
Investigating the Limits of SOAP Performance for Scientific Computing

Kenneth Chiu, Madhusudhan Govindaraju, Randall Bramley
Department of Computer Science
Bloomington, Indiana University

chiuk@cs.indiana.edu, mgovinda@cs.indiana.edu, bramley@cs.indiana.edu

Abstract

The growing synergy between Web Services and Grid-
based technologies [7] will potentially enable profound,
dynamic interactions between scientific applications dis-
persed in geographic, institutional, and conceptual space.
Such deep interoperability requires the simplicity, robust-
ness, and extensibility for which SOAP [4, 3] was con-
ceived, thus making it a natural lingua franca. Concomitant
with these advantages, however, is a degree of inefficiency
that may limit the applicability of SOAP to some situations.
In this paper, we investigate the limitations of SOAP for
high-performance scientific computing. We analyze the pro-
cessing of SOAP messages, and identify the issues of each
stage. We present a high-performance SOAP implementa-
tion and a schema-specific parser based on the results of
our investigation. After our SOAP optimizations are im-
plemented, the most significant bottleneck is ASCII/double
conversion. Instead of handling this using extensions to
SOAP, we recommend a multiprotocol approach that uses
SOAP to negotiate faster binary protocols between messag-
ing participants.

1 Introduction

The growing synergy between Web Services and Grid
computing potentially can make practical distributed com-
puting based on independently written software compo-
nents for scientific and engineering computing. This po-
tential depends in part on interoperability that is semanti-
cally deep but syntactically shallow. That is, the system
must be loosely-coupled, but when coupling does occur, it
must be at a deeper level than that typified by applications
such as SETI@Home. The SOAP protocol was conceived
expressly to support such interoperability in-the-large. De-
signed using principles learned from HTTP and HTML,
it facilitates interdependent interactions between otherwise
independent entities. SOAP is also the standard binding for
the the emerging Web Services Description Language [6].

SOAP easily achieves high interoperability by requiring
that its messages be in the Extensible Markup Language
(XML) [17], which has been gaining acceptance as a canon-
ical data representation. HTTP is a ubiquitous network
protocol used extensively over the Internet. SOAP does
not mandate an underlying transport protocol, but HTTP
has emerged as the most widely used one for SOAP. Since
SOAP can combine the strengths of XML and HTTP, it is
an attractive candidate for Grid communication.

A common trade-off in computing is between the needs
of universality and high performance. The qualities of
SOAP that make it universally usable tend to work against
high performance communications. In particular, XML
specifies a primarily ASCII format. A characteristic that
distinguishes scientific and engineering components is the
need to frequently exchange large arrays of floating point
numbers, with full accuracy to assure reproducibility. Sci-
entific computing also demands the full range of capabil-
ities that industrial computing does: reliable transfer in
distributed heterogeneous environments, parallel programs
sending large, complex and rapidly changing data objects or
self-contained modules sending events to steer other mod-
ules, and complex run-time systems designed for heteroge-
neous environments with dynamically varying loads, multi-
ple communication protocols, and differing Quality of Ser-
vice (QoS) requirements.

A Web Services approach to scientific components
would allow users to combine the strengths of different sys-
tems by developing applications that have components from
several of them. Since these systems can be connected via
more than one protocol, a common denominator protocol is
needed to negotiate more specialized protocols. This com-
mon denominator protocol must provide reliability, robust-
ness, readability, ease of use, seamless integration with ex-
isting computational code and interoperability. In earlier
work [9] we showed that SOAP can be used to meet this
criteria.

This paper examines the limits of SOAP performance for
scientific computing and describes the design of a SOAP
implementation suitable for systems with stringent mem-



ory and bandwidth requirements. A thorough analysis of all
performance issues shows that major improvements result
from using schema-specific parser mechanisms for arrays,
trie data structure for matching tags, efficient memory man-
agement, persistent connections as allowed by HTTP 1.1,
and chunking (streaming) of messages to avoid the over-
head of fully serializing objects to determine their content
length before transmission begins. Surprisingly, after these
optimizations the most critical bottleneck is conversion to
and from floating point numbers and their ASCII represen-
tation in XML. This accounts for over 90% of the end-to-
end message time when using a fully compliant SOAP over
HTTP protocol.

Two basic approaches can then be taken to resolve the
tension between SOAP’s universal lowest common denom-
inator capabilities, and the need for high performance com-
munications: (1) extend the SOAP protocol to provide for
binary representation of floats, or (2) use SOAP as an ini-
tial mechanism that can then negotiate other (faster) shared
protocols.

Our recommendations are to follow the second approach,
unless and until the community can persuade the W3C or-
ganization to extend SOAP to include binary protocols. In
this way, scientific components can remain fully interoper-
able with SOAP-compliant commercial and industrial com-
ponents, without giving up high performance capabilities
for components which can support them. In the event that
two components do not have a shared faster protocol, SOAP
over HTTP can still be used as a “fail-over” tool that assures
communications can succeed.

2 Sending SOAP

SOAP messages are encoded using XML, which re-
quires that all self-described data be sent as ASCII strings.
The description takes the form of start and end tags which
often constitute half or more of the message’s bytes.

2.1 Stages

The sending of a SOAP message can be divided into sev-
eral stages. These stages may not have a one-to-one map-
ping with functions in a code implementation, but still pro-
vide context useful for discussion and analysis.

1. Traverse data structures representing message.

2. Convert machine representation of data to ASCII.

3. Write ASCII to buffer.

4. Initiate network transmission.

2.1.1 Stage 1

A SOAP message begins as some kind of data structure in a
program. Stage 1 traverses this structure to impart a corre-
sponding structure to the SOAP XML. This traversal is not
a significant part of the serialization, because each leaf el-
ement can can be traversed with simple operations such as
member offset calculations, array indexing, or pointer fol-
lowing.

2.1.2 Stage 2

The strings or numbers that comprise the actual data are
usually in machine representation, and are converted in
Stage 2 to the ASCII form required by XML. For strings
already in ASCII, conversion is simple and fast. Strings in
UNICODE may require some processing to convert to UTF-
8/16. The majority of characters used in scientific comput-
ing fall within the ASCII range, and therefore require mini-
mal processing to convert to UTF-8/16.

Integers are usually in two’s-complement representation.
Conversion to ASCII involves a binary-to-decimal conver-
sion. Floating-point numbers are usually in IEEE-754 rep-
resentation. Conversion to ASCII also requires a binary-
to-decimal conversion, but the floating-point conversion is
considerably more complex than the integer conversion.

2.1.3 Stage 3

The ASCII form of the data is stored, along with the appro-
priate XML tags, to a memory buffer in Stage 3. Exactly
how the ASCII is stored can affect the number of mem-
ory operations required. For example, if an integer element
named ’el’ is serialized with

sprintf(buf,"<integer>%d</integer>",el);

each character of the start tag must first be read from mem-
ory, then written to the buffer. However, if the start tag is
created with a sequence of statements such as

*buf++ = ’<’;
*buf++ = ’i’;
*buf++ = ’n’;

the characters comprising the start tag may likely already be
in the instruction stream as immediate operands.

2.1.4 Stage 4

Finally, in Stage 4 the operating system transmits the con-
tents of the memory buffer. This requires a system call,
which is relatively expensive, so the buffer should be
flushed sparingly. Using a buffer that is too large to fit in
cache, however, may increase cache misses.



When using HTTP 1.0 [10], the length of the body must
be specified in a Content-Length header field. Because
this value cannot be determined until the SOAP message
is serialized, the straightforward implementation would (1)
use two separate buffers, one for the header and one for the
body, and (2) serialize the complete SOAP message before
completing the header. This can require two system calls,
and consume much memory if the message is large.

The first issue can be resolved by either back-patching
or vectored sends. If we insert spaces for the content length
during the initial header generation, we can later replace the
spaces with the actual content length once the SOAP mes-
sage has been processed. Alternatively, we can use a vec-
tored send (available on both UNIX and Win32 machines)
that concatenates multiple memory buffers in one send call.

The second issue can be be resolved by either using
HTTP 1.1 (discussed below), or using a two-step serial-
ization. In the first step the length of the body is calcu-
lated without actually storing to the memory buffer. The
header can then be completed and the body serialized into
the memory buffer. Because the memory buffer does not
need to hold the entire body at one time, memory usage is
reduced. The actual transmission is most commonly over
TCP/IP. Since TCP/IP requires one packet exchange before
transmission can begin, establishing a separate connection
for each message adds a round-trip delay to each message.

In addition to the delay, creating a connection per mes-
sage consumes operating system resources. The TCP/IP
protocol requires that one end of a closed connection re-
main in TIME_WAIT state for twice the maximum segment
lifetime. This period can be as long as four minutes. Dur-
ing this period, a certain amount of memory must be main-
tained, and the port cannot be reused for the same remote
host and port[13].

2.2 Design

Previous work has shown that the memory usage of
SOAP can be prodigious. A typical SOAP message may
be 4-10 times the size of its corresponding machine rep-
resentation. This can be particularly significant for large
arrays, which are common objects in scientific computing..
Besides being careful not to create extra copies, we chose
to address the memory concern by using HTTP 1.1 [11] in-
stead of HTTP 1.0.

HTTP 1.1 supports a form of streaming called chunked
encoding. The body is sent in chunks, with each chunk pre-
ceded by its size. The content length is no longer necessary,
because a receiver can determine the end of the body by pro-
cessing the chunks. The elimination of the content length
means that the sender does not need to buffer the whole
message before transmission, which also allows overlap be-
tween network transmission and serialization.

Most operating systems copy the user-space memory
buffer to a kernel-space buffer during the send system call,
and immediately return. The actual transmission occurs in
the background. By calling send multiple times for a large
message, overlap between the transmission of the previous
buffer by the kernel and the preparation of the next buffer
by the program will occur. Of course, calling send too many
times may cause the overhead of system calls to dominate.

HTTP 1.1 also supports persistent connections, which
remain open for multiple messages. This reduces the over-
head of creating a new connection for every message.

3 Receiving SOAP

3.1 Stages

Though in some sense receiving a SOAP message is the
inverse of sending a SOAP message, the issues are some-
what different. Conceptually, we divide the receiving pro-
cess into four stages:

1. Read from network into memory buffer.

2. Parse XML.

3. Handle elements.

4. Convert ASCII to machine representation.

3.1.1 Stage 1

The SOAP message is read from the operating system into
a memory buffer in Stage 1. This requires a system call, so
reading as much data as possible will minimize the number
of system calls. If the amount of data is larger than will
fit into cache, however, the number of cache misses will
increase.

3.1.2 Stage 2

In this stage, the XML is parsed to identify its syntactic
constructs. Comments are stripped, start tags located, etc.
This parsing normally involves a state machine of some
kind. Possible choices are coding the transitions in a switch-
statement, or using a table-driven approach.

There are currently two popular paradigms for process-
ing XML, the Document Object Model (DOM) [16] and
the Simple API for XML (SAX) [5]. DOM builds a com-
plete object representation of the XML document in mem-
ory. This can be memory intensive for large documents, and
entails making at least two passes through the data. During
the first pass, the object model is constructed. Only after the
document is completely parsed can the application interpret
the data in another pass.



SAX operates at one level lower. Rather than actually
constructing a model in memory, it informs the application
of elements through callbacks. This also requires at least
two passes through the data. The first pass is performed
inside the SAX implementation, and is required to identify
tags and element content. The second pass is performed by
the application after the XML constructs are pushed to the
application through callbacks.

Pull parsing, as exemplified by the XML Pull Parser [1],
is an efficient paradigm similar to SAX in that it does not
build a complete object model in memory. It differs in that
the tags and content are returned directly to the application
from calls to the parser, rather than indirectly in the form of
callbacks.

A number of dual-mode models also exist. Progressive
DOM, for example, switches between a SAX model and a
DOM model depending on the needs of the application at
that point in the XML processing.

3.1.3 Stage 3

Once the tags are identified, the content of each tag is in-
terpreted. For the parsing paradigms described above, the
parser presents the tag and the content as simple text. So the
actual interpretation of an element is completely delegated
to the application. This means that even if the application
uses an efficient data structure like a red-black tree to match
actions to tags, it still must examine the tag after the parser
has already made one pass through it.

3.1.4 Stage 4

Ultimately the ASCII text must be converted to the ma-
chine representation. For numerical data, this will involve
a decimal-to-binary conversion. For string data, it may in-
volve a UTF-8/16 to wide string conversion.

3.2 Design

Our design for receiving SOAP messages rests on two
interdependent principles. The first is that we read from the
network only when we run out of data, and once we have
issued a read, we process until we do run out of data.

This means that the stages need to be fully pipelined.
The second principle is that we never examine data more
than once. Thus, stages 1-4 should all be performed with
one pass.

The fundamental reason the popular parsing paradigms
require two passes is that they present a data-centric inter-
face to the application. Thus, for example, the parser must
first make one pass to syntactically identify the end of the
content. The application then makes another pass to inter-
pret the content. Likewise, the parser first makes one pass

to demark the end of a start tag. The application must then
examine the tag again to decide how to handle it.

To avoid this we interface to the application through a
streamed, push-pull model. Like SAX, we make callbacks
to the application. Unlike SAX, however, the parser has
already matched the tag to a specific callback. The applica-
tion therefore does not need to examine the tag again, and in
fact the tag may not have ever existed as a complete string
anywhere in memory.

One candidate for tag matching is perfect hashing. Per-
fect hashing, however, may generate a valid hash code for
an item not in the hash table. Thus, the item must be re-
examined after the hash code has been computed, which
requires two passes over the tag. We therefore elected to
use tries, which unambiguously determine whether or not a
key is valid. A trie is essentially a table-driven determinis-
tic finite automaton for a fixed set of strings. As the parser
encounters each character of a tag, it simultaneously feeds
it into the trie. Upon reaching the end of the tag, the trie has
already matched the tag to a specific handler.

When the handler is called, the content of an element is
not presented as data, but as a function that the application
can call for the next character. The function parses the XML
on-the-fly as the application requests each character of the
content. Thus, the parser does not need to make an initial
pass through the XML to identify the end of the character
data. Attributes are handled similarly.1

3.3 Schema-Specific Parsers

For a scientific application to interpret the data in a
SOAP message, it must have some idea of its structure. This
structure may be known in ad hoc manner, or it may be for-
malized through an XML Schema.

In either case, performance can be improved by using
this information to generate a schema-specific parser. For
example, rather than representing the tag-matching tries as
tables, they can be represented directly in the program it-
self as code. One can even imagine a parser-generator that
directly generates machine-code (or Java byte-code) from a
schema.

For our tests, we implemented a limited form of a
schema-specific parser. The SOAP encoding rules specify
an array form that is easier to parse than general XML. A
parser written just for this form can be faster than a general
XML parser. By using the schema to direct the parsing, we
can use the array parser whenever we are parsing an array.

1Our XML parser does not currently support the full XML specifica-
tion. For example, CDATA sections are not supported. Namespaces are
parsed, but we do not yet have an API for tag handlers within namespaces.



4 Performance Measurements

As a sample of the kind of interacting scientific com-
ponents which distributed computing needs to address, we
first examine a “mesh interface object.” This is an array
of objects of the the form (int, int, double), with the first
two entries representing a mesh coordinate and the dou-
ble representing a field value. This is the kind of infor-
mation that might be used for communicating between two
partial differential equation (PDE) solvers on different do-
mains. One example of this is a climate model that ties to-
gether an atmospheric simulator with an ocean circulation
simulator [2]. Another example is a fluid simulation that
is coupled with a solids structure code, as is done in some
industrial process modeling [8]. We also examine perfor-
mance for large arrays of IEEE 754 standard doubles [15]
(64-bit floats) which routinely occur in scientific computing
and typically dominate the total number of bytes sent be-
tween procedures and functions. We varied the size of the
double arrays from 10 to 1,000,000. All Solaris machines
mentioned below were running Solaris 8, with code that was
compiled with the Workshop 5.3 C++ compiler. All Linux
machines were running the Linux 2.4 kernel with Redhat
7.1. The code was compiled with g++ 3.0.3. All machines
were connected via 100 Mbps Ethernet. All performance
profiles were produced with the Sun Forte 6 Update 2 per-
formance tools.

4.1 Deserialization

Some of our performance enhancements affected deseri-
alization only. Since our deserialization was no slower than
our serialization, the deserialization was isolated to reveal
the effects. A dummy sender repeatedly transmitted a pre-
composed SOAP message to the SOAP receiver.

4.1.1 Trie

Processing SOAP messages involves repeated matching of
XML tags. The STL map is implemented as a balanced
binary tree, for which lookups are

���������
	
, compared to the

trie for which lookups are
�����
	

. The trie also has a lower
constant because the matching is done as the parser scans
the tag. The binary tree, on the other hand, needs to make
repeated comparisons of the tag against keys stored at the
nodes.

Two experiments tested the effect of tries. The first test
used an array of mesh interface objects (see Figure 1). This
shows that tries do improve performance significantly, but
the improvement was much larger on the Linux platforms.
To understand why, we deleted the double from the object
and tested just transmitting the “mesh coordinate” object
(see Figures 2).

Architecture STL Map Trie Improvement
Linux 73,000 96,000 31.5%
Solaris 22,000 27,000 22.7%

Figure 1. Objects/second throughput for
mesh interface object on Linux.

Architecture STL Map Trie Improvement
Linux 123,000 185,000 51.2%
Solaris 59,000 89,000 50.8%

Figure 2. Objects/second throughput for an
array of objects containing two integers.

Now the improvement from using tries on the two plat-
forms is larger and almost identical, showing the effective-
ness of this technique. However, the tests show that process-
ing of doubles has a significant performance impact. This,
together with the importance of arrays of doubles in scien-
tific computing, motivated us to more closely examine the
performance of SOAP arrays of doubles.

4.1.2 Array Parsing

We use knowledge of the SOAP message schema to enable
an array-specific parser when parsing SOAP arrays. Fig-
ures 3 and 4 show that the array parser significantly im-
proves performance, from about 170000 to 225000 dou-
bles/second on Linux. Again, however, the performance
gain was significantly lower on Solaris machines, suggest-
ing that some other feature of handling doubles is at play.
Section 4.3 shows that this is from the conversion between
ASCI and binary representations, but first we examine re-
ducing the network costs via persistent connections and
streaming.

4.2 End-To-End

The end-to-end results include the cost of serialization,
deserialization and communication over the network for
sending a message between two nodes.

4.2.1 Persistent Connections and Streaming

Figures 5 and 6 show that persistent connections improve
performance for messages that have less than 100,000 dou-
bles. Because the cost of establishing a connection in-
creases with latency, the benefit of persistent connections
will be especially pronounced for a high-latency, high-
bandwidth network. However, for larger messages, the cost
of establishing socket connections is amortized over many
doubles.



10
1

10
2

10
3

10
4

10
5

10
6

0

0.5

1

1.5

2

2.5
x 10

5

Number of doubles per message

D
ou

bl
es

 p
er

 s
ec

on
d

Deserialization (Linux)

With both enabled
Without array−specific parsing
Without trie

Figure 3. Effect of array-specific parsing and
trie data structure on deserialization of array
of doubles on Linux. Both sender and re-
ceiver were 600 MHz Pentium IIIs.

10
1

10
2

10
3

10
4

10
5

10
6

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

4

Number of doubles per message

D
ou

bl
es

 p
er

 s
ec

on
d

Deserialization (Solaris)

With both enabled
Without array−specific parsing
Without trie

Figure 4. Effect of array-specific parsing and
trie data structure on deserialization of array
of doubles on Solaris. The sender and re-
ceiver were both Sun Blade 100 machines.
Each machine had a 500 MHz UltraSPARC-IIe.

10
1

10
2

10
3

10
4

10
5

10
6

0

2

4

6

8

10

12
x 10

4

Number of doubles per message

D
ou

bl
es

 p
er

 s
ec

on
d

End−To−End (Linux)

With both enabled
Without persistence
Without streaming
Apache AXIS
gSoap

Figure 5. Effect of persistent connections and
streaming for array of doubles on a Linux ma-
chine. The sender was a Pentium III (Copper-
mine) with 256 KB of on-die Level 2 cache.
The receiver was a Pentium III (Katmai) with
512 KB of off-die Level 2 cache. The peak for
arrays of 100 doubles is likely due to cache
effects.

10
1

10
2

10
3

10
4

10
5

10
6

0

1

2

3

4

5

6
x 10

4

Number of doubles per message

D
ou

bl
es

 p
er

 s
ec

on
d

End−To−End (Solaris)

With both enabled
Without persistence
Without streaming
Apache AXIS
gSoap

Figure 6. Effect of persistent connections and
streaming for an array of doubles on Solaris
machines. The sender and receiver were both
Sun Blade 100 machines. Each machine had
a 500 MHz UltraSPARC-IIe.



Streaming has larger impact on the performance for large
messages, because it allows overlap between communica-
tion and deserialization that would otherwise not be possi-
ble. This overlap is not significant for small messages since
the communication time is short. The test shows, however,
that the overhead is low for using streaming even for small
messages.

Analysis with the Sun Forte 6 tools on a Blade 1000
showed that for messages of 1,000,000 doubles, stream-
ing (via chunking) reduced time stalled on L2 cache misses
from .147 to .009 seconds, but this is insignificant compared
to the total execution time of 35 and 26 seconds, respec-
tively. The large peak for messages with 100 doubles in
the Linux chart is likely a cache effect that manifests in the
presence of 16 KB of L1 cache and full-speed L2 cache.
The sender in this case was a Pentium III with 256 KB of
full-speed L2 cache, while the receiver was a Pentium III
with 512 KB of half-speed L2 cache. When the roles were
reversed, the peak was not as pronounced. Furthermore,
when we used a Pentium 4, there was no peak at all. The
Pentium 4 has 256 KB of full-speed L2 cache, but only 8
KB of L1 cache. For Solaris, the peak is not present at all.
This is because other factors mask the cache effect. Anal-
ysis with the Sun Forte 6 tools on a Blade 1000 showed
that the function that consumed the most CPU cycles for
message sizes from 10 to 1000 (a Solaris internal func-
tion named multiply_base_2_vector()) was actu-
ally incurring no cache misses.

4.3 ASCII/Double Conversion

Linux and Solaris platforms differ greatly in their per-
formance improvements from using tries and array-specific
parsing involving doubles. We examined this in detail, and
found that for a high-performance fully compliant SOAP
over HTTP implementation, the two most costly operations
are the conversion of ASCII to double and vice versa. Fig-
ure 7 shows the fraction of the total CPU cycles that is spent
in the functions sprintf() and strtod(), as a func-
tion of the message size. This graph shows that any further
improvements to SOAP message processing will have little
effect on the efficiency of sending arrays of doubles, un-
less the conversion of doubles is specifically addressed. In
other words, with a high-performance SOAP implementa-
tion, an upper bound on the performance of arrays of dou-
bles can be obtained simply by measuring the performance
of sprintf() and strtod().

If the full 18 digits of double precision are not required,
some performance enhancement, especially on the Solaris
platform, can be obtained by reducing the digits of preci-
sion. Figure 8 and 9 show the performance of the respec-
tive conversions as a function of the number of digits of
precision. The Solaris platform exhibits sharp drops in per-

10
1

10
2

10
3

10
4

10
5

10
6

20

30

40

50

60

70

80

90

100
Percentage of cycles for floating−point conversions (Solaris)

Number of doubles per message

P
er

ce
nt

ag
e 

of
 c

yc
le

s 
in

 s
tr

to
d 

or
 s

pr
in

tf

Figure 7. Percentage of CPU cycles spent per-
forming double-to-ASCII or ASCII-to-double
conversions as a function of message size.
The test was conducted on a Sun Blade 1000
with 2x750 MHz UltraSPARC-IIIs.

formance between 14 and 17 digits. Profiling showed that
somewhere in this range the library calls switch to costly
high-precision integer operations. Note that the IRIX plat-
form performs remarkably well. The IRIX machine is sig-
nificantly slower than the other two, yet it performs almost
as well as the 600 MHz Pentium III.

4.4 Comparison with Other SOAP Implementa-
tions

To corroborate our results, we also compared our per-
formance against gSOAP [12] and Apache Extensible In-
teraction System (AXIS) [14]. The gSOAP system pro-
vides a language binding for deploying SOAP in applica-
tions using C/C++ code. Since the gSOAP system only sup-
ports request-response messaging, we estimated the dou-
ble/second rate by using the total time it took to send and
receive arrays of doubles. gSOAP’s performance is lower
than ours, as shown in in Figures 5 and 6. The tests for
gSOAP were run without the HTTP keep-alive option and
that may have slightly degraded the performance.

We also used a Java based implementation of the AXIS
system. It performs poorly when compared to gSOAP and
our implementation. However, it is still in its early stages
of development, and our results may help later in enhancing
its performance.



8 9 10 11 12 13 14 15 16 17 18
0.5

1

1.5

2

2.5

3
x 10

5

Digits of precision

C
on

ve
rs

io
ns

 p
er

 s
ec

on
d

Performance of sprintf for doubles over number digits

Solaris Forte 6
IRIX MIPSpro 7.3
Linux g++ 3.0.3

Figure 8. Performance of double to ASCII con-
version over digits of precision. The Solaris
machine was a Sun Blade 100 with a 500 Mhz
UltraSPARC-IIe. The IRIX machine was an SGI
Octane with a 195 Mhz R10000. The Linux ma-
chine was a 600 MHz Pentium III (Katmai).

8 9 10 11 12 13 14 15 16 17 18
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

5

Digits of precision

C
on

ve
rs

io
ns

 p
er

 s
ec

on
d

Performance of strtod for doubles over number of digits

Solaris Forte 6
IRIX MIPSpro 7.3
Linux g++ 3.0.3

Figure 9. Performance of ASCII to double con-
version over digits of precision. The Solaris
machine was a Sun Blade 100 with a 500 Mhz
UltraSPARC-IIe. The IRIX machine was an SGI
Octane with a 195 Mhz R10000. The Linux ma-
chine was a 600 MHz Pentium III (Katmai).

5 Summary

By dividing the process of sending and receiving a SOAP
call into various stages, we analyzed efficient ways to han-
dle each phase. We have introduced several techniques that
significantly improve SOAP performance:

1. The use of tries to more efficiently handle the process-
ing of tags, which can account for half or more of the
SOAP message.

2. An XML parser that is specialized for SOAP arrays
and greatly improves the performance of deserializa-
tion routines.

3. The use of persistent connections to eliminate time
spent in establishing and tearing down multiple
TCP//IP connections.

4. HTTP 1.1 mechanisms for chunking, a form of stream-
ing.

5. XML parsing techniques which minimize the number
of passes over the data.

We measured and analyzed the performance of SOAP mes-
saging with these techniques, starting out with a “mesh
interface object” consisting of an array of the form (int,
int, double). Differences in the performance improvements
the techniques provided on two different platforms led to
a more detailed examination of the processing of arrays of
doubles; such arrays are common in scientific computing
and their efficient handling is crucial. After our perfor-
mance optimizations, over 90% of the CPU cycles were
spent performing double-to-ASCII conversions for arrays
of 1000 or more doubles. Further improvements must come
from improving the numerical algorithms for these conver-
sions, rather than from improving the parsing of the SOAP
message per se. Our work also shows that users can readily
estimate the communications performance for their applica-
tions by measuring the performance of their functions that
convert strings to/from binary representations.

6 Recommendations

This work shows that for SOAP to support high perfor-
mance distributed scientific computing, the SOAP standard
will need to be modified or extended. One modification
would be to allow a user-specified “tolerance” for doubles
and floats. Our results show that on the IRIX platform the
conversion from binary to ASCII is very efficient, while that
used by Solaris and Linux are significantly slower. A major
reason for their large performance drop near full precision
(17 digits) is because the IEEE standard specifies round-
ing modes, causing the conversion functions to use multi-
precision libraries. The disadvantage of allowing users to



specify lower tolerances is that it departs from strict adher-
ence to the IEEE 754 numerical standard. However, pro-
gramming languages rarely provide mechanisms for users
to access features like setting rounding modes, and full ad-
herence would require the SOAP messages to also include
that information. Furthermore, high performance comput-
ing users are already accustomed to variations in results for
parallel programs resulting from, e.g., different summation
orders for dotproducts.

Another possibility is to use binary encoding of arrays
in SOAP. For scientific computations, this would provide
the single largest performance increase. Note that the
peak transmission rate on Linux is approximately

�����
dou-

bles/second, and with string conversion taking 90% of the
time this implies a transmission rate close to the maximum
possible on 100 Mb/sec Ethernet. So for array-dominated
scientific objects, such a binary encoding (combined with
the other optimizations we have introduced) would achieve
network-limited rates.

However, this means the protocol would no longer com-
ply with the SOAP standard. Even if all scientific com-
ponent writers agreed to such an extension, it implies that
components would not be interoperable with those being
developed by industry, e.g. Web Services-compliant instru-
ment components which scientific simulations might need
to access for input data.

Our work indicates that to maximize both interoper-
ability and performance, components need to be able to
use multiple communication protocols. A fully compliant
SOAP standard would be used initially to negotiate what
other protocols a remote component “understands.” Those
other protocols might include SOAP enhanced with binary
representations of arrays, a pure binary protocol, or even
parallel protocols for components consisting of parallel pro-
cesses. If the remote component cannot use any of those,
standard SOAP can still be used for communications.

References

[1] Aleksander Slominski. XML Pull Parser, visited 04-15-02.
http://www.extreme.indiana.edu/xgws.

[2] Climate Research Committee (E. J. Barron, D. S. Battisti, B.
A. Boville, K. Bryan, G. F. Carrier, R. D. Cess, R. E. Davis,
M. Ghil, M. M. Hall, T. R. Karl, J. T. Kiehl, D. G. Martinson,
C. L. Parkinson, B. Saltzman, R. P. Turco). Global ocean-
atmosphere- land system (goals) for predicting seasonal-to-
interannual climate. National Academy Press, Washington,
D.C., 1994.

[3] D. Box et al. Simple Object Access Protocol. Technical
report, IETF, 1999. http://www.ietf.org/internet-drafts/draft-
box-http-soap-01.txt.

[4] D. Box et al. Simple Object Access Protocol 1.1. Techni-
cal report, W3C, 2000. http://www.w3.org/TR/2000/NOTE-
SOAP-20000508/.

[5] D. Megginson et al. SAX 2.0: The Simple API for XML,
visited 07-01-00. www.megginson.com/SAX/.

[6] Erik Christensen, Francisco Curbera, Greg
Meredith and Sanjiva Weerawarana. Web Ser-
vices Description Lanaguage, visited 03-01-02.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[7] Ian Foster and Carl Kesselman. The GRID: Blueprint for a
New Computing Infrastructure. Morgan-Kaufmann, 1998.

[8] F. Illinca, J.-F. Hetu, and R. Bramley. Simulation of 3-
d mold-filling and solidification processes on distributed
memory parallel architectures. Proceedings of International
Mechanical Engineering Congress & Exposition.

[9] Madhusudhan Govindaraju, Aleksander Slominski,
Venkatesh Choppella, Randall Bramley, Dennis Gannon.
Requirements for and Evaluation of RMI Protocols for
Scientific Computing. In Proceedings of SuperComputing
2000, Dallas TX, 2000, November 2000.

[10] Network Working Group . Hypertext Transfer Protocol 1.0,
visited 03-04-02. http://www.ietf.org/rfc/rfc1941.txt.

[11] Network Working Group. Hypertext Transfer Protocol 1.1,
visited 03-04-02. http://www.ietf.org/rfc/rfc2616.txt.

[12] Robert A. van Engelen and Kyle A. Gallivan. The gSOAP
Toolkit for Web Services and Peer-To-Peer Computing Net-
works. In Proceedings of IEEE CC Grid Conference, 2002.

[13] T. Faber, J. Touch, W. Yue. The TIME-WAIT State in TCP
and its Effect on Busy Servers. In Proceedings of IEEE IN-
FOCOM, March 1999.

[14] The Apache XML Project. Apache AXIS, visited 05-01-02.
http://xml.apache.org/axis.

[15] William J. Cody, Jr. and Jerome T. Coonen and David M.
Gay and K. Hanson and David Hough and W. Kahan and R.
Karpinski and John F. Palmer and F. N. Ris and D. Steven-
son. A proposed radix- and word-length-independent stan-
dard for floating-point arithmetic. IEEE MICRO, 4(4):86–
100, Aug. 1984.

[16] World Wide Web consortium. Document object model, vis-
ited 7-15-99. http://www.w3c.org/DOM.

[17] World Wide Web Consortium. XML, visited 7-20-99.
http://www.xml.org.


