
Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Analysis and Optimization for Processing
Grid-Scale XML Datasets

Michael R. Head
Ph.D. Candidate

Grid Computing Research Laboratory

Department of Computer Science

Binghamton University

mike@cs.binghamton.edu

Tuesday, May 12, 2009

1 / 59

http://www.binghamton.edu
http://www.cs.binghamton.edu/~mike/dissertation
http://www.cs.binghamton.edu/~mike/dissertation
http://www.cs.binghamton.edu/~mike
http://grid.cs.binghamton.edu
http://www.cs.binghamton.edu
http://www.binghamton.edu
mailto:mike@cs.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Outline

1 Introduction and Motivation
XML and SOAP

Ubiquity of Multi-processing Capabilities

Contributions

2 SOAP and XML Benchmarks
SOAPBench

XMLBench

3 Parallel XML
Investigating System Cache Effects

Piximal: Parallel Approach for Processing XML

4 Related Work

5 Conclusions and Future Work

2 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions
Thesis statement

<?xml version="1.0" encoding="UTF-8"?>

<ns1:MoleculeType xsd:type="ns1:MoleculeType"

xmlns:ns1="http://nbcr.sdsc.edu/chemistry/types"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<moleculeName xsi:type="xsd:string"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

1kzk

</moleculeName>

<moleculeRadius xsi:type="xsd:double" xsi:nil="true"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

<atom xsi:type="ns1:AtomType"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<fieldName xsi:type="ns1:FieldNameType">ATOM</fieldName>

...
</atom>

<atom xsi:type="ns1:AtomType"

...
</atom>

...
</ns1:MoleculeType>

3 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions
Thesis statement

Outline

1 Introduction and Motivation
XML and SOAP

Ubiquity of Multi-processing Capabilities

Contributions

2 SOAP and XML Benchmarks
SOAPBench

XMLBench

3 Parallel XML
Investigating System Cache Effects

Piximal: Parallel Approach for Processing XML

4 Related Work

5 Conclusions and Future Work

4 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions
Thesis statement

XML Defined

Text based (usually UTF-8 encoded)

Tree structured

Language independent

Generalized data format

5 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions
Thesis statement

Motivation from SOAP

Generalized RPC mechanism (supports other models, too)

Broad industrial support

Web Services on the Grid

OGSA: Open Grid Services Architecture

WSRF: Web Services Resource Framework

At bottom, SOAP depends on XML

6 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions
Thesis statement

Importance of High Performance XML Processors

Becoming standard for many scientific datasets

HapMap - mapping genes

Protein Sequencing

NASA astronomical data

Many more instances

7 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions
Thesis statement

Explosion of Data

Enormous increase in data from sensors, satellites, experiments,

and simulations∗

Use of XML to store these data is also on the rise

XML is in use in ways it was never really intended (GB and large

size files)

8 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions
Thesis statement

Benchmark Motivation

Scientific applications place a wide range of requirements on the

communication substrate and data formats.

Simple and straightforward implementations can have a severe

performance impact.

9 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions
Thesis statement

Outline

1 Introduction and Motivation
XML and SOAP

Ubiquity of Multi-processing Capabilities

Contributions

2 SOAP and XML Benchmarks
SOAPBench

XMLBench

3 Parallel XML
Investigating System Cache Effects

Piximal: Parallel Approach for Processing XML

4 Related Work

5 Conclusions and Future Work

10 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions
Thesis statement

Prevalence of Parallel Machines

All new high end and mid range CPUs for desktop- and

laptop-class computers have at least two cores

The future of AMD and Intel performance lies in increases in the

number of cores

Despite extant SMP machines, many classes of software

applications remain single threaded

Multi-threaded programming considered ‘‘hard’’

11 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions
Thesis statement

XML and Multi-Core

Most string parsing techniques rely on a serial scanning process

Challenge: Existing (singly-threaded) XML parsers are already very

efficient [Zhang et al 2006]

12 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions
Thesis statement

Outline

1 Introduction and Motivation
XML and SOAP

Ubiquity of Multi-processing Capabilities

Contributions

2 SOAP and XML Benchmarks
SOAPBench

XMLBench

3 Parallel XML
Investigating System Cache Effects

Piximal: Parallel Approach for Processing XML

4 Related Work

5 Conclusions and Future Work

13 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions
Thesis statement

Contributions

We present the design and implementation of a comprehensive

benchmark suite for XML and SOAP implementations with

standard mechanisms to quantify, compare, and evaluate the

performance of each toolkit and study the strengths and

weaknesses for a wide range of use case scenarios.

We present an analysis of pre-fetching and piped implementation

techniques that aim to offset disk I/O costs while processing

large-scale XML datasets on multi-core CPU architectures.

14 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions
Thesis statement

Contributions Continued

We propose techniques to modify the lexical analysis phase for

processing large-scale XML datasets to leverage opportunities for

parallelism. (Piximal)

We present an analysis of the scalability that can be achieved

with our proposed parallelization approach as the number of

processing threads and size of XML-data is increased.

We present an analysis on the usage of various states in the

processing automaton to provide insights on why the performance

varies for differently shaped input data files.

15 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions
Thesis statement

Publications

‘‘A Benchmark Suite for SOAP-based Communication in Grid Web

Services,’’ in The Proceedings of Supercomputing 2005

‘‘Benchmarking XML Processors for Applications in Grid Web

Services,’’ in The Proceedings of Supercomputing 2006

‘‘Approaching a Parallelized XML Parser Optimized for Multi-Core

Processors,’’ in The Proceedings of SOCP 2007, workshop held in

conjunction with HPDC 2007

‘‘Parallel Processing of Large-Scale XML-Based Application

Documents on Multi-core Architectures with PiXiMaL,’’ in The

Proceedings e-Science 2008

‘‘Performance Enhancement with Speculative Execution Based

Parallelism for Processing Large-scale XML-based Application

Data,’’ to appear in The Proceedings of HPDC 2009

16 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

XML and SOAP
Ubiquity of Multi-processing Capabilities
Contributions
Thesis statement

Thesis Statement

In this thesis we present a comprehensive benchmark suite that

facilitates the study of the strengths and weaknesses of XML and SOAP

toolkits for a wide range of use case scenarios.

We propose a parallel processing model for some application-based

large-scale XML datasets that can effectively leverage opportunities for

parallelism in emerging multi-core CPU architectures.

17 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

SOAPBench
XMLBench

Outline

1 Introduction and Motivation
XML and SOAP

Ubiquity of Multi-processing Capabilities

Contributions

2 SOAP and XML Benchmarks
SOAPBench

XMLBench

3 Parallel XML
Investigating System Cache Effects

Piximal: Parallel Approach for Processing XML

4 Related Work

5 Conclusions and Future Work

18 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

SOAPBench
XMLBench

SOAP Benchmark Suite

Defines a set of operations to implement within a SOAP toolkit

Tests both serialization and deserialization of a variety of data

structures over a range of input sizes

Simple types: integers, strings, and floats

Base64 encoded data

Complex types: event streams, mesh interface objects

19 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

SOAPBench
XMLBench

Outline

1 Introduction and Motivation
XML and SOAP

Ubiquity of Multi-processing Capabilities

Contributions

2 SOAP and XML Benchmarks
SOAPBench

XMLBench

3 Parallel XML
Investigating System Cache Effects

Piximal: Parallel Approach for Processing XML

4 Related Work

5 Conclusions and Future Work

20 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

SOAPBench
XMLBench

XML Benchmark Suite

1 A chosen set of XML documents

Low level probes

Application-based benchmarks

2 A driver application for each XML processor

Runs the parser on the input, but does not act on the data

Eliminates application-level performance differences

One for each interface style (SAX/DOM)

21 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Outline

1 Introduction and Motivation
XML and SOAP

Ubiquity of Multi-processing Capabilities

Contributions

2 SOAP and XML Benchmarks
SOAPBench

XMLBench

3 Parallel XML
Investigating System Cache Effects

Piximal: Parallel Approach for Processing XML

4 Related Work

5 Conclusions and Future Work

22 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Readahead/Runahead

Explore OS level caching effects

Offload disk input to another thread/core

Improved the performance of an existing high performance parser

by using a separate thread to read the input into cache

23 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Outline

1 Introduction and Motivation
XML and SOAP

Ubiquity of Multi-processing Capabilities

Contributions

2 SOAP and XML Benchmarks
SOAPBench

XMLBench

3 Parallel XML
Investigating System Cache Effects

Piximal: Parallel Approach for Processing XML

4 Related Work

5 Conclusions and Future Work

24 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Token-Scanning With a DFA

DFA-based table-driven scanning is both popular and fast

(or at least performance-competitive with other techniques)

Input is read sequentially from start to finish

Each character is used to transition over states in a DFA

Transition may have associated actions

Supports languages that are not ‘‘regular’’

Commonly used in high performance XML parsers, such as TDX (C)

and Piccolo (Java)

Amenable to SAX parsing

Piximal-DFA uses this approach

25 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

DFA Used in Piximal-DFA

0

1

2

3

4

5

6

7

8

9

10

whitespace

’ < ’

’/’

name start

’ > ’

whitespace

name char

’ = ’

name char

’"’

whitespace

’"’

not ’<’ or ’&’

whitespace

name char

’ > ’

’ < ’

char data

name start

name char

space

’ > ’

26 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Parallel Scanning With a DFA?

DFA-based scanning =⇒ sequential operation

Desire: run multiple, concurrent DFAs throughout the input

Generally not possible because the start state would be unknown

27 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Overcoming Sequentiality With an NFA

Problem: start state is unknown

Solution: assume every possible state is a start state

Construct an NFA from the DFA used in Piximal-DFA

Such an NFA can be applied on any substring of the input

Piximal-NFA is the parser that does all of this:

Partition input into segments

Run Piximal-DFA on the initial segment

Run NFA-based parsers on subsequent partition elements

Fix up transitions at partition boundaries and run queued actions

28 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Piximal-NFA’s Parameters

split_percent :

The portion of input to be dedicated to the first element of the

partition, expressed as a percentage of the total input length

number_of_threads:

The number of threads to use on a run

29 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Preliminary Research Questions

Is there enough memory bandwidth to allow multiple automata to

concurrently feed each thread its input?

Processing each character along several paths through the NFA is

costly: how does this work scale with the size of the initial DFA?

(E-science 2008)

Does the overhead of queuing the NFA actions cost an

acceptable amount compared with the cost of DFA-parsing the

first partition element?

(HPDC 2009)

30 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Memory Bandwidth Test

Models the work of partitioning the input the way Piximal-NFA does

File I/O is via mmap(2)

A thread is created for each partition element which accumulates

each character

A variety of split_percents and number_of_thread are chosen

Total time to read a large input a fixed number of times is measured

Input file is SwissProt.xml, which is 109 MB in size

31 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Memory Bandwidth Test – Experimental Setup

Run several machines, each from a homogeneous class running

64-bit versions of Linux

2× uniprocessor: 3.2 Ghz Intel Xeon (uniprocessor), 4 GB

RAM, Linux kernel 2.6.15, GNU Lib C 2.3.6, GCC 4.0.3

2× dual core: 2.66 Ghz Intel Xeon 5150 (dual core) CPUs, 8

GB RAM, Linux kernel 2.6.18, GNU Lib C 2.3.6, GCC 4.1.2

2× quad core: 2.33 Ghz Intel Xeon E5354 (quad-core) CPUs, 8

GB RAM, Linux kernel 2.6.18, GNU Lib C 2.3.6, GCC 4.1.2

4 nodes used from the 2× UP cluster, 10 from each of the other

two

Results for each class are averaged across all runs

32 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Bandwidth is Not a Bottleneck Up to 6 Cores

2 3 4 5 6 7 8

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Number of threads

S
pe

ed
up

●
●

●

●
●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

cores (split %)

2 (52 %)
4 (28 %)
8 (12 %)

33 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Conclusions From Memory Bandwidth Tests

Even when doing very little per-character processing,

performance gains possible by adding threads

Returns do diminish rapidly

More cores lead to smoother results

34 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

State Scalability Test

Models the additional work done by the NFA threads by following

multiple execution paths through the table

Each NFA thread now must remember the state and calculate the

next state for each character and for each start state

The DFA need only remember and calculate one state per input

character

Does not model the memory used, actions stored, or garbage

state elimination

Goal: to find a balance point for DFA size

+ increased complexity of the recognized language

− more work for the NFA to do, more space required for table

35 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

2× DC

2.0 2.5 3.0 3.5 4.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Number of Threads

S
pe

ed
up

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

DFA state size (w/split %)

2 states, 28 %
4 states, 32 %
6 states, 36 %
8 states, 56 %
10 states, 60 %
12 states, 64 %

36 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

2× QC – Best Speedup for DFA Sizes

2 3 4 5 6 7 8

1
2

3
4

5

Number of Threads

S
pe

ed
up

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

DFA state size (w/split %)

2 states, 12 %
4 states, 16 %
6 states, 20 %
8 states, 36 %
10 states, 40 %
12 states, 40 %

37 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Conclusions From State Scalability Test

The extra work of pushing characters through the multiple

execution paths of the NFA is not in itself a limiting factor

There is a ‘‘sweet spot’’ for DFA size: around 6-7 states which allows

for the greatest language complexity and the best scalability

This is a crossover point where the O(N) extra NFA work overcomes

the the O(1) work of simply reading the input

38 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Serial NFA Tests

Test hypothesis: the extra work required by using an NFA is offset

by dividing processing work across multiple threads

Run each automaton-parser sequentially and independently

Divide the work as usual, with a range of split_percents and

number_of_threads

Time each component independently

Completely parses the input, generating the correct sequence of

SAX events

The maximum time for all components to complete (plus fix up

time) represents an upper bound on the time Piximal-NFA would

take with components running concurrently

39 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Differences From Previous Tests

Entirely sequential (no concurrency)

Full XML parsing takes place

Input file is different

‘‘Interop’’ test from SOAPBench and XMLBench

SOAP-encoded arrays of various data types: integers, strings, and

MIOs

Array size is scaled between 10 and 50,000 elements for each type

40 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Modest Speedup Scalability for 10,000 Integers

2 3 4 5 6 7 8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Thread Count

P
ot

en
tia

l S
pe

ed
up

Max Speedup
Mean Speedup
Min Speedup

41 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Split_Percent Critical for Speedup for 10,000 Integers

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Split Percent

P
ot

en
tia

l S
pe

ed
up

Max Speedup
Mean Speedup
Min Speedup

42 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Inconsistent Speedup Over a Range of Array Lengths

0 10000 20000 30000 40000 50000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Array Size

P
ot

en
tia

l S
pe

ed
up

Max Speedup
Mean Speedup
Min Speedup

43 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Characters in 10,000 Integers in a Range of States

0 1 2 3 4 5 6 7 8 9 10

DFA State

F
re

qu
en

cy

0
20

00
0

40
00

0
60

00
0

44 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Conclusions From Integer Results

Speedup is possible in this case

Choice of split point is critical for achieving any speedup at all

Characters in content sections account for roughly 60% of the

input characters

Input is 117 KB in length

Consists mainly of

...<i>1234</i><i>1235</i><i>1236</i>...

45 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Speedup Improves with Thread_Count for 10,000 Strings

2 3 4 5 6 7 8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Thread Count

P
ot

en
tia

l S
pe

ed
up

Max Speedup
Mean Speedup
Min Speedup

46 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Split_Percent Less Critical for 10,000 Strings

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Split Percent

P
ot

en
tia

l S
pe

ed
up

Max Speedup
Mean Speedup
Min Speedup

47 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Consistent Speedup Over a Range of Input Sizes

0 10000 20000 30000 40000 50000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Array Size

P
ot

en
tia

l S
pe

ed
up

Max Speedup
Mean Speedup
Min Speedup

48 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Characters in 10,000 Strings are Mainly in Content

0 1 2 3 4 5 6 7 8 9 10

DFA State

F
re

qu
en

cy

0
40

00
00

80
00

00
12

00
00

0

49 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Conclusions from String Results

This sort of input is much more amenable to this approach

In maximum potential speedup achieved

In number of cases where speedup is > 1

Split point is much less important here

Characters in content sections account for roughly 99% of the

input characters

Input is 1.4 MB in size (though similar results are seen in inputs that

are 117 KB)

Consists mainly of ...<i>String content for the array

element number 0. This is long to test the

hypothesis that longer content sections are better

for the NFA.</i>...

50 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

Conclusions from Serial NFA Test

Shape of the input strongly determines the efficacy of the Piximal
approach

MIO has similar state usage and mix of content and tags as the

integer and Piximal has a similar performance profile there

Piximal works well on inputs with longer content sections

punctuated by short tags

Starting in a content section helps because the ‘<’ character

eliminates a large number of execution paths through the NFA

If ‘>’ could be treated similarly by the parser, starting in a tag

would be less harmful

51 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

PXML: A Better Language for Piximal

Goal: Improve Piximal performance

Reduce DFA size

Increase the number of paths that lead to contradictions

Restrict XML (as supported in Piximal) in the following ways:

Disallow attributes: Transform into nested elements

Disallow whitespace in tags: Without attributes, these are

completely unnecessary

Disallow ‘>’ in content sections: Unnecessary in any case

Ignore distinction between characters that start a name and the
rest

52 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Investigating System Cache Effects
Piximal: Parallel Approach for Processing XML
Memory Bandwidth Test
State Scalability Test
Serial NFA Tests

DFA For Piximal-PXML

0 1 2

34

Whitespace

’ < ’

’ < ’

’/’

name character

’ > ’

’ > ’

name character

character data

name character

53 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Related Work

Related Work in High Performance XML Processing

Look-aside buffers/String caching [gsoap, XPP]

Trie data structure with schema-specific parser [Chiu et al 02, Engelen

04]

One pass table-driven recursive descent parser [Zhang et al 2006]

Pre-scan and schedule parser [Lu et al 2006]

Parallelized scanner, scheduled post-parser [Pan et al 2007]

54 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Final Conclusions

Conclusions

Existing XML and SOAP toolkits make limited use of multiple cores

Scientific applications strain existing XML infrastructure

Pre-caching mechanisms can improve performance of existing

parsers

A parallel parsing approach is necessary to achieve increased

parser performance as document sizes grow

5-6 states is a good size for a Piximal DFA

Restricting XML slightly should provide better performance at a low

semantic cost

Piximal’s applicability is dependent on the characteristics of the

input file

55 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Final Conclusions

Limitations

PThread overhead during concurrent runs

Restrictions on XML format

Namespaces

CDATA

Unicode

Processing Instructions

Validation

Optimal splitting algorithm unknown

56 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Final Conclusions

Summary

1 Introduction and Motivation
XML and SOAP

Ubiquity of Multi-processing Capabilities

Contributions

2 SOAP and XML Benchmarks
SOAPBench

XMLBench

3 Parallel XML
Investigating System Cache Effects

Piximal: Parallel Approach for Processing XML

4 Related Work

5 Conclusions and Future Work

57 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Final Conclusions

Thank you for your time.

58 / 59

http://www.binghamton.edu

Introduction and Motivation
SOAP and XML Benchmarks

Parallel XML
Related Work

Conclusions and Future Work

Final Conclusions

Questions?

59 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

Extra Slides

The following slides are additional and not part of the presentation.

60 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

Proposed Work

Re-run benchmarks, normalize analysis and plotting

SOAPBench and XMLBench results should be re-run. Plots should be

rebuilt to match the rest of the figures.

XMLBench is available for researchers to download and use

SOAPBench is available, but cannot support all the tested SOAP

toolkits due to their proprietary nature

Analyze a broader range of data from the serial NFA test

The serial NFA tests show a small portion of the data collected in that

test. There is a wealth of information to uncover about the efficacy of

this approach in the data.

Data and analysis is available in our repository and will be posted

to a web site shortly

61 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

Proposed Work Continued

Investigate memory allocation issues

Heap contention is a well known problem for applications with

concurrent memory allocations. We plan to investigate the effect of a

variety of allocators on Piximal. During Piximal development, we

encountered some issues involving the the performance of malloc once

a thread (even a thread with an empty start_routine) was created. We

plan to investigate and report on this in detail.

Have initial results (HPDC 2009), potential for broader investigation

remains

62 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

Proposed Work Continued

Define characteristics of a restricted subset of XML
documents: “PXML”

Based on the above results, we can design a language which works

best with Piximal-NFA. Potential targets include eliminating ‘>’ from

content sections, removing CDATA sections, disallowing extra

whitespace in tags, and perhaps eliminating attributes altogether.

Briefly described in Chapter 5, Section 4 of the thesis document

A formal grammar was not considered necessary for the scope of

the thesis

63 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

Overcoming Sequentiality With an NFA

Problem: start state is unknown

Solution: assume every possible state is a start state

Construct an NFA from the DFA used in Piximal-DFA

1 Mark every state as a start state

2 Remove all the garbage state and all transitions to it

3 Create an queue for each start state to store actions that should be

performed

Such an NFA can be applied on any substring of the input

Piximal-NFA is the parser that does all of this:

Partition input into segments

Run Piximal-DFA on the initial segment

Run NFA-based parsers on subsequent partition elements

Fix up transitions at partition boundaries and run queued actions

64 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

Piximal-DFA Implementation Details

mmap(2)s input file to save memory

Uses {length, pointer} string representation

Strings (for tagnames, attribute values) point into the mapped

memory

All the way through the SAX-style event interface

DFA is encoded as two tables

Table of ‘‘next’’ state numbers indexed by state number and input

character

Table of boolean ‘‘action required’’ indicators indexed by

‘‘current’’ state and ‘‘next’’ state

Action required =⇒ a function is called to decode and execute

the required action

DFA table is generated at compile time using a separate generator

program

65 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

0 10 20 30 40 50

0.
55

0.
60

0.
65

0.
70

Run Number

R
el

at
iv

e
S

pe
ed

up
Speedup for the Readahead Parser Relative to Architecture

 (Input Resides in Filesystem Cache)

●

●

●

● ●
●

●

●

●
● ●

●
●

●

● ● ● ● ●
●

● ● ● ● ●
● ● ●

●

●

●

●

● ● ● ● ● ●
● ● ● ●

●

●

●
●

● ● ● ●

●

CMP
UP
SMP

66 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

0 10 20 30 40 50

0.
96

0.
98

1.
00

1.
02

1.
04

Run Number

R
el

at
iv

e
S

pe
ed

up
Speedup for the Runahead Parser Relative to Architecture

 (Input Resides in Filesystem Cache)

●
●

●

●
● ● ● ●

●

● ●

● ●
●

● ●

● ●

●

● ●
●

●

● ●

● ●

●

●

●

●
●

● ●
●

● ●

●

●

● ●

●
●

● ●
●

● ●

●

●

●

CMP
SMP
UP

67 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

0 10 20 30 40 50

0.
7

0.
8

0.
9

1.
0

1.
1

Run Number

R
el

at
iv

e
S

pe
ed

up
Speedup for the CMP Architecture Relative to Parser Type

 (Input Flushed from Filesystem Cache)

●
●

●

●

●

●

●

●
●

● ●
● ● ●

● ● ●
● ● ●

● ● ● ● ●

● ● ●
● ●

●
●

●
●

● ● ● ●

●

●

●
● ● ● ● ●

●
● ● ●

● Runahead
Readahead

68 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

Benchmark Probes

Overhead test

Minimal XML document

(header plus one self-closing element)

Buffering

Repeated use of xsi:type attributes

Namespace management

Gratuitous use of xmlns attributes

SOAP payloads

‘‘Interop’’ test: arrays of integer, string, double, MIO, event objects

69 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

Benchmarks for Selected Applications

Ptolemy Workflow documents (which Kepler uses)

Genetic data files

(Large) files from the International HapMap Project

Molecular data

Mesh interface objects, event streams (WSMG)

WS-Security documents

70 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

Overhead of Each Parser

 0

 1

 2

 3

 4

 5

 6

 7

 8

xp
p3

xe
rc

es
−

j−
sa

x

xe
rc

es
−

j−
do

m

xe
rc

es
−

c−
sa

x

xe
rc

es
−

c−
do

m

qt
4−

sa
x

pi
cc

ol
o

m
on

o−
re

ad
er

m
on

o−
do

m

lib
xm

l2
−

sa
x

lib
xm

l2
−

do
m

gs
oa

p

ex
pa

t

P
ar

se
 ti

m
e

ov
er

 2
0

ru
ns

 (
m

s)

Parser

All Parsers, Overhead Test

71 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

Performance of C and C++-based Parsers

hapmap_1797SNPs.xml
molecule_1kzk.pretty.xml
workflow_Atype.xml
workflow_PIW.xml

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

xe
rc

es
−

c−
sa

x

xe
rc

es
−

c−
do

m

lib
xm

l2
−

sa
x

lib
xm

l2
−

do
m

gs
oa

p

ex
pa

t

P
ar

se
 ti

m
e

ov
er

 2
0

ru
ns

 (
m

s)

Parser

C/C++ Parsers, Application−level Inputs

72 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

C Parser Performance Over SOAP Payloads

0

1000

2000

3000

4000

5000

6000

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

Pa
rs

e
T

im
e

fo
r

20
 r

un
s

(m
s)

Number of Elements in the Array

Parsing Performance for SOAP Payloads of int Arrays

expat
gsoap
libxml2-dom
libxml2-sax
qt4-sax
xerces-c-dom
xerces-c-sax

73 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

Performance of Java-based Parsers

hapmap_1797SNPs.xml
molecule_1kzk.pretty.xml
workflow_Atype.xml
workflow_PIW.xml

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

xp
p3

xe
rc

es
−

j−
sa

x

xe
rc

es
−

j−
do

m

pi
cc

ol
o

P
ar

se
 ti

m
e

ov
er

 2
0

ru
ns

 (
m

s)

Parser

Java Parsers, Application−level Inputs

74 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

XMLBench Conclusions

Low overhead =⇒ gSOAP and Expat, XPP3

gSOAP performs well with namespaces due to look-aside buffers

Piccolo and XPP3 have comparable performance in Java

75 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

2× UP Overall Results

Number of Threads

5

10

15

Sp
lit

 P
er

ce
nt

20

40

60
80

T
im

e (s)

12

14

16

18

20

76 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

2× DC Overall Results

Number of Threads

5

10

15

Sp
lit

 P
er

ce
nt

20

40

60
80

T
im

e (s)

6

8

10

77 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

2× QC Overall Results

Number of Threads

5

10

15

Sp
lit

 P
er

ce
nt

20

40

60
80

T
im

e (s)

4

6

8

10

12

78 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

2× DC Speedup For Best split_percents

2.0 2.5 3.0 3.5 4.0

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

Number of threads

S
pe

ed
up

●

●

●

●

●

●

●

●

●

Split Percent

52 %
36 %
28 %

79 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

2× QC Speedup For Best split_percents

2 3 4 5 6 7 8

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Number of threads

S
pe

ed
up

●
●

● ● ● ● ●

●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

Split Percent

52 %
36 %
24 %
20 %
12 %
16 %
4 %

80 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

Conclusions From Speedup Cross Sections

Reaffirmation that speedup is possible

Returns diminish for these machines at around 6 threads

Overall, access to main memory is not an immediate bottleneck

Putting the results from the best split_percents for each

architecture...

81 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

2× UP Overall Raw Results

N
um

be
r

of
 D

F
A

 s
ta

te
s

5

10

15

Number of threads 5
10

15

T
im

e (s)

20

25

30

35

40

82 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

2× DC Overall Results – Best Times

N
um

be
r

of
 D

F
A

 s
ta

te
s

5

10

15

Number of threads 5
10

15

T
im

e (s)

15

20

25

30

35

83 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

2× QC Overall Results – Best Times

N
um

be
r

of
 D

F
A

 s
ta

te
s

5

10

15

Number of threads 5
10

15

T
im

e (s)

10

20

30

40

84 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

Conclusions From State Scalability Overall Results

Two major conclusions:

The speedup on the 2× quad-core machines appears stable as the

number of threads increases

There is a significant steepening when the DFA has 6-7 states

Performance reaches its max when the number of threads match

the number of processing cores available

Each new thread adds substantial extra work compared with the

memory bandwidth test

Plotting speedup for certain split_percents

85 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

XML Performance Limitations

Compared to ‘‘legacy’’ formats

Text-based

Lacks any ‘‘header blocks’’ (ex. TCP headers), so must scan every

character to tokenize

Numeric types take more space and conversion time

Lacks indexing

Unable to quickly skip over fixed-length records

86 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

Limitations of XML

Poor CPU and space efficiency when processing scientific data

with mostly numeric data [Chiu et al 2002]

Features such as nested namespace shortcuts don’t scale well

with deep hierarchies

May be found in documents aggregating and nesting data from

disparate sources

Character stream oriented (not record oriented): initial parse

inherently serial

Still ultimately useful for sharing data divorced of its application

87 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

Reading ahead

Introduce two parsers which extend the existing, high performance

Piccolo parser [Head et al 2006]

Runahead: opens two file descriptors for the input file

Start a thread that repeatedly calls read() on one of the file

descriptors

Pass the other file descriptor to the existing Piccolo parser in the

main thread

Readahead: opens one file descriptor for the input file, and one

pipe

Start a thread that reads from the file descriptor and writes to the

pipe

Pass the pipe to the existing Piccolo parser in the main thread

88 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

Test run

Run each parser (Piccolo, Runahead, and Readahead) on a

large (GB-scale) XML file

Specifically, a protein sequence database file, psd7003.xml

No user code is run for any SAX event -- just the parser itself is tested

File cache is cleared between each run running a separate

process that reads multiple gigabyte files

Each test is run 50 times for each parser

Hotspot is warmed by running the parser on another input file with

identical content before timing begins

89 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

Two Environmental Conditions Tested

Architectures

UP: Classic Uniprocessor P4-based machine (Dell workstation)

SMP: Classic Symmetrical MultiProcessing P4-based machine (has

server-class I/O system) (IBM e-server)

CMP: Modern Chip MultiProcessing Core 2 Duo-based machine

(Dell workstation)

System conditions

Cached: The input file is read (hence loaded into the system file

cache) before timing begins

Uncached: The input file is not read before timing begins (and

flushed between each run)

90 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

Data Analysis

Speedup for both of the proposed parsers is computed to

compare across architectures

Baseline value is computing by averaging the times for each run of

the unmodified Piccolo parser

Speedup for each run is computed by dividing the baseline by the

time at each test point

91 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

0 10 20 30 40 50

0.
6

0.
8

1.
0

1.
2

1.
4

Run Number

R
el

at
iv

e
S

pe
ed

up
Speedup for the Runahead Parser Relative to Architecture

 (Input Flushed from Filesystem Cache)

●
●

●
● ●

●

●

●

● ●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●
●

●

●

●

SMP
CMP
UP

92 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

Readahead Conclusions

On systems with available memory and an available processing

core with fresh inputs, this approach can provide some

performance wins.

93 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

Comparison with Expat

Input file Expat Piximal-dfa Piximal-nfa
psd-7003 15.51 17.47 14.18

Table: Parse time, in seconds per parse, of high performance parsers

94 / 59

http://www.binghamton.edu

Appendix

Discussion of Proposed Work
Other additional slides
XMLBench
Parallel XML
Comparison with Expat and TCMalloc

Comparison Between GLibC and TCMalloc

2 3 4 5 6 7 8

25
26

27
28

29
30

31

Number of threads

T
im

e
(s

)

Selected allocator

GNU libc 2.7 malloc
Google TCMalloc

95 / 59

http://www.binghamton.edu

	Introduction and Motivation
	XML and SOAP
	Ubiquity of Multi-processing Capabilities
	Contributions
	

	SOAP and XML Benchmarks
	SOAPBench
	XMLBench

	Parallel XML
	Investigating System Cache Effects
	Piximal: Parallel Approach for Processing XML
	
	
	

	Related Work
	

	Conclusions and Future Work
	

	Appendix
	Appendix
	
	
	
	
	

