ANALYSIS AND OPTIMIZATION FOR PROCESSING
GRID-SCALE XML DATASETS

Michael R. Head
Ph.D. Candidate

Grid Computing Research Laboratory
Department of Computer Science
Binghamton University
nm ke@s. bi nghant on. edu

Tuesday, May 12, 2009

State University of New York

1/59

http://www.binghamton.edu
http://www.cs.binghamton.edu/~mike/dissertation
http://www.cs.binghamton.edu/~mike/dissertation
http://www.cs.binghamton.edu/~mike
http://grid.cs.binghamton.edu
http://www.cs.binghamton.edu
http://www.binghamton.edu
mailto:mike@cs.binghamton.edu

OUTLINE

@ InTRODUCTION AND MOTIVATION
@ XML and SOAP
@ Ubiquity of Multi-processing Capabilities
@ Contributions

© SOAP anD XML BENCHMARKS
@ SOAPBench
@ XMLBench

© ParaLLEL XML
@ Investigating System Cache Effects
@ PixiMAL: Parallel Approach for Processing XML

@ ReLATED WORK

© Concrusions AND FUTURE WORK

State University of New York

2/59

http://www.binghamton.edu

INTRODUCTION AND MOTIVATION

XML AND SOAP
UBIQUITY OF MULTI-PROCESSING CAPABILITIES

IBUTIONS
THESIS STATEMENT

<?xm version="1. 0" encodi ng="UTF-8"?>
<nsl: Mol ecul eType xsd:type="nsl: Mol ecul eType"
xm ns: nsl="http://nbcr.sdsc. edu/ chem stry/types"
xm ns: xsd="htt p: // ww. w3. or g/ 2001/ XM_.Schema" >
<nol ecul eName xsi:type="xsd: string"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance" >

lkzk
</ nmol ecul eNane>
<mol ecul eRadi us xsi :type="xsd: doubl e" xsi:nil="true"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"/ >
<at om xsi : type="ns1: At onTType"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" >

<fiel dName xsi:type="nsl: Fi el dNaneType" >ATOW/ fi el dNane>

</ at o>
<at om xsi :type="ns1l: At oniType"

</ at on»>

</ ns1l: Mol ecul eType>

http://www.binghamton.edu

“TION AND MOT XML AND SOAP
¢

UITY OF MULTI-PRC NG CAPABILITIES
CONTRIBUTIO!
THESIS STAT

OUTLINE

@ InTRODUCTION AND MOTIVATION
@ XML and SOAP

http://www.binghamton.edu

INTRODUCTION AND M XML AND SOAP

U TY OF MULTI-PROCESSING CAPABILITIES
C IBUTION:
THESIS STAT

XML DEFINED

@ Text based (usually UTF-8 encoded)
@ Tree structured
@ Language independent

@ Generdlized data format

http://www.binghamton.edu

‘(ML AND SOAP

UITY OF MULTI-PROCESSING CAPABILITIES

MOTIVATION FROM SOAP

@ Generalized RPC mechanism (supports other models, too)

@ Broad industrial support

@ Web Services on the Grid
o OGSA: Open Grid Services Architecture
@ WSRF: Web Services Resource Framework

@ At bottom, SOAP depends on XML

BINGHAMTON
UNIVERSITY

State University of New York

6/59

http://www.binghamton.edu

INTRODUCTION AND MOTIVATION
XML AND SOAP

UBIQUITY OF MULTI-PROCESSING CAPABILITIES
BUTIONS
THESIS STATEMENT

IMPORTANCE OF HiIGH PERFORMANCE XML PROCESSORS

@ Becoming standard for many scientific datasets
@ HapMap - mapping genes
@ Protein Sequencing
@ NASA astronomical data
@ Many more instances

State University of New York

7/59

http://www.binghamton.edu

XML AND SOAP

UBIQUITY OF MULTI-PROCESSING CAPABILITIES
CONTRIBUTIO

THESIS STATEMENT

ExpPLOSION OF DATA

@ Enormous increase in data from sensors, satellites, experiments,
and simulations™

@ Use of XML to store these data is also on the rise

@ XML is in use in ways it was never redlly infended (GB and large
size files)

http://www.binghamton.edu

XML AND SOAP

UBIQUITY OF MULTI-PROCESSING CAPABILITIES
CONTRIBUTIO

THESIS STATEMENT

BENCHMARK MOTIVATION

@ Scientific applications place a wide range of requirements on the
communication substrate and data formats.

@ Simple and straightforward implementations can have a severe
performance impact.

9/59

http://www.binghamton.edu

ODUCTION £
INTRODUCTION AND M XML AND SOAP

UBIQUITY OF MULTI-PROCESSING CAPABILITIES
CONTRIBUTION:
THESIS STAT

OUTLINE

@ InTRODUCTION AND MOTIVATION

@ Ubiquity of Multi-processing Capabilities

10/59

http://www.binghamton.edu

XML anp SOAP

UBIQUITY OF MULTI-PROCESSING CAPABILITIES
CONTRIBUTIONS

THESIS STATEMENT

PREVALENCE OF PARALLEL MACHINES

@ All new high end and mid range CPUs for desktop- and
laptop-class computers have at least two cores

@ The future of AMD and Intel performance lies in increases in the
number of cores

@ Despite extant SMP machines, many classes of software
applications remain single threaded

@ Mulfi-threaded programming considered **hard’’

11/59

http://www.binghamton.edu

XML anp SOAP

UBIQUITY OF MULTI-PROCESSING CAPABILITIES
CONTRIBUTIO

THESIS STATEMENT

XML AND MULTI-CORE

@ Most string parsing techniques rely on a serial scanning process

@ Challenge: Existing (singly-threaded) XML parsers are already very
efficient Zhang et al 2006)

12/59

http://www.binghamton.edu

XML anp SOAP

¢ UITY OF MULTI-PRC NG CAPABILITIES
CONTRIBUTIONS

THESIS STATEMENT

OUTLINE

@ InTRODUCTION AND MOTIVATION

@ Contributions

13/59

http://www.binghamton.edu

INTRODUCTION AND MOTIVATION .
XML AND SOAP

UBIQUITY OF MULTI-PROCESSING CAPABILITIES
CONTRIBUTIONS
THESIS STATEMENT

CONTRIBUTIONS

@ We present the design and implementation of a comprehensive
benchmark suite for XML and SOAP implementations with
standard mechanisms to quantify, compare, and evaluate the
performance of each toolkit and study the strengths and
weaknesses for a wide range of use case scenarios.

@ We present an analysis of pre-fetching and piped implementation
techniques that aim to offset disk /O costs while processing
large-scale XML datasets on multi-core CPU architectures.

14/59

http://www.binghamton.edu

INTRODUCTION AND MOTIVATION .
XML AND SOAP

UBIQUITY OF MULTI-PROCESSING CAPABILITIES
CONTRIBUTIONS
THESIS STATEMENT

CONTRIBUTIONS CONTINUED

@ We propose techniques to modify the lexical analysis phase for
processing large-scale XML datasets to leverage opportunities for
parallelism. (PIXIMAL)

@ We present an analysis of the scalability that can be achieved
with our proposed parallelization approach as the number of
processing threads and size of XML-data is increased.

@ We present an analysis on the usage of various states in the
processing automaton to provide insights on why the performance
varies for differently shaped input data files.

http://www.binghamton.edu

INTRODUCTION AND MOTIVATION .
XML AND SOAP

UBIQUITY OF MULTI-PROCESSING CAPABILITIES
CONTRIBUTIONS
THESIS STATEMENT

PUBLICATIONS

@ ‘A Benchmark Suite for SOAP-based Communication in Grid Web
Services,”” in The Proceedings of Supercomputing 2005

@ ‘Benchmarking XML Processors for Applications in Grid Web
Services,”” in The Proceedings of Supercomputing 2006

@ “‘Approaching a Parallelized XML Parser Optimized for Multi-Core
Processors,”” in The Proceedings of SOCP 2007, workshop held in
conjunction with HPDC 2007

@ '‘Pardllel Processing of Large-Scale XML-Based Application
Documents on Multi-core Architectures with PiXiMaL,”” in The
Proceedings e-Science 2008

@ '‘Performance Enhancement with Speculative Execution Based
Parallelism for Processing Large-scale XML-based Application
Data,”” to appear in The Proceedings of HPDC 2009

16 /59

http://www.binghamton.edu

XML AND SOAP
MULTI-PROCESS CAPABILITIES
BUTIONS
‘THESIS STATEMENT

THESIS STATEMENT

In this thesis we present a comprehensive benchmark suite that
facilitates the study of the strengths and weaknesses of XML and SOAP
toolkits for a wide range of use case scenarios.

We propose a parallel processing model for some application-based
large-scale XML datasets that can effectively leverage opportunities for
parallelism in emerging multi-core CPU architectures.

http://www.binghamton.edu

SOAP AND XML BENCHMARKS SOAPBENCH

XMLBENCH

OUTLINE

© SOAP anD XML BENCHMARKS
@ SOAPBench

18/59

http://www.binghamton.edu

SOAP AND XML BENCHMARKS SOAPBENCH

XMLBENCH

SOAP BENCHMARK SUITE

@ Defines a set of operations to implement within a SOAP toolkit
@ Tests both serialization and deserialization of a variety of data
structures over a range of input sizes
o Simple types: integers, strings, and floats
@ Baseb4 encoded data
o Complex types: event streams, mesh interface objects

State University of New York

19/59

http://www.binghamton.edu

SOAP AND XML BENCHMARKS SOAPBENCH

XMLBENCH

OUTLINE

© SOAP anD XML BENCHMARKS

@ XMLBench

http://www.binghamton.edu

SOAP AND XML BENCHMARKS SOAPBENCH

XMLBENCH

XML BENCHMARK SUITE

@ A chosen set of XML documents
o Low level probes
e Application-based benchmarks
© A driver application for each XML processor
@ Runs the parser on the input, but does not act on the data

@ Eliminates application-level performance differences
@ One for each interface style (SAX/DOM)

http://www.binghamton.edu

INVESTIGATING SYSTEM CACHE EFF!
LLEL AP ACH FOR
PARALLEL XML NEMO 3ANDWIDTH TEST
ry TEST

OUTLINE

© ParaLLEL XML
@ Investigating System Cache Effects

http://www.binghamton.edu

INVESTIGATING SYSTEM CACHE EFFEC
LLEL APPROACH FOR PROCESSING XML
PARALLEL XML / NDWIDTH TEST
LITY TEST
ESTS

READAHEAD/RUNAHEAD

@ Explore OS level caching effects

@ Offload disk input to another thread/core

@ Improved the performance of an existing high performance parser
by using a separate thread to read the input info cache

23/59

http://www.binghamton.edu

PARALLEL XML

OUTLINE

© ParaLLEL XML

@ PixiMAL: Parallel Approach for Processing XML

24/59

http://www.binghamton.edu

INVESTIGATING SYSTEM CACHE EFFECTS

PARALLEL XML

TOREN-SCANNING WITH A DFA

@ DFA-based table-driven scanning is both popular and fast
e (or at least performance-competitive with other techniques)
@ Input is read sequentially from start o finish

@ Each character is used to fransition over states in a DFA
e Transition may have associated actions

@ Supports languages that are not “‘regular’”

@ Commonly used in high performance XML parsers, such as TDX (C)
and Piccolo (Java)

@ Amenable to SAX parsing
@ PixMAL-DFA uses this approach

http://www.binghamton.edu

TIGATING 'S
PIXIMAL: PARALLEL APPROACH FOR PROCESSING XML
PARALLEL XML MEMORY BANDWIDTH TEST

S

DFA UseD IN PixiMmAL-DFA

whitespace

name char

whitespace
name char

name start

name char

name start

whitespace

whitespace

name char

not '<' or '&’

char data

State University of New York

26/59

http://www.binghamton.edu

PIXIMAL: PARALLEL APPROACH FOR PROCESSING XML
PARALLEL XML MEM WIDTH TEST
LITY TEST
ESTS

PARALLEL SCANNING WITH A DFA?

@ DFA-based scanning == sequential operation

@ Desire: run multiple, concurrent DFAs throughout the input
@ Generdlly not possible because the start state would be unknown

http://www.binghamton.edu

GATING SYSTEM CACHE EFFECTS
ARALLEL APPROACH FOR PROCESSING XML
PARALLEL XML

OVERCOMING SEQUENTIALITY WITH AN NFA

@ Problem: start state is unknown

@ Solution: assume every possible state is a start state

@ Construct an NFA from the DFA used in PixiMAL-DFA
@ Such an NFA can be applied on any substring of the input

@ PixIMAL-NFA is the parser that does all of this:
@ Partition input info segments
@ Run PixMAL-DFA on the initial segment
@ Run NFA-based parsers on subsequent partition elements
e Fix up transitions at partition boundaries and run queued actions

State University of New York

28/59

http://www.binghamton.edu

ATING SYSTEM C
PIXIMAL: PARALLEL APPROACH FOR PROCESSING XML
PARALLEL XML

PixiMAL-NFA’s PARAMETERS

@ split_percent:

e The portion of input to be dedicated to the first element of the
partition, expressed as a percentage of the total input length

@ number_of_threads:
@ The number of threads to use on a run

29/59

http://www.binghamton.edu

TING SYSTEM CACHE EFFECTS

PARALLEL XML

PRELIMINARY RESEARCH QUESTIONS

@ Is there enough memory bandwidth to allow multiple automata to
concurrently feed each thread its input?

@ Processing each character along several paths through the NFA is
costly: how does this work scale with the size of the initial DFA?

o (E-science 2008)

@ Does the overhead of queuing the NFA actions cost an
acceptable amount compared with the cost of DFA-parsing the
first partition element?

o (HPDC 2009)

30/59

http://www.binghamton.edu

SSING XML
PARALLEL XML

MEMORY BANDWIDTH TEST

@ Models the work of partitioning the input the way PXIMAL-NFA does
o File 1/O is via mmap(2)
@ A thread is created for each partition element which accumulates
each character
@ A variety of split_percents and number_of_thread are chosen

o Total time to read a large input a fixed number of times is measured
o Input file is SW sSPr ot . xml , which is 109 MB in size

State University of New York

31/59

http://www.binghamton.edu

PARALLEL XML

MEMORY BANDWIDTH TEST — EXPERIMENTAL SETUP

@ Run several machines, each from a homogeneous class running
64-bit versions of Linux

@ 2X UNi processor : 3.2 Ghz Intel Xeon (uniprocessor), 4 GB
RAM, Linux kernel 2.6.15, GNU Lib C 2.3.6, GCC 4.0.3

o 2x dual cor e: 266 GhzIntel Xeon 5150 (dual core) CPUs, 8
GB RAM, Linux kernel 2.6.18, GNU Lib C 2.3.6, GCC 4.1.2

e 2x quad cor e: 2.33 Ghz Intel Xeon E5354 (quad-core) CPUs, 8
GB RAM, Linux kernel 2.6.18, GNU Lib C 2.3.6, GCC 4.1.2

@ 4 nodes used from the 2x UP cluster, 10 from each of the other
two

@ Results for each class are averaged across all runs

32/59

http://www.binghamton.edu

PARALLEL XML

Te}
™ 7| 0.
cores (split %) s
---- 2(52%)
8 - 4(28%) S
- 8(12%) .0
0| o,
o o~ ‘
p=} o
© ’
[} /
[} , o o o
Q ’
n o o °
N
c ;.;,51/»—_/»O\\‘\\;
0 7 ERREEEI
. °
- T T T T T T 1
2 3 4 5 6 7 8

Number of threads

http://www.binghamton.edu

PARALLEL XML MEMORY BANDWIDTH TEST
LITY TEST
ESTS

ConcLusioNs FRoM MEMORY BANDWIDTH TESTS

@ Even when doing very little per-character processing,
performance gains possible by adding threads

@ Returns do diminish rapidly

@ More cores lead to smoother results

SSING XML

http://www.binghamton.edu

PARALLEL XML
STATE SCALABILITY TEST
SERIAL NFA TESTS

STATE SCALABILITY TEST

@ Models the additional work done by the NFA threads by following
multiple execution paths through the table

@ Each NFA thread now must remember the state and calculate the
next state for each character and for each start state

@ The DFA need only remember and calculate one state per input
character
@ Does not model the memory used, actions stored, or garbage
state elimination

@ Goal: to find a balance point for DFA size

e + increased complexity of the recognized language
@ — more work for the NFA to do, more space required for table

http://www.binghamton.edu

Speedup

3.0

25

2.0

15

1.0

0.5

PARALLEL XML

BANDWIDTH TEST
STATE SCALABILITY TEST
SERIAL NFA TESTS

—| |DFA state size (w/split %)

2 states, 28 %
4 states, 32 %
6 states, 36 %
8 states, 56 %
10 states, 60 %
12 states, 64 %

3.0 35

Number of Threads

4.0

36/59

http://www.binghamton.edu

NDWIDTH TEST
STATE SCALABILITY TEST

PARALLEL XML

SERIAL NFA TESTS

2X QC - BEST SPEEDUP FOR DFA SizEs

Speedup

| |DFA state size (w/split %)
---- 2 states, 12 % _.-°
4 states, 16 % LT e
N -~ 6 states, 20 % e
8 states, 36 % e
''''' 10 states, 40% | o~ R
12 states, 40% |~
T T T T T T
2 3 4 5 6 7

Number of Threads

http://www.binghamton.edu

SSING XML
PARALLEL XML MEM¢ / DT!
STATE SCALABILITY TEST
SERIAL NFA TESTS

CoONCLUSIONS FROM STATE SCALABILITY TEST

@ The extra work of pushing characters through the multiple
execution paths of the NFA is not in ifself a limiting factor

@ There is a ‘‘sweet spot’’ for DFA size: around 6-7 states which allows
for the greatest language complexity and the best scalability

@ This is a crossover point where the O(N) extra NFA work overcomes
the the O(1) work of simply reading the input

http://www.binghamton.edu

PixiMa
PARALLEL XML MEMOR
STATE
SERIAL NFA TEST:!

SERIAL NFA TESTS

@ Test hypothesis: the exira work required by using an NFA is offset
by dividing processing work across multiple threads

@ Run each automaton-parser sequentially and independently

@ Divide the work as usual, with a range of split_percents and
number_of_threads

@ Time each component independently

@ Completely parses the input, generating the correct sequence of
SAX events

@ The maximum time for all components to complete (plus fix up
time) represents an upper bound on the time PixiMAL-NFA would
take with components running concurrently

39/59

http://www.binghamton.edu

PARALLEL XML
STAT LABILITY TEST

SERIAL NFA TESTS

DIFFERENCES FROM PRrREVIOUS TESTS

@ Entirely sequential (ho concurrency)

@ Full XML parsing takes place
@ Input file is different
@ “‘Interop’’ test from SOAPBench and XMLBench
o SOAP-encoded arrays of various data types: integers, strings, and
MIOs
o Array size is scaled between 10 and 50,000 elements for each type

State University of New York

40/59

http://www.binghamton.edu

PARALLEL XML

o0
N
-¥-- Max Speedup
o _| [--- Mean Speedup .V
a O —A— Min Speedup R it A
S -
TR = 7
8_ - _/V’ v
n -
= v
= o
5 <]
s ___________ -
g -
0 _| mmm = -
S -
——A——A
A —— B —— A
o & ——2""
© | | | | | | |
2 3 4 5 6 7 8

Thread Count

41/59

http://www.binghamton.edu

SING XML
PARALLEL XML

SERIAL NFA TEesTs

Split_Percent CRITICAL FOR SPEEDUP FOR 10,000 INTEGERS

n
el
o | -¥-- Max Speedup
™ -=-- Mean Speedup
o v | —A— Min Speedup
> N
2
[} o | v
o o g o XY
g 24 AN
g - AT SU IR A Y
s o _ Wy l'\l'|l R
o - % l|/‘7' " -' \17‘7 v/\/
S vvv"‘” AAQLM :
_ v, /7~ 4%g& A§
o | AAAAA% MA A
© T T T T
0 20 40 60 80

State University of New York

Split Percent

42/59

http://www.binghamton.edu

Potential Speedup

15 20 25

1.0

0.5

0.0

PARALLEL XML

3
STA ALA]

SERIAL NFA TESTS

INCONSISTENT SPEEDUP OVER A RANGE OF ARRAY LENGTHS

n‘./- N ~ N

1V = N~ .- / \‘ ~\

! \ ’/‘\ / _ S N/ \

\/

-—-- Max Speedup
-—-- Mean Speedup
— — Min Speedup

o N R

W __ e

T T T T T

0 10000 20000 30000 40000

Array Size

http://www.binghamton.edu

PIXIMAL
PARALLEL XML MEMORY BANDWIDTH TEST
STATE Sc 3ILITY TEST

SERIAL NFA TESTS

CHARACTERS IN 10,000 INTEGERS IN A RANGE OF STATES

60000
|

40000
|

Frequency

0 20000
| | |

|

[]
[]

|

|

|

|

DFA State

44/59

http://www.binghamton.edu

PARALLEL XML

ConcLusioNSs FrRoM INTEGER RESULTS

Speedup is possible in this case

Choice of split point is critical for achieving any speedup at all

Characters in content sections account for roughly 60% of the
input characters

Input is 117 KB in length

Consists mainly of
.. <i >1234</i ><j >1235</ i ><j >1236</i>. ..

http://www.binghamton.edu

Potential Speedup

o
™
<
o
0
N
o
o
0
—
o
—
1o
o
<
o

PARALLEL XML

SERIAL NFA TESTS

SPEEDUP IMPROVES WITH Thread_Count FOR 10,000 STRINGS

-¥-- Max Speedup

-=-- Mean Speedup //v
—— Min Speedup .
-
_/V”
-
/-/V/- - - - - - - B)
v e T B
P A
A
A=A
A——B
| | | | | | |
2 3 4 5 6 7 8

Thread Count

46/59

http://www.binghamton.edu

PARALLEL XML

SERIAL NFA TEesTs

Split_Percent LESS CRITICAL FOR 10,000 STRINGS

Potential Speedup

00 05 10 15 20 25 30 35

S

Max Speedup
Mean Speedup
Min Speedup

Split Percent

80

UNIVERSITY

State University of New York

47759

http://www.binghamton.edu

Potential Speedup

00 05 10 15 20 25 3.0 35

PARALLEL XML

Max Speedup
Mean Speedup
Min Speedup

0 10000

20000 30000

Array Size

40000 50000 prerey

State University of New York

48/59

http://www.binghamton.edu

PARALLEL XML

o
o
o
O p—
o
~
—
o
> O
o o
[o T
% o
2 ©
q_) p—
bt
LL o
o
o _
o
o
<
[R N [— R e

o 1 2 3 4 5 6 7 8

DFA State

49/59

http://www.binghamton.edu

SSING XML
PARALLEL XML

CONCLUSIONS FROM STRING RESULTS

This sort of input is much more amenable to this approach
@ In maximum potential speedup achieved
@ In number of cases where speedup is > 1

@ Split point is much less important here

@ Characters in content sections account for roughly 99% of the
input characters

@ Inputis 1.4 MB in size (though similar results are seen in inputs that
are 117 KB)

@ Consists mainly of . . . <i >String content for the array
el enent nunber 0. This is long to test the
hypot hesi s that | onger content sections are better
for the NFA </i>. ..

State University of New York

50/59

http://www.binghamton.edu

SSING XML
PARALLEL XML

CONCLUSIONS FROM SERIAL NFA TEST

@ Shape of the input strongly determines the efficacy of the PixiMAL
approach

o MIO has similar state usage and mix of content and tags as the
integer and PIXIMAL has a similar performance profile there

@ PixiMAL works well on inputs with longer content sections
punctuated by short tags

@ Starting in a content section helps because the ‘<’ character
eliminates a large number of execution paths through the NFA

e If >’ could be treated similarly by the parser, starting in a tag
would be less harmful

State University of New York

51/59

http://www.binghamton.edu

PARALLEL XML
ITY TEST

SERIAL NFA TEST:!

PXML: A BETTER LANGUAGE FOR PIXIMAL

Goal: Improve PIXIMAL performance
@ Reduce DFA size

@ Increase the number of paths that lead to contradictions

Restrict XML (as supported in PiXIMAL) in the following ways:
@ Disallow attributes: Transform info nested elements

o Disallow whitespace in tags: Without attributes, these are
completely unnecessary

@ Disallow ‘>’ in content sections: Unnecessary in any case

@ Ignore distinction between characters that start a name and the
rest

52/59

http://www.binghamton.edu

PARALLEL / ORY OWIDTH TEST
TesT

DFA For PixiMAL-PXML

name character

< /_\ name character
0 >

Whitespace

name character

character data

http://www.binghamton.edu

RELATED WORK
RELATED WORK

RELATED WORK IN HIGH PERFORMANCE XML PROCESSING

Look-aside buffers/String caching (gsoap. XPP)

Trie data structure with schema-specific parser (Chiu et al 02, Engelen
04)

@ One pass table-driven recursive descent parser (Zzhang et al 2006)

Pre-scan and schedule parser (Lu et al 2006)

Parallelized scanner, scheduled post-parser (Pan et al 2007)

54/59

http://www.binghamton.edu

FinaL ConcLusioNs

CoNCLUSIONS AND FUTURE WORK

CONCLUSIONS

@ Existing XML and SOAP toolkits make limited use of multiple cores
@ Scientific applications strain existing XML infrastructure

@ Pre-caching mechanisms can improve performance of existing
parsers

@ A parallel parsing approach is necessary to achieve increased
parser performance as document sizes grow

@ 5-6 states is a good size for a PixmMAL DFA
@ Restricting XML slightly should provide better performance at a low
semantic cost

@ PiximMAL’s applicability is dependent on the characteristics of the
input file

55/59

http://www.binghamton.edu

FinaL ConcLusioNs

CoNCLUSIONS AND FUTURE WORK

LIMITATIONS

@ PThread overhead during concurrent runs
@ Restrictions on XML format
o Namespaces
CDATA
Unicode
Processing Instructions
Validation

® 6 6 o

@ Optimal splitting algorithm unknown

56/59

http://www.binghamton.edu

FinaL ConcLusioNs

CoNCLUSIONS AND FUTURE WORK

SUMMARY

@ InTRODUCTION AND MOTIVATION
@ XML and SOAP
@ Ubiquity of Multi-processing Capabilities
@ Contributions

© SOAP anD XML BENCHMARKS
@ SOAPBench
@ XMLBench

© ParaLLEL XML
@ Investigating System Cache Effects
@ PixiMAL: Parallel Approach for Processing XML

@ ReLATED WORK

© Concrusions AND FUTURE WORK BRREAOE

State University of New York

BIN GHAMTON

57/59

http://www.binghamton.edu

FinaL ConcLusioNs

CoNCLUSIONS AND FUTURE WORK

Thank you for your time.

http://www.binghamton.edu

FinaL ConcLusioNs

CoNCLUSIONS AND FUTURE WORK

Questions?

59/59

http://www.binghamton.edu

ON OF P 0SED WORK
ODITIONAL SLIDES
APPENDIX X
PARALL ML
COMPARISON WITH EXPAT AND TCMALLOC

EXTRA SLIDES

The following slides are additional and not part of the presentation. J

60/59

http://www.binghamton.edu

APPENDIX B
RALLEL XML
RISON WITH EXPAT AND TCMALLOC

PROPOSED WORK

RE-RUN BENCHMARKS, NORMALIZE ANALYSIS AND PLOTTING

SOAPBench and XMLBench results should be re-run. Plots should be
rebuilt to match the rest of the figures.
@ XMLBench is available for researchers to download and use

@ SOAPBench is available, but cannot support all the tested SOAP
toolkits due to their proprietary nature

ANALYZE A BROADER RANGE OF DATA FROM THE SERIAL NFA TEST

The serial NFA tests show a small portion of the data collected in that
test. There is a wealth of information to uncover about the efficacy of
this approach in the data.

@ Data and analysis is available in our repository and will be posted
fo a web site shortly e

61/59

http://www.binghamton.edu

DiscussioN oF PROPOSED WORK
OTHER ADDITIONAL SLIDES
APPENDIX

WITH EXPAT AND TCMALLOC

PROPOSED WORK CONTINUED

INVESTIGATE MEMORY ALLOCATION ISSUES

Heap contention is a well known problem for applications with
concurrent memory allocations. We plan to investigate the effect of a
variety of allocators on PxIMAL. During PIXIMAL development, we
encountered some issues involving the the performance of malloc once
a thread (even a thread with an empty start_routine) was created. We
plan fo investigate and report on this in detail.

@ Have initial results (HPDC 2009), potential for broader investigation
remains

http://www.binghamton.edu

DiscussioN oF PROPOSED WORK
OTHER ADDITIONAL SLIDES
APPENDIX H
XML
RISON WITH EXPAT AND TCMALLOC

PROPOSED WORK CONTINUED

DEFINE CHARACTERISTICS OF A RESTRICTED SUBSET OF XML
DOCUMENTS: “PXML”

Based on the above results, we can design a language which works
best with PXIMAL-NFA. Potential targets include eliminating >’ from
contfent sections, removing CDATA sections, disallowing extra
whitespace in tags, and perhaps eliminating attributes altogether.

@ Briefly described in Chapter 5, Section 4 of the thesis document

@ A formal grammar was not considered necessary for the scope of
the thesis

BINGHAMTON
UN RS1TY

of New York

http://www.binghamton.edu

“USSION OF PROPOSED WORK
OTHER ADDITIONAL SLIDES
APPENDIX

COMPARISON WITH EXPAT AND TCMALLOC

OVERCOMING SEQUENTIALITY WITH AN NFA

@ Problem: start state is unknown

@ Solution: assume every possible state is a start state
@ Construct an NFA from the DFA used in PXIMAL-DFA
@ Mark every state as a start state
© Remove dll the garbage state and all transitions to it
@ Create an queue for each start state to store actions that should be
performed

@ Such an NFA can be applied on any substring of the input

@ PixIMAL-NFA is the parser that does all of this:
e Partition input into segments
@ Run PixiMAL-DFA on the initial segment
@ Run NFA-based parsers on subsequent partition elements
e Fix up transitions at partition boundaries and run queued actions

64759

http://www.binghamton.edu

SION OF PROPOSED WORK
DITIONAL SLIDES
APPENDIX

COMPARISON WITH EXPAT AND TCMALLOC

PixiMAL-DFA IMPLEMENTATION DETAILS

o mmap(2) sinput file to save memory
@ Uses {length, pointer} string representation
o Strings (for tagnames, attribute values) point into the mapped
memory
o All the way through the SAX-style event interface
@ DFA is encoded as two tables
o Table of “'next’” state numbers indexed by state number and input
character

o Table of boolean **action required’’ indicators indexed by
“current’’ state and “"next’’ state

@ Action required == a function is called to decode and execute
the required action

o DFA table is generated at compile time using a separate gener
INGH.
program u

AMTON

http://www.binghamton.edu

Relative Speedup

0.70

0.65

0.60

0.55

>0SED WORK
OTHER ADDITIONAL SLIDES

APPENDIX XMLBENCH

PARALLEL XML
COMPARISON WITF T AND TCMALLOC

Speedup for the Readahead Parser Relative to Architecture

Run Number
(Input Resides in Filesystem Cache)

66/59

http://www.binghamton.edu

DIScUSSION OF PROPOSED WORK
OTHER ADDITIONAL €
APPENDIX XMLBENCH

12) 19.099:4\%1
COMPARISON WITE PAT AND TCMALLOC

Speedup for the Runahead Parser Relative to Architecture

1.04

1.02

Relative Speedup

0.98

0.96

0 10 20 30 40 50

Run Number
(Input Resides in Filesystem Cache)

http://www.binghamton.edu

SSION OF PROPOSED WORK
OTHER ADDITIONAL SLIDES
APPENDIX XMLBENCH

PARALLEL XML
COMPARISON WITH EXPAT AND TCMALLOC

Speedup for the CMP Architecture Relative to Parser Type

1.1

—— Runahead
—4— Readahead

1.0

Relative Speedup
0.9
|

0.7

Run Number
(Input Flushed from Filesystem Cache)

68/59

http://www.binghamton.edu

OTHER ADDITIONAL SLIDES
APPENDIX XMLBENCH
PARALLEL XML
COMPARISON WITH EXPAT AND TCMALLOC

BENCHMARK PROBES

@ Overhead test
@ Minimal XML document

@ (header plus one self-closing element)

Buffering
o Repeated use of xsi:type attributes

Namespace management
@ Gratuitous use of xmins attributes
SOAP payloads
@ “Interop’’ test: arrays of integer, string, double, MIO, event objects

69/59

http://www.binghamton.edu

APPENDIX "H
PARALLEL XML
COMPARISON WITH EXPAT AND TCMALLOC

BENCHMARKS FOR SELECTED APPLICATIONS

Ptolemy Workflow documents (which Kepler uses)
Genetic data files

o (Large) files from the International HapMap Project

Molecular data

Mesh interface objects, event streams (WSMG)

WS-Security documents

70/59

http://www.binghamton.edu

SED WORK

OTHER ADDITIONAL SLIDES
APPENDIX XMLBENCH
12) 19.099:4\%1
COMPARISON WITH EXPAT AND TCMALLOC

OVERHEAD OF EACH PARSER

All Parsers, Overhead Test

% 8 T T T T T T T
E
o <
< N
2 6r : —
o N
N 5 N -
= N
g N
3 4Ar N T
Yy NN
e 3r NN T
= < z z
q) — ~ ~ ~ —
A N NN
= SHE NS
0 i I ~ ﬂ ~ ;: é =
- Q. =
€ § E % §E & 2 3 & 5 & 8 Q
Qo S =] S 2=
< 32 o 5 ® 8 S 1. T 7 a
3 2 T o r o g3 J] o I X
(o)} | [V o = Q < (&) | — |
N = | o 5 I %) | [}
= E £ o o o 9 Q@
e =< =] c 5] o 0] o
3 2 E 2 °S 3 £ g
2 = 9}
= g x £ X
Parser

71/59

http://www.binghamton.edu

APPENDIX

PARALLEL XML
COMPARISON WITH EXPAT AND TCMALLOC

PERFORMANCE OF C AND C++-BASED PARSERS

C/C++ Parsers, Application—level Inputs

o 12,000 T \ \ \ T \
£ [Z] hapmap_1797SNPs.xml M
« 10,000 L] molecule_1kzk.pretty.xml _
5] workflow_Atype.xml
8 8,000 N workflow_PIW.xml |
g
3 6,000 _ .
© N N
£ 4000F : N
) N N
1) N N
: 2’000A7 (T*IAKﬁ \ \ |
: sIE : :
0 = = = o
© = x <
=3 S S B S P
3 (%) ° | | (&)
o { N (&) I
o = | %)
[S IS [%] [}
< o} o
3 =2 o S BINGHAMTON
= Q %3 U N ERSITY
x State University of New York
Parser

72/59

http://www.binghamton.edu

OTHER ADDITIONAL SLIDES
APPENDIX XMLBENCH
PARALLEL XML
COMPARISON WITH EXPAT AND TCMALLOC

C PARSER PERFORMANCE OVER SOAP PAYLOADS

Parsing Performance for SOAP Payloads of int Arrays

6000 ; : 1 T T T T T
& lexpat —
£ 5000 [-9s0ap |
s !me:%dom e
5 ibxml2-sax 5
2 4000 ol)
N xerces-c-dom
S 3000 ixerces-c-sax e 1
(0]
.E 2000 | y
= :
% 1000 o |
oot S
0 das- 1 |)
o o o o o o . S
g 8 8 8 8 8 8
S & 8 § 8 8 ¢

Number of Elementsin the Array

http://www.binghamton.edu

APPENDIX

N OF PROPOSED WORK

XMLBENCH
PARALLEL XML
COMPARISON WITH EXPAT AND TCMALLOC

PERFORMANCE OF JAVA-BASED PARSERS

Parse time over 20 runs (ms)

9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000

1,000

Java Parsers, Application-level Inputs

Trrrrrre

rrrere

s,

treererer

T
hapmap_1797SNPs.xml _|
molecule_1kzk.pretty.xml
workflow_Atype.xml
workflow_PIW.xml

IO |

piccolo

xerces—j-do

Xpp3

xerces—j—sax

Parser

http://www.binghamton.edu

OTHER ADDITIONAL SLIDES
APPENDIX XMLBENCH
PARALLEL XML
COMPARISON WITH EXPAT AND TCMALLOC

XMLBENCH CONCLUSIONS

@ Low overhead — gSOAP and Expat, XPP3
@ gSOAP performs well with namespaces due to look-aside buffers

@ Piccolo and XPP3 have comparable performance in Java

http://www.binghamton.edu

APPENDIX

2X UP OVERALL RESULTS

State University of New York

76/59

http://www.binghamton.edu

APPENDIX

2X DC OVERALL RESULTS

State University of New Yark

77/59

http://www.binghamton.edu

APPENDIX

2X QC OVERALL RESULTS

State University of New Yark

78759

http://www.binghamton.edu

Speedup

2.4

2.2

2.0

1.8

1.6

1.4

APPENDIX

OF SED WORK
DDITIONAL SLIDES
XMLBENCH
PARALLEL XML

COMPARISON WITH EXPAT AND TCMALLOC

2X DC SpEeDUP FOR BEST split_percents

Split Percent
1] - 52% .
36 % B
-- 28% .
T T T T T
2.0 25 3.0 35 4.0

Number of threads

79/59

http://www.binghamton.edu

> WORK
S
APPENDIX

PARALLEL XML
COMPARISON WITH EXPAT AND TCMALLOC

2X QC SpeeDUP FOR BEST split_percents

Split Percent .
- 52% Tee
36 % / °
S] - 24%
20% e
————— 2% e
6% °
w | 4% | 7
~N . s
(=8 . o
p=] . ;
o ’
[o , /
) , /
% b ° o o
" o v ° °
N iy
’ v
" B i R T G .
o
O'/,/
o |
S
T T T T T T T
2 3 4 5 6 7 8

Number of threads

80/59

http://www.binghamton.edu

)F PROPOSED WORK
TONAL SLIDES
APPENDIX

COMPARISON WITH EXPAT AND TCMALLOC

CoNcLUSsIONS FrRoM SPEEDUP CROSS SECTIONS

@ Redaffirmation that speedup is possible
@ Returns diminish for these machines at around 6 threads

@ Overdll, access to main memory is not an immediate bottleneck

@ Putting the results from the best split_percents for each
architecture...

81/59

http://www.binghamton.edu

APPENDIX
PARALLEL XML

2X UP OVERALL RAw RESULTS

State University of New York

82/59

http://www.binghamton.edu

DIscUSSION OF PROPO:!
OTHER ADDITIONAL S|
APPENDIX XM
PARALLEL XML
WITH EXPAT

2xX DC OVERALL RESULTS - BEST TIMES

State University of New York

83/59

http://www.binghamton.edu

APPENDIX

WITH EXPAT AND TCMALLOC

2X QC OVERALL RESULTS - BEST TIMES

State University of New Yark

84/59

http://www.binghamton.edu

N OF PROPOSED WORK
JITIONAL SLIDES
APPENDIX

COMPARISON WITH EXPAT AND TCMALLOC

CONCLUSIONS FROM STATE SCALABILITY OVERALL RESULTS

@ Two major conclusions:

o The speedup on the 2X quad-core machines appears stable as the
number of threads increases
o There is a significant steepening when the DFA has 6-7 states
@ Performance reaches its max when the number of threads match
the number of processing cores available

e Each new thread adds substantial extra work compared with the
memory bandwidth test

@ Plotting speedup for certain split_percents

State University of New York

85/59

http://www.binghamton.edu

APPENDIX XMLBENCH
PARALLEL XML
COMPARISON WITH EXPAT AND TCMALLOC

XML PERFORMANCE LIMITATIONS

@ Compared to “‘legacy’’ formats
o Text-based

@ Lacks any “‘*header blocks’’ (ex. TCP headers), so must scan every
character to tokenize
@ Numeric types take more space and conversion time

@ Lacks indexing

@ Unable to quickly skip over fixed-length records

86/59

http://www.binghamton.edu

OF OPOSED WORK
JITIONAL SLIDES
APPENDIX X H
PARALLEL XML
COMPARISON WITH EXPAT AND TCMALLOC

LimitAaTIONS OF XML

@ Poor CPU and space efficiency when processing scientific data
with mostly numeric data (Chiu et al 2002)

@ Features such as nested namespace shortcuts don’t scale well
with deep hierarchies

e May be found in documents aggregating and nesting data from
disparate sources
@ Character stream oriented (not record oriented): initial parse
inherently serial

@ Still ultimately useful for sharing data divorced of its application

BINGHAMTON
UNIVERSITY

http://www.binghamton.edu

APPENDIX

COMPARISON WITH EXPAT AND TCMALLOC

READING AHEAD

@ Infroduce two parsers which extend the existing, high performance
Piccolo parser (Head et al 2006)
@ Runahead: opens two file descriptors for the input file

@ Start a thread that repeatedly calls r ead() on one of the file
descriptors

@ Pass the other file descriptor to the existing Piccolo parser in the
main thread

o Readahead: opens one file descriptor for the input file, and one
pipe

@ Start a thread that reads from the file descriptor and writes to the
pipe

@ Pass the pipe to the existing Piccolo parser in the main thread

88/59

http://www.binghamton.edu

OF OPOSED WORK
JITIONAL SLIDES
APPENDIX X H
PARALLEL XML
COMPARISON WITH EXPAT AND TCMALLOC

TEST RUN

@ Run each parser (Piccolo, Runahead, and Readahead) on a
large (GB-scale) XML file

e Specifically, a protein sequence database file, psd7003. xm
@ No user code is run for any SAX event -- just the parser itself is fested

@ File cache is cleared between each run running a separate
process that reads multiple gigabyte files

@ Each test is run 50 times for each parser

@ Hotspot is warmed by running the parser on another input file with
identical content before timing begins

BINGHAMTON
UNIVERSITY

State University of New York

89/59

http://www.binghamton.edu

N OF PROPOSED WORK
JITIONAL SLIDES

APPENDIX

COMPARISON WITH EXPAT AND TCMALLOC

Two ENVIRONMENTAL CONDITIONS TESTED

@ Architectures
@ UP: Classic Uniprocessor P4-based machine (Dell workstation)
@ SMP: Classic Symmetrical MultiProcessing P4-based machine (has

server-class /O system) (IBM e-server)
° : Modern Chip MultiProcessing Core 2 Duo-based machine

(Dell workstation)

@ System conditions
@ Cached: The input file is read (hence loaded info the system file

cache) before timing begins
@ Uncached: The input file is not read before timing begins (and
flushed between each run)

State University of New York

90/59

http://www.binghamton.edu

ADDITIONAL SLIDES
APPENDIX XMLBENCH
PARALLEL XML
COMPARISON WITH EXPAT AND TCMALLOC

DATA ANALYSIS

@ Speedup for both of the proposed parsers is computed to
compare across architectures

@ Baseline value is computing by averaging the times for each run of
the unmodified Piccolo parser

@ Speedup for each run is computed by dividing the baseline by the
time at each test point

91/59

http://www.binghamton.edu

Relative Speedup

14

1.2

1.0

0.8

0.6

APPENDIX

PARALLEL XML
COMPARISON WITE T AND TCMALLOC

Speedup for the Runahead Parser Relative to Architecture

T T T T T T
0 10 20 30 40 50

Run Number
(Input Flushed from Filesystem Cache)

92/59

http://www.binghamton.edu

APPENDIX XMLBENCH
PARALLEL XML
COMPARISON WITH EXPAT AND TCMALLOC

READAHEAD CONCLUSIONS

@ On systems with available memory and an available processing
core with fresh inputs, this approach can provide some
performance wins.

http://www.binghamton.edu

SED WORK
ADDITIONAL SLIDES
APPENDIX

H
PARALLEL XML

COMPARISON WITH EXPAT AND TCMALLOC

COMPARISON WITH EXPAT

Input file Expat | Piximal-dfa | Piximal-nfa
psd- 7003 || 15. 51 17. 47 14. 18

TABLE: Parse fime, in seconds per parse, of high performance parsers

94 /59

http://www.binghamton.edu

SED WORK
ADDITIONAL SLIDES
APPENDIX

H
PARALLEL XML

COMPARISON WITH EXPAT AND TCMALLOC

CoMPARISON BETWEEN GLIBC AND TCMALLOC

—
pe g
Selected allocator
& 4 -%7-- GNU libc 2.7 malloc
;N\ —A— Google TCMalloc
Q 7 \\ ’V\
— / P
e © / \ e \

E N T / \ __v/ N
= V—-—-= V-~ A v
NI AN

/‘\\ // .
Q // \ / \
/ \ / \\
/ \ ___A/
b J4Aa——a A A
I T T T T T T
2 3 4 5 6 7 8

Number of threads

http://www.binghamton.edu

	Introduction and Motivation
	XML and SOAP
	Ubiquity of Multi-processing Capabilities
	Contributions
	

	SOAP and XML Benchmarks
	SOAPBench
	XMLBench

	Parallel XML
	Investigating System Cache Effects
	Piximal: Parallel Approach for Processing XML
	
	
	

	Related Work
	

	Conclusions and Future Work
	

	Appendix
	Appendix
	
	
	
	
	

