplicationName = "POV-Ray Render Grid Application";
GConnection gc = new GConnection(hostname, port, username, password);
GridApp.Connection = gc;
GridApp.Manifest.Add(new ModuleDependency(typeof(SceneRenderer).Module));
GridApp.ThreadFinish += new GThreadFinish(GridApp_ThreadFinish);
GridApp.ApplicationFinish += new GApplicationFinish(GridApp_ApplicationFinish);

byte[] sceneBytes = File.ReadAllBytes(sceneFileName);
// Create a RenderThread for each frame and dispatch them

ibm.com/developerWorks developerWorks®

SOA grid design patterns for computer graphics animation
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 17 of 27

http://www.ibm.com/legal/copytrade.shtml

for (int i = 0; i <= nFrames; i++)
{

GridApp.Threads.Add(new RenderThread(sceneBytes, i, nFrames,
xResolution, yResolution,
megapovLocation));

}
GridApp.Start();
// Will wait here until application is complete
while (GridApp.Running)
{

System.Threading.Thread.Sleep(2000);
}

The GThreadFinish delegate, shown in Listing 4, extracts the data from the
execution threads. As you can see in Listing 5, the RenderThread worker
packages its results (the actual bits of the image rendered) into a byte[] array. The
GridApp_ThreadFinish delegate must read this array and write those bits out to
files on the disk. It names the output file something like output0001.png by getting
the thread's FrameNumber parameter and setting that number at the end of the file
name.

Listing 4. GridApp_ThreadFinish delegate

void GridApp_ThreadFinish(...)
{

RenderThread rt = (RenderThread)thread;
string filename = String.Format("output{0:D4}.png", rt.FrameNumber);
DirectoryInfo info = new DirectoryInfo(OutputDirectory);
if (!info.Exists)
{
info.Create();

}
File.WriteAllBytes(Path.Combine(OutputDirectory, filename), rt.OutputImageBytes);

}

Build the grid thread workers

The worker thread is also rather easy to implement. When it's created and its
constructor is called, the thread simply copies all the needed configuration
information. When the thread is actually scheduled and run on an Executor node,
the Start() method, shown in Listing 5, is called.

The most difficult part is getting MegaPOV to launch with the right command-line
options and ensuring that it doesn't display a window on the Executors that would
annoy users who have decided to contribute their computers to the grid. One of the
trickier problems is realizing that MegaPOV doesn't understand file paths with
backslashes in them. As a result, you must call
povFileName.Replace("\\","/") before passing the input file to MegaPOV.

developerWorks® ibm.com/developerWorks

SOA grid design patterns for computer graphics animation
Page 18 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The bytes of the POV input file are written to a temporary file so you can pass that
file to MegaPOV. For simplicity, the output file name is chosen to be the input file
name with the extension changed to .png. MegaPOV is called with a somewhat
complex command line, although it ends up being similar to what you saw in Listing
2. Note that you set the clock option (+K) by dividing the frameNumber by the total
number of frames, nFrames. After the process is run, the bytes are packaged into a
byte[] array for processing by the GridApp_ThreadFinish delegate.

Listing 5. RenderThread.Start() method showing the interaction with the
Microsoft .NET process-launching facility

public override void Start()
{

string povFileName = Path.GetTempFileName();
File.WriteAllBytes(povFileName, sceneBytes);
string pngFileName = Path.ChangeExtension(povFileName, ".png");

string megapovPath = Path.Combine(megapovLocation, "megapov.exe");
string arguments = String.Format("-W{0} -H{1} -I\"{2}\" -O\"{3}\" +FN +K{4}",

XResolution, YResolution, povFileName.Replace("\\", "/"),
pngFileName.Replace("\\", "/"),
(double)frameNumber / (double)nFrames);

Process process = new Process();
process.StartInfo.FileName = megapovPath;
process.StartInfo.Arguments = arguments;
process.StartInfo.WorkingDirectory = Path.GetDirectoryName(povFileName);
process.StartInfo.WindowStyle = ProcessWindowStyle.Hidden;
process.StartInfo.UseShellExecute = false;
process.StartInfo.CreateNoWindow = true;
process.StartInfo.RedirectStandardError = false;
process.StartInfo.RedirectStandardOutput = false;
process.Start();
process.WaitForExit();

outputImage = File.ReadAllBytes(pngFileName);
File.Delete(povFileName);
File.Delete(pngFileName);

}

Note: The packaging and unpackaging of files is necessary to enable network
transparency for the grid worker threads. Passing a file path as is — say, by passing
the string C:\temp\input.pov — wouldn't work, because that file might not exist
on the machine on which the worker thread is scheduled. The code makes the
assumption that megapov.exe exists in C:\Program Files\megapov-1.2.1-windows to
simplify coding and because it is reasonable to assume that a program that the
renderer service requires is installed on all machines in the grid.

Section 7. Building the Web service and submitting the

ibm.com/developerWorks developerWorks®

SOA grid design patterns for computer graphics animation
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 19 of 27

http://www.ibm.com/legal/copytrade.shtml

animation scene

Alchemi does not provide a SOAP wrapper for grid applications, so it's necessary to
implement one. This section describes the Web service I created for the scene
animation application described earlier.

Build the SOAP interface

To submit the animation scene to the grid service, you must build a SOAP interface
to the grid service. Doing so requires a bit of ASP.NET coding. The task involves
getting all the parameters from the user and the local configuration in place so the
grid service can run. I chose to put the Alchemi authentication and connection
information in the Web.Config file to minimize the number of parameters the SOAP
interface requires. In production code, it probably makes more sense to manage the
authentication information more rigorously.

To simplify the service, the scene file must reside in the Web server's file system (or
potentially, a network share). It wouldn't be too difficult to add it as a SOAP
parameter — perhaps as a base64-encoded byte array containing the file — but that
would just complicate the sample code. The service lets the client specify the path to
the scene, the number of frames to render, and the resolution of the animation. In
addition, the service directs the SceneRenderer to output to a directory inside the
Web site; as its only result, it returns the URL that lists all the images so that the
client can then download them.

The service can combine the images and encode and compress them into an MPEG
video file, then return this file as a Direct Internet Message Encapsulation (DIME) or
Multipurpose Internet Mail Extensions (MIME) SOAP attachment, but that's beyond
the scope of this tutorial. The bulk of the code representing the service is shown
below.

Listing 6. The SOAP implementation that manages the parameters for the
SceneRenderer

[WebMethod]
public string RenderSceneToFolder(string sceneFilenameOnServer, int numberOfFrames,

int xResolution, int yResolution)
{

SceneRenderer renderer = new SceneRenderer();
Configuration config = WebConfigurationManager.OpenWebConfiguration("~");
string megapovLocation =

config.AppSettings.Settings["renderer.megapov.location"].Value;

developerWorks® ibm.com/developerWorks

SOA grid design patterns for computer graphics animation
Page 20 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

string managerHostname =
config.AppSettings.Settings["renderer.manager.hostname"].Value;

int managerPort = Int32.Parse(
config.AppSettings.Settings["renderer.manager.port"].Value);

string username =
config.AppSettings.Settings["renderer.manager.username"].Value;

string password =
config.AppSettings.Settings["renderer.manager.password"].Value;

string outputDirectoryForImages = Path.Combine(
Context.Server.MapPath(
((WebContext)config.EvaluationContext.HostingContext).ApplicationPath),

"Images");
renderer.RenderScene(sceneFilenameOnServer, numberOfFrames, xResolution,

yResolution, megapovLocation, outputDirectoryForImages,
managerHostname, managerPort, username, password);

string baseUrl = Context.Request.Url.GetLeftPart(UriPartial.Authority);
Uri result = new Uri(new Uri(baseUrl),

((WebContext)config.EvaluationContext.HostingContext).ApplicationPath
+ "/Images");

return result.ToString();
}

Submit the job

After you've deployed this service into an ASP.NET server, submitting a new task is
easy. ASP.NET provides SOAP V1.1, SOAP V1.2, and Representational State
Transfer (REST)-style HTTP POST interfaces for Web methods. As such, all that's
needed to submit the job is to put the scene file on the server, put together some
XML code (as shown in Listing 7), and post it to the service URL with the appropriate
SOAP HTTP headers.

Listing 7. XML input for the service

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope">

<soap:Body>
<RenderSceneToFolder xmlns="http://tempuri.org/">

<sceneFilenameOnServer>C:\temp\hello.pov</sceneFilenameOnServer>
<numberOfFrames>5</numberOfFrames>
<xResolution>800</xResolution>
<yResolution>600</yResolution>

</RenderSceneToFolder>
</soap:Body>

</soap:Envelope>

Section 8. Performance, extensibility, and limitations

ibm.com/developerWorks developerWorks®

SOA grid design patterns for computer graphics animation
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 21 of 27

http://www.ibm.com/legal/copytrade.shtml

The sample animation application is not applicable for all possible scenarios. As a
result, this section briefly describes some of the ways in which you could modify it to
resolve some of those deficiencies.

Strategies for dividing the workload

For this application, rendering 3-D scene animations, I've chosen to use the single
frame as the smallest chunk of work and have one grid thread for each animation
frame. This setup works well because reasonably sized frames of this simple
animation render rather quickly — in a matter of seconds on relatively modern
hardware. More complicated scenes with lots of refraction and translucent materials
or frames rendered at very high resolutions would take much longer to render. In
these cases, you may want to break down the work further, particularly if the scene
being rendered isn't animated.

It is possible to divide the task of rendering a single frame further with POV-Ray,
although doing so would require modifications to the grid application. You can
subdivide the scene into stripes and dedicate separate threads to rendering these
stripes. For example, when rendering a 1600x1200 image, you could render four
stripes of, say, 1600x300 by including additional arguments to the MegaPOV
command line.

Keep in mind that dividing the task too much could hurt overall performance. The
more chunks the more time will be spent on the overhead of communicating
between nodes and scheduling the tasks. It's also a good idea to consider the
number of computing nodes that will be available and to be aware of how they're
configured (dedicated or not). The number of grid threads should probably stay
within a few multiples of the number of nodes; otherwise, the overhead of scheduling
the threads won't be offset by being able to schedule them on more nodes.
However, if the grid is made up of mostly nondedicated nodes that might be in active
use for other tasks, it might be sensible to increase the number of thread to give the
scheduler more choices for distributing the workload.

Extensibility to NVIDIA's Cg Toolkit

NVIDIA makes widely deployed high-performance 3-D graphics adapters. These 3-D
adapters are very powerful, but most of the time, this capacity goes unused. To help
developers take advantage of this extra computing facility and to develop real-time
3D applications, NVIDIA created the Cg Toolkit. Unfortunately, this technology
doesn't quite apply to POV-Ray because it would require that POV-Ray be rewritten
to take advantage of Cg.

developerWorks® ibm.com/developerWorks

SOA grid design patterns for computer graphics animation
Page 22 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Extensibility to other platforms

While the Microsoft .NET Platform is for Windows only, Novell has developed an
open source project called Mono that compiles and runs Microsoft .NET applications
on Mac OS X and various distributions of Linux®. I've read that it's possible to run
Alchemi with Mono, although the sample code here uses Windows-specific paths, so
it wouldn't run on Linux or Mac OS X without changes.

Limitations of the sample code

In the interest of keeping the code simple, I left out a lot of functionality that would be
desirable or even required for serious use. Here are a few things to note:

• Remember that the scene file must reside on the SOAP server before
submission.

• You should work out some policy about authentication and authorization.

• The grid application should more intelligently divide the task to take into
account very complex scenes and nonanimated tasks.

• Consider working out a better mechanism for gathering the rendered
images, converting them into a video — which could be done on the grid
as its own application — then returning them to the client.

• The threads assume that the Executor nodes all have MegaPOV installed
to the same location. More importantly, the grid threads don't check for
error conditions when executing MegaPOV, which could be problematic if
errors do occur.

• Most critically, the client could timeout waiting for a result for
longer-running rendering tasks.

• SOAP over HTTP was never intended to be used with long-running
services, so creating two services — one to initiate the rendering task and
one to obtain the result if the task is complete — could be the way to go.

Section 9. Summary

ibm.com/developerWorks developerWorks®

SOA grid design patterns for computer graphics animation
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 23 of 27

http://www.ibm.com/legal/copytrade.shtml

In this tutorial, you learned about SOA and grid computing, as well as how to use
Alchemi to implement Web services for grid applications. Further, you learned about
the POV-Ray and MegaPOV tools for scene rendering. The sample application uses
Alchemi to distribute the rendering task around a grid of Windows workstations.
Finally, you saw some of the limitations of this solution as well as how you could
extend it to resolve these limitations.

developerWorks® ibm.com/developerWorks

SOA grid design patterns for computer graphics animation
Page 24 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Downloads

Description Name Size Download method

Sample code and POV-ray scene gr-soacg-SampleCode.zip4KB HTTP

Information about download methods

ibm.com/developerWorks developerWorks®

SOA grid design patterns for computer graphics animation
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 25 of 27

http://download.boulder.ibm.com/ibmdl/pub/software/dw/grid/gr-soacg-SampleCode.zip
http://www.ibm.com/developerworks/library/whichmethod.html
http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• "Grid and SOA" defines and describes how grids and SOAs are merging.

• "Build grid applications based on SOA" describes the concepts behind SOA and
how to move grid applications to an SOA model.

• In the developerWorks SOA and Web services zone, get the resources you need
to advance your knowledge and skills with Web services.

• Browse the Alchemi documentation for more tutorials, screenshots, demos, and
presentations.

• Visit the Safari bookstore for books on these and other technical topics.

• Check out the Indiana University Extreme! Computing Lab and its Grid Web
Services projects.

• Study the WS-Resource Framework and related standards and technologies from
the Globus Alliance.

• Learn about NVIDIA's Cg Toolkit.

• Learn more about Novell's open source Mono project.

• Browse all the grid computing content on developerWorks.

• To listen to interesting interviews and discussions for software developers, check
out check out developerWorks podcasts.

• Stay current with developerWorks' Technical events and webcasts.

• Check out upcoming conferences, trade shows, webcasts, and other Events
around the world that are of interest to IBM open source developers.

• Visit the developerWorks Grid computing zone for more information.

Get products and technologies

• Download the Alchemi Manager, Executor, and SDK. This tutorial uses V1.0.5 for
Microsoft .NET 2.0.

• Download the POV-Ray scene renderer. This tutorial uses V3.6.1c for Windows.

• Download MegaPOV, a command-line interface for POV-Ray on Windows. This
tutorial uses V1.2.1 for Windows.

• Download IBM product evaluation versions, and get your hands on application
development tools and middleware products from DB2®, Lotus®, Rational®,

developerWorks® ibm.com/developerWorks

SOA grid design patterns for computer graphics animation
Page 26 of 27 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/edu/gr-dw-gr-soadefarch.html
http://www.ibm.com/developerworks/grid/library/gr-soa/
http://www.ibm.com/developerworks/webservices
http://www.gridbus.org/~alchemi/documentation.html
http://www.ibm.com/developerworks/apps/SendTo?bookstore=safari
http://www.extreme.indiana.edu/
http://www.extreme.indiana.edu/xgws/index.html
http://www.extreme.indiana.edu/xgws/index.html
http://www.globus.org/wsrf/
http://www.globus.org
http://developer.nvidia.com/object/cg_toolkit.html
http://www.mono-project.com/Main_Page
http://www.ibm.com/developerworks/views/grid/libraryview.jsp?
http://www.ibm.com/developerworks/podcast/
http://www.ibm.com/developerworks/offers/techbriefings/
http://www.ibm.com/developerworks/views/opensource/events.jsp
http://www.ibm.com/developerworks/grid
http://sourceforge.net/project/showfiles.php?group_id=66729
http://www.povray.org/download/
http://megapov.inetart.net/download.html
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/legal/copytrade.shtml

Tivoli®, and WebSphere®.

• Innovate your next development project with IBM trial software, available for
download or on DVD.

Discuss

• Check out the Grid computing forum on developerWorks.

• Participate in developerWorks blogs and get involved in the developerWorks
community.

About the author

Michael Head
Michael R. Head has been a doctoral student at Binghamton University since 2004,
where he specializes in grid computing. He has worked as an advisory IT specialist
with IBM and has published several academic articles on GridFTP, XML, and Web
services.

ibm.com/developerWorks developerWorks®

SOA grid design patterns for computer graphics animation
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 27 of 27

http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=531&cat=52
http://www.ibm.com/developerworks/blogs
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this tutorial
	Objectives
	Prerequisites
	System requirements

	Introduction
	The SOA style
	Grid computing
	Computer graphics

	Design patterns for SOA and grid applications
	Embarrassingly parallel
	CPU scavenging
	Grid Web services

	Setting up Alchemi, POV-Ray, MegaPOV, and the sample code
	Install the software
	Launch Alchemi
	Extract and use the sample code

	Using POV-Ray for scene construction and animation
	POV-Ray's rendering model
	Animated scenes
	A sample animated scene
	Sample rendered images

	Building the grid application
	Create the grid application
	Build the grid thread workers

	Building the Web service and submitting the animation scene
	Build the SOAP interface
	Submit the job

	Performance, extensibility, and limitations
	Strategies for dividing the workload
	Extensibility to NVIDIA's Cg Toolkit
	Extensibility to other platforms
	Limitations of the sample code

	Summary
	Downloads
	Resources
	About the author

