Requirements for and Evaluation of RMI Protocols for
Scientific Computing*

Madhusudhan Govindaraju, Aleksander Slominski,
Venkatesh Choppella, Randall Bramley, Dennis Gannon
Department of Computer Science
Indiana University
Bloomington, IN

Abstract

Distributed software component architectures provide a promising approach to the
problem of building large scale, scientific Grid applications [18]. Communication in
these component architectures is based on Remote Method Invocation (RMI) protocols
that allow one software component to invoke the functionality of another. Examples
include Java remote method invocation (Java RMI)[25] and the new Simple Object
Access Protocol (SOAP) [15]. SOAP has the advantage that many programming lan-
guages and component frameworks can support it. This paper describes experiments
showing that SOAP by itself is not efficient enough for large scale scientific applica-
tions. However, when it is embedded in a multi-protocol RMI framework, SOAP can
be effectively used as a universal control protocol, that can be swapped out by faster,
more special purpose protocols when large data transfer speeds are needed.

Key Words: Distributed computing, software component systems, communication
protocols, RMI, Java, SOAP.

1 Introduction

Distributed component systems [1, 23, 26, 27| for scientific and engineering computing can
potentially provide the same benefits that components do for business and financial com-
puting: seamless access to remote resources, plug-and-play software composition without
recompilation, access to specialized non-compute resources like data warehousing and vi-
sualization, and improved software reuse. Component systems also can provide a natural
milieu for large multidisciplinary research teams with pools of expertise distributed across
the country. However, scientific computing presents challenges not typically found in com-
mercial applications. In particular, the components encapsulate parallel programs sending
large, complex, and rapidly changing data objects.

*0-7803-9802-5/2000/$10.00 ©2000 IEEE.

Because of this, the underlying communications substrate plays a more critical role
than it does for commercial computing. The communication system must be capable of
high-performance messaging, efficiently using specialized high-speed networks like Abilene,
MREN, or ESNET when possible, using modern research protocols like quality of service
and source routing, and handling parallel-to-parallel component communications. Modern
communication systems are based on remote method invocation (RMI) protocols that allow
an object in one address space to invoke the methods of an object in another address space.
The desiderata for an effective RMI system include reliability, robustness, human accessibil-
ity, readily usable APIs in modern computer languages, interoperability across languages,
platforms, and component frameworks, and integration with the emerging Grid infrastruc-
ture [18] and standards like COM, OMG’s Corba Component Model and the DOE Common
Component Architecture [1] specifications.

Unfortunately, no single RMI system provides all of those features. The problem of
designing a “universal” RMI is difficult. The format of data and the protocol used to
exchange it is a determining factor in the degree of interoperability among applications. The
lack of a reliable, universally understood data-exchange format has long limited effective
communication between heterogenous systems. In recent months, XML [11] has emerged
as a standard for representing data in a platform-independent way. XML is essentially
a tree-oriented data representation language that is simple to generate and parse. Also,
HTTP has emerged as a simple, universally supported protocol for exchanging data over the
Internet. HTTP requests/replies are readily passed through firewalls and handled securely,
unlike the notoriously unsafe execution of arbitrary remote procedure calls (RPC) or RMI
code. Thus, moving XML data via HT'TP is an attractive way for distributed applications to
communicate with each other. SOAP does precisely that. By expressing RPCs independent
of platforms, it opens the possibility of implementing other architecture-specific protocols
in SOAP. In particular, this makes SOAP attractive as an intermediary protocol into which
other protocols can be easily translated — one reason why Microsoft has targeted SOAP as
an entry mechanism to the COM world [3].

The same feature that makes SOAP attractive causes a potential performance problem:
tagged data is sent as characters. By contrast, Nexus [17] is designed for high-performance
communications and when layered with HPC++ [19] presents to the user a complete RMI
system which can interoperate with Java [24]. However, Nexus has robustness problems and
the failure of a global pointer can lead to complete deadlock of the distributed computation.
Java RMI tends to be more robust, partly because of Java’s exception and error-handling
system. Java RMI is, however, a single-language protocol, and scientific computing relies on
languages like Fortran90, C/C++, and Matlab as well.

This paper addresses the following questions:

e What is the raw performance of SOAP when used as a foundation for a RMI system?

e How does SOAP performance compare with that of Java RMI and Nexus?

e Where are the bottlenecks in SOAP performance? Which are removable through better
implementations, and which are inherent in the protocol itself?

e Can a dynamic multi-protocol system be designed that achieves the benefits of several
runtime systems?

This paper addresses these questions and shows that SOAP can be used to build a reliable,
multi-protocol RMI system that can access desktop component technology like Microsoft
COM and other non-Java software components. However, when additional performance is
needed a multi-protocol approach allows a faster, more specialized protocol to be dynamically
inserted to move data. Several efforts have been started to extend SOAP to have security and
higher performance [2, 7] but at the cost of reducing its simplicity and universality. Many
modern scientific computing systems now involve multiple languages, using the strengths of
each where appropriate: Java for GUIs, Fortran for fast complex arithmetic, C/C++ for
operating system interactions, Matlab for rapid prototyping, etc. Analogously, our work
suggests that rather than try to extend a single communications subsystem to handle the
wide range of scientific computing requirements, the more effective solution is to use multiple
communication protocols.

2 Brief survey of RMI protocols

Although Java provides an interface for programming with sockets, typical applications re-
quire a higher-level protocol that can handle encoding and decoding of messages. Java RMI
25] is an API for remote method invocation — the invocation of a method in a remote object
by a locally resident object. The polymorphism inherent in method calls makes the Java
RMI API a more flexible alternative to RPC-based (Remote Procedure Call) APIs [30]. The
actual class implementing the method can be dynamically loaded into the running applica-
tion. The communication between the client and server is implemented by stub class on the
client end and a skeleton class on the server end. The stub converts the arguments of the
method invocation into a format used for transporting across the network to the remote ob-
ject (this process is called serialization), and assembled together back again by the skeleton
(deserialization) at the remote end. The result object is likewise serialized by the skeleton
and deserialized by the stub.

Nexus RMI [6] is an implementation of the Java RMI API that uses Nexus [17] as the
communication medium. Object serialization is achieved by adding public methods to seri-
alizable objects so that their private and protected fields can be accessed. Our experiments
(see Figure 4, for example) show that Java RMI is at least four times faster than Nexus RMI.
However the important feature of Nexus RMI is that it allows interoperability between Java
and C++ [6].

Several recent efforts have addressed the problem of improving RMI performance. Philippsen
et al. [28] have built drop-in replacements for JDK implementations that significantly improve
performance. Thiruvathukal et al. [29] use explicit methods for serialization and deserializa-
tion in order to read and write an object’s internal state. Manta [22] achieves impressive
performance for RMI based on transparent extensions of Java for distributed environments.
A native compiler generates efficient serial code and specialized serialization routines for
argument classes. As a result these classes avoid run-time inspection.

3 SOAP

SOAP is an object-oriented, Internet-based protocol for exchanging information between ap-
plications in a distributed environment. Box [4] provides a good basic introduction to SOAP
with some examples. SOAP is independent of the programming language, platform or trans-
port mechanism used for the exchange. SOAP’s interoperability arises from a simple syntax
based on XML (Extensible Markup Language [11]). Although HTTP (Hypertext Transfer
Protocol) is the most widely used transport layer for SOAP packets, which are XML docu-
ments, other protocols like SMTP or FTP can also be used. The SOAP message exchange
model consists of one-way transmissions from sender to receiver which can be combined to
be used as a request/response pattern. SOAP messages rely on XML Namespaces [8] and
the XML Schema definition language [9]. The XML encoding makes SOAP messages simple
to read and parseable by humans and machines alike, as testified by the plethora of XML
parsers in various languages running on multiple platforms.

3.1 Related efforts

The universality and extensibility of XML facilitates the use of SOAP as a basis for building
other higher-level services (e.g., protocols for service discovery, event subscription, message
queuing, etc.). One example is Microsoft Corporation’s Biztalk [12], a framework for secure
document and message exchange based on XML and MIME (Multipurpose Internet Mail
Extensions). Biztalk extends the SOAPv1.1 protocol and a BizTalk Document is a SOAPv1.1
message. The message body is a MIME document and the message header contains BizTalk-
specific entries.

In scientific computing, XSIL (Extensible Scientific Interchange Language [31]) is an
XML-based system that consists of a data format for describing scientific data and a mapping
into the Java object structure. XSIL provides a core set of basic elements, (tables, arrays,
streams etc.) that can be extended with user-defined data element types. A SOAP encoding-
style could permit XSIL to be transported in SOAP messages.

3.2 Remote procedure calls in SOAP

Remote procedure calls in SOAP are essentially client-server interactions over HTTP where
the request and response comply with SOAP encoding rules. The Request-URI (Universal
Resource Identifier) in HTTP is typically used at the server end to map to a class or an object,
but this is not mandated by SOAP. Additionally, the HT'TP header SOAPAction specifies
the interface name (a URI) and the name of the method to be called on the server. The
SOAP message is an XML document whose root element, the Envelope, specifies the overall
structure of the message, its intended recipient, and other attributes of the message. SOAP
specifies a remote procedure call convention, which includes the representation and format
to be used for calls and responses. A method call is modeled as a compound data element,
consisting of a sequence of fields (accessors), one for each parameter. A return structure
consists of the return value as well as the out and in/out parameters. SOAP encoding rules
specify the serialization for primitive and application-defined datatypes.

Figures 1 and 2 show the request and response structure of a remote procedure call
transported as an HTTP request carrying a SOAP payload.

POST /Temperature HTTP/1.1
Host: www.temperature-service.com
Content-Type: text/xzml
Content-Length: 357
SOAPAction: "http://weather.org/query#GetTemperature"
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:GetTemperature xmlns:m="http://weather.org/query">
<longitude>39W</longitude>
<latitude>62S</latitude>
</m:GetTemperature>
</SOAP-ENV : Body>
</SOAP-ENV:Envelope>

Figure 1: Example of a SOAP request sent via HTTP.

HTTP/1.1 200 OK
Content-Type: text/xzml
Content-Length: 343
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:GetTemperatureResponse xmlns:m="http://weather.org/query">
<centigrade>28.4</centigrade>
</m:GetTemperatureResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 2: Example of a SOAP response received via HTTP.

SOAP allows hierarchically structured queries and responses, and specifies serialization
of primitive string, numeric and date datatypes, and aggregates like arrays and vectors.
Sparse arrays, and protocols for sending parts of them are also supported. New types may
be defined using the <complexType> construct inside a schema definition.

Overall, SOAP provides many advantages. Unfortunately, its universality comes with a
performance penalty: XML messages are textual and so the sizes of its messages are signif-
icantly larger than protocols which send binary data. Since a distinguishing characteristic

of scientific computation is the need to handle large data sets, the performance of SOAP
relative to specialized protocols that can use binary representations is an important issue.
The next section tests SOAP performance relative to other communication protocols.

4 Performance results

A central issue in any system that relies on multiple protocols is finding break-even points —
to know when one method is preferable to another. In numerical computing such approaches
are called polyalgorithms [20], and the breakeven points can often be specified in terms of a
few parameters giving problem characteristics independent of the computing environment.
In communication systems, however, the issue is significantly more complex because of de-
pendence on hardware, networks, and software implementations. Particularly for SOAP
which is undergoing rapid development (for example, currently there is no publicly available
SOAP parser for C++), an extensive testing framework is required.

This section describes the framework used for performance tests, the tests performed and
observations on the results. The framework, written in Java, executes test programs that are
instrumented to automatically accumulate performance data over several runs in a common
format suitable for visualization and other processing. Plots showing data for the tests
performed are presented in the appendices. For each test, the mean value of accumulated
runs is plotted together with error bars corresponding to one standard deviation in each
direction.

Figure 3 summarizes the machines used in the tests. These machines range from typical
workstations to high-end servers. All the UltraSPARC machines were running SunOS v 5.7;
the Linux machines were running RedHat 6.2 with kernel version 2.2.16.

On the UltraSPARC’s, JDK 1.2 Solaris VM (build Solaris_.JDK_1.2.2_05a, native threads,
sunwjit), and JDK 1.3 Standard Edition (build 1.3.0-beta_refresh) with Java HotSpot(TM)
Client VM (build 1.3.0-beta_refresh, mixed mode) were used. On the Linux machines,
JDK 1.2 Classic VM (build 1.2.2.006, green threads, nojit) and JDK 1.3 Standard Edi-
tion (build 1.3.0beta_refresh-b09) with Java HotSpot(TM) Client VM (build 1.3.0beta-b07,
mixed mode) were used.

Java’s System.current TimeMillis() call was used for timing measurements. A high-resolution
clock was used for some tests on UltraSPARC systems. The tests were divided into sets A, B,
and C. Each set was executed on various combinations of machine configurations, hardware
environments, and protocols.

Data types used The experiments measured the roundtrip time for sending and receiving
a linked list object or an array of doubles between two machines. These two datatypes were
chosen as representative for scientific applications. Arrays account for the vast majority of
their data, and a linked list is challenging for serialization since it requires the RMI system
to keep track of previous references to avoid infinite loops. Linked lists have characteristics
common with data objects used in scientific computing, such as sparse matrices and trees
that support adaptive mesh refinement and N-body simulations. Each node in the linked
list was a simple object with the following data fields:

public class LinkEntry implements Serializable {

6

name Arch. CPU Mem /Swap(GB)
local Ultra-10 UltraSPARC-1I1i, 440MHz 0.256/ 1.1
sparcl0 | Ultra-10 UltraSPARC-11i, 400MHz 0.256/ 1.1

linux PC Pentium-III, 533MHz 0.256/ 0.5

linux PC Pentium-III, 533MHz 0.384/ 0.5

el0k Enterprise 10000 | Sixty UltraSPARC-II’s, 400MHz | 60/ 60

el0k Enterprise 10000 | Four UltraSPARC-II’s, 400MHz | 4/ 10

remote | Ultra-10 UltraSPARC-IIi, 440MHz 0.256/ 2

Figure 3: Specification of machines employed in experimentation

public long 1llong;

public short sshort;

public int iint;

public float ffloat;

public double ddouble;

public String sstring;

public LinkEntry nextLink;
b

The linked list sizes were varied from 10 to 10,000 nodes, while array sizes ranged from
10 to 50,000 entries. Although scientific computing now involves arrays several orders of
magnitude larger, these sizes sufficed for determining the relative RMI performances.

Protocol implementations The first RMI tested was Sun’s native implementation us-
ing the JRMP (Java Remote Method Protocol) protocol. The second protocol tested was
Nexus. Although Nexus RMI supports language-interoperability between Java and C++
and HPC++[6], tests were conducted just for Java.

The third protocol used was SOAP RMI, which is an early implementation of RMI based
on nanoSOAP, our implementation of a simple SOAPv1.0 serialization and deserialization
mechanism. SOAP RMI uses an XML-Schema specification of the server interface to generate
the associated stubs and skeletons. A remote object reference is an HT'TP URL along with
information that uniquely identifies the instance. The stubs and skeletons do not directly
interact with the SOAP implementation, but instead use a communication object which is
an abstraction that helps hide the underlying implementation of SOAP. This design is useful
as it allows run-time insertion of different SOAP implementations.

The tests were executed for only up to 10,000 objects. Memory limitations prevented
larger test sizes; for example, in Sun RMI the recursion stack depth of around 1000 was a
limiting factor. We were able to run bigger sizes only by adjusting the stack size option
(-Xss) for the Java virtual machine, which can affect performance.

4.1 Test sets

Test set A: Overall performance Test A computes the total roundtrip time for sending
and receiving aggregate objects. The parameters of the test include the type of the aggregate
(linked list or array), size of the object (number of items in the aggregate), client-server
pair, and protocol. The following client-server combinations were used: sparcl0-sparcl0,
linux-linux, el0k-e10k, all three involving two machines of the given architecture connected
by 100 Mb/s Ethernet LAN. The local-remote tests pair two UltraSPARC stations, one
at Bloomington, Indiana and the other at Indianapolis, connected by a 155 Mb/s WAN.
Appendices A and B give the full set of results for Test A, which are discussed below in
Section 4.2.

Test set B: Raw performance and protocol overhead The second set of experi-
ments measured serialization and deserialization performance of a linked list and an array
of doubles using Sun, Nexus, Apache SOAP and nanoSOAP serialization and deserialization
implementations. Apache SOAP [14] is a reference implementation of SOAP v1.1 based on
IBM’s SOAP4J implementation. The serialization and deserialization tests did not involve
any communication and so factor out network vagaries. Tests were performed for all of the
architectures. Appendices C and D contain figures showing the overall results for Test B.

Test set C: Gantt diagrams These tests measured the contribution of each phase in a
single RMI invocation roundtrip that sends and receives a linked list of 1000 elements. A
simple RMI example based on SOAP serialization and deserialization was instrumented to
identify the time-critical phases in a single remote method invocation and response roundtrip,
in part to identify any overlap or concurrency in the communication.

4.2 Observations

Figure 4 compares throughput for Sun RMI, Nexus RMI and SOAP RMI. The performance
was also compared to a transfer of serialized array and linked list data over a raw socket con-
nection. In general SOAP RMI is approximately ten times slower than Sun’s implementation,
not surprising considering the relative sizes of data that must be sent for the same object.
Surprisingly, SOAP RMI outperforms Nexus RMI for small data sizes (Figures 11 and 12).
For the linked list example, the cross-over point was around 10 nodes; for double arrays this
was around 100 elements. Since SOAP RMI is consistently slower in the corresponding seri-
alize/deserialize tests, this implies that the effect comes from buffering implementations and
possibly from the cost of conversion to network representations. It also implies that using
SOAP is not only acceptable for small messages such as control signals or small parameter
exchanges between remote components, but that SOAP is actually preferrable in some cases.

Sun’s native Java serialization and deserialization is closely tied to Java and not surpris-
ingly, turns out to be the most efficient of the four. Nexus’s serialization and deserialization
protocols are also binary, like Sun’s, but the serialization is designed to be interoperable
with C/C++, which adds some overhead to its performance relative to Sun’s native Java
serialization. Apache SOAP uses DOM [10] for deserialization. It provides the ability to

e10k_e10k Linked List Throughput
10 T T
—¥— nexusrmi
—¥— soaprmi
—k— socket
—k— sunrmi

bytes/sec

10

10 10 10 10
Nodes in Linked List

Figure 4: Roundtrip throughputs between E10Ks for linked list

plug-in different encoding-styles: Soapvl.l Encoding, literal XML and XMI (XML Meta-
data interchange [21]). The nanoSOAP implementation is a fast, simple implementation
of serialization and deserialization of Java into SOAPv1.0 encodings and it uses SAX [16]
for deserialization. Figure 6 shows that the size of a serialized data types in SOAP is
approximately ten times larger than in Sun native serialization. This increase in size is from
the translation of binary data into text. For example, in Java, each double takes 8 bytes.
The string representation in XML of a double with 16 digits of precision takes at least 16
characters (and so 16 bytes in UTF-8) in addition to the 17 bytes for the tags <double> and
</double>. Thus, each double serialized into XML could take at least 33 bytes. If the data
is transferred using Unicode, that estimate doubles. In any case, the overhead is at least a
factor of four larger in the XML representation of a double array. Since SOAP uses XML for
data representation, this overhead is intrinsic to the SOAP protocol and cannot be removed
by choosing a better implementation.

Serializing Java objects into SOAP-encoded XML data takes approximately ten times
more memory than the binary representation. Figure 5 compares serialization and dese-
rialization throughputs for E10K. Sun’s native serialization-deserialization is the fastest.
Nexus’s performance is comparable to Sun’s. Serialization and deserialization speeds for
SOAP-based (Apache SOAP and nanoSOAP) implementations are approximately 100 times
slower and their throughtputs are also a 100 times lower.

Some additional observations can be made from the experiments:

e The most significant defect of using SOAP for RMI is performance; just sending the

8-byte double in XML, <double> 3.141592653589793E+000 </double>, requires 40
bytes of data. Determining the precise performance penalty is important for deciding
when SOAP is appropriate. Figure 6 shows that SOAP’s data representation size in
general is about 10 times the size of binary representations.

e The asymptotic behavior between socket and Sun RMI (especially for the local-remote
test) is similar (Figure 11). This indicates that Sun RMI imposes a minimal overhead
for marshalling and unmarshalling of data.

e The nonmonotone behaviour of Nexus RMI (see Figures 11, or 12) appears consistently
and is statisticially significant. Since it does not appear in the corresponding serializa-
tion tests, this implies it is an artifact of how Nexus RMI handles buffers or its on-wire
data representation.

e There is a clear difference (a factor of 2-10) in performance between JIT-compiled and
interpreted code for Linux (Figure 9). Serialization in particular has small tight loops
that are readily amenable to compilation optimizations.

The Gantt diagrams from Test C in Figure 7 shows that costs of actual communication
and data copying are considerably smaller than time spent on serialization and deserialization
of XML encoded messages. Serialization and deserialization need to be the primary targets
for improving performance of SOAP-based protocols. The graph data suggests at least a
thirty percent improvement is possible if serialization and deserialization were pipelined. In
more detail, the time taken for the roundtrip linked list example may be divided into the
following segments:

e Serialization converts an object into its persistent state; SOAP uses XML as its se-
rialization format. Java RMI serialization is approximately 100 times faster than
nanoSOAP.

e Deserialization converts objects from their persistent state to their representation in
memory. Deserialization in SOAP involves parsing the XML representation of an
object and instantiating the object using reflection. In Java RMI deserialization the
class structure of the object being deserialized is already known. On the other hand, in
SOAP deserialization the class structure is learned as the XML is parsed. This coupled
with the already large size of the XML representation of the serialized object makes
the SOAP deserialization considerably less efficient. The Figures in Appendices C and
D show this dichotomy consistently.

e Buffer copying: Ideally, any distributed object protocol should ensure that there is
no copying of buffers from the network layer to the runtime system (i.e., zero-copy
protocol). However, for transporting SOAP over HTTP, the serializer output needs to
be copied into a buffer before sending it on the wire if the length of the stream is to
be sent as an HTTP header. The cost of copying is small and could be eliminated if
the content-length header is not sent.

e Network: RMI involves sending serialized representations of objects over a network.
The time taken for this is directly proportional to the size of the serialized representa-
tion for the low-latency networks and large objects used in the testing.

10

5 Multi-protocol design

The experiments show that SOAP has a significant performance penalty. Some of this is
inherent — SOAP must send larger amounts of data, and that cannot be reduced without
changing the protocol. Some of it may be reduced by better implementation of phases
like deserialization, although the constraint of handling arbitrary complex data objects will
bound the performance enhancements. Furthermore, performance is only one capability to
consider in selecting communication protocols. Java RMI has the advantage of allowing
users to quickly incorporate capabilities like database interfaces, compression, encryption,
and visualization, but Java RMI is limited to a single language. Earlier work [13] showed that
Nexus can provide high-speed data transfers between two C+-+ components, but suffers from
robustness problems for long-running applications. Java RMI has outstanding performance,
but the limit on its recursion stack depth prevents it from being used on arbitrarily-sized
data unless the application-level user does chunking — a significant burden to place on an
applications scientist.

In distributed scientific computing component systems, applications are started up on re-
mote machines and wired together dynamically while some parts are running. Components
may be migrated to other machines during runtime based on resource availability and net-
work load. In this context the choice of protocol depends on dynamically changing factors:
size of the data, security policies, dynamic reconfiguration of component wiring, quality of
service requirements, etc. A component may be connected to several components at any
given time, each possibly using a different protocol. In this case, universal connectivity is
important. As an example, the Common Component Architecture Toolkit (CCAT) system
[5] is a framework that connects scientific computing components in C, C++, Java, and
Fortran. Components are dynamically created, connected, disconnected, and terminated. A
component also can be a remote instrument like an X-ray crystallography data collector, or
distributed databases. Messages between components range from short packets for lifecycle
maintenance or setting internal parameters up to gigabyte data transfers. Components can
represent extremely long-running or expensive services, for which robustness is critical.

5.1 Design of a Multi-Protocol RMI System
A multi-protocol RMI system should have the following properties:

Provide a common-denominator protocol.

Architect a common RMI API to different protocols.

Provide the user with the ability to dynamically switch between protocols.

Enable dynamic discovery of protocols.

Implement reliable RMI in a heterogenous environment through a failsafe mechanism.
Use meta-information (XML Schemas) to define component interfaces.

Automatic generation of stubs and skeletons from component meta-information.
Allow high-speed, large data transfers.

SOAP RMI addresses many of these criteria except the last, and as the experiments
have shown, for small data sizes SOAP can be faster than Nexus. Having character-based

11

messages, SOAP RMI provides a central, universally accessible protocol that can be readily
translated into other protocols. Combined with XML Schemas it is a lingua franca for
meta-information.

Figure 8 shows the top level design of a proposed multi-protocol RMI system. Our current
testbed supports Java RMI, Nexus RMI and Soap RMI. SOAP RMI is the default protocol
that all clients and servers are expected to support. However the testbed is designed to
accommodate any RMI system. RMI consists of two parts: publication and discovery of
remote services (the bind and lookup operations), and data transfer between the client and
server via invocation of the remote method. The testbed system requires a registry for each
supported protocol. However, clients need to be aware of the existence of just one registry,
the SOAP RMI registry, as SOAP RMI is the default protocol.

A client can specify the protocols it supports to the protocol-suite. The protocol-suite
maintains two lists: the first list has the protocols that the server supports and the second has
the protocols that the client supports. When a client invokes a method on a remote reference,
the method is actually invoked on the meta-stub. The meta-stub queries the protocol-
suite to decide which protocol to use. The protocol-suite does a simple match between the
client-list and the server-list to determine the protocol to be used for the current method
invocation. The protocol can therefore be switched on a per-remote-method call basis. The
client can however override this mechanism and fix the protocol to be used before the method
invocation. The implementation provides mechanisms so that any policy can be used by the
client for protocol selection.

6 Conclusions

We analysed the performance of SOAP and the role it can play in distributed object com-
ponent systems. As expected, SOAP RMI is usually much slower than Java RMI and
Nexus RMI, usually by a factor of about ten. Surprisingly, it can be faster than the high-
performance protocol Nexus RMI for small messages. Since its serialization and deserializa-
tion times are always larger than Nexus’s, the faster speed is attributable to what happens
between the client and server, including conversions to network representations. In spite of
this the XML messages SOAP uses are inherently unsuitable for bulk data transfers.

Although the performance break-even point occurs for small messages, SOAP’s interoper-
ability across heterogeneous environments makes it a valuable ingredient for a multi-protocol
environment. Human readability of SOAP packets makes SOAP a useful protocol during
development and debugging. Since SOAP’s simplicity lends itself to robust implementations,
it should be used as a failsafe mechanism, or as a protocol for exception management. In
general, because no single protocol is suitable for all situations in scientific computing, a
multi-protocol system is needed that can benefit from the strengths of each one.

This multi-protocol design is being integrated into the Common Component Architecture
Toolkit framework. The first step is a C++ implementation of SOAP RMI so that it directly
interoperates with Java and C++ based components. Fortran components use existing
Fortran-C++ interfaces to access messages, while Matlab uses its Java interface.

12

7

Acknowledgements

This work was supported in part by DARPA, the DOE2000 project, the NCSA Alliance, and
the NSF NGS project Kenneth Chiu helped with statistical evaluation of raw benchmark
data and shared his insight about performance issues on Solaris.

References

1]

[7]

8]

[9]

[10]

[11]

R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. Mclnnes, S. Parker,
and B. Smolinski. Toward a Common Component Architecture for High-Performance
Scientific Computing. In Proceedings of the 8th IEEE International Symposium on High
Performance Distributed Computation, August 1999.

John J. Barton and Satish Thatte. Soap messages with attachments, July 7, 2000.
http://static.userland.com/weblogsCom/
gems/soapweblogscom /soapMessagesWith Attachments.html.

Don Box. Lessons from the component wars: An xml manifesto.
http://msdn.microsoft.com/workshop/xml/articles/xmlmanifesto.asp.

Don Box. A Young Person’s Guide to The Simple Object Access Protocol:
SOAP Increases Interoperability Across Platforms and Languages, visited 07-26-00.
http://msdn.microsoft.com/msdnmag/issues/0300/soap/soap.asp.

Randall Bramley, Kenneth Chiu, Shridhar Diwan, Dennis Gannon, Madhusudhan
Govindaraju, Nirmal Mukhi, Benjamin Temko, and Madhuri Yechuri. A component
based services architecture for building distributed applications. In Proceedings of Ninth
IEEFE International Symposium on High Performance Distributed Computing Confer-
ence, Pittsburgh, August 1-4 2000.

Fabian Breg, Shridhar Diwan, Juan Villacis, Jayashree Balasubramanian, Esra Akman,
and Dennis Gannon. Java RMI performance and object model interoperability: Experi-
ments with Java/HPC++. Concurrency and Ezperience, 1998. Presented at 1998 ACM
Workshop on Java for High-Performance Network Computing.

David Burdett. Requirements for xml messaging, visited 07-01-00.
http://www.ietf.org/internet-drafts/ /draft-ietf-trade-xmlmsg-requirements-00.txt.
World Wide Web Consortium. Namespaces in XML, 1-14-99.

http://www.w3.org/TR/REC-xml-names/.

World Wide Web Consortium. XML Schema (Parts 1 and 2), 4-7-00.
http://www.w3.org/TR/xmlschema-1/.

World Wide Web consortium. Document object model, visited 7-15-99.
http://www.w3c.org/DOM.

World Wide Web Consortium. XML, visited 7-20-99. http://www.xml.org.

13

[12] Microsoft Corporation. BizTalk Framework 2.0 Draft:
Document and Message Specification, visited 07-01-00.
http://msdn.microsoft.com/xml/articles/biztalk /biztalkfwv2draft.asp.

[13] S. Diwan and D. Gannon. Adaptive resource utilization and remote access capabilities
in high-performance distributed systems: The Open HPC++ approach. Journal of
Cluster Computing, 2000.

[14] J. M. Duftler, S. Weerawarana, and F. Curbera. SOAP For Java, visited 7-01-00.
http://www.alphaworks.ibm.com /tech/soap4f.

[15] D. Box et al. Simple Object Access Protocol 1.1. Technical report, W3C, 2000.
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

[16] D. Megginson et al. Sax 2.0: The simple api for xml, visited 07-01-00.
www.megginson.com/SAX/.

[17] 1. Foster, C. Kesselman, and S. Tuecke. The Nexus Approach to Integrating Multi-
threading and Communication. J. Parallel and Distributed Computing, 37:70-82, 1996.

[18] Ian Foster and Carl Kesselman. The GRID: Blueprint for a New Computing Infrastruc-
ture. Morgan-Kaufmann, 1998.

[19] D. Gannon, P. Beckman, E. Johnson, and T. Green. Compilation Issues on Distributed
Memory Systems, chapter 3 HPC++ and the HPC++Lib Toolkit. Springer-Verlag,
1997.

[20] E.N. Houstis, J.R. Rice, and R. Vichnevetsky. Intelligent Mathematical Software Sys-
tems. North-Holland, 1990. Proceedings of the first IMACS/IFAC International Con-

ference on Expert Systems for Numerical Computing, Purdue University 5-7 December
1988.

[21] IBM. XML Metadata Interchange, visited 07-15-00. http://www-
4.ibm.com/software/ad/standards/xmi.html.

[22] Jason Maassen, Rob van Nieuwpoort, Ronald Veldema, Henri E. Bal, and Aske Plaat.
An efficient implementation of Java’s remote method invocation. In Proceedings of the
7Tth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP, pages 173-182, May 1999.

(23] Microsoft. COM, visited 4-1-2000. http://www.microsoft.com/com.
[24] SUN Microsystems. The Java Programming Language. http://java.sun.com/.

[25] Sun Microsystems. Java Remote Method Invocation, visited 07-01-00.
http://java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html.

[26] SUN Microsystems. Java Beans, visited 4-15-00. http://java.sun.com/beans/.

14

[27) OMG. Corba Component Model, visited 1-11-2000. http://www.omg.org/cgi-
bin/doc?orbos/97-06-12.

[28] Michael Philippsen, Bernhard Haumacher, and Christian Nester. More efficient serial-
ization and RMI for Java. to appear in Concurrency: Practice and Ezrperience, 2000.

[29] George K. Thiruvathukal, Lovely S. Thomas, and Andy T. Korczynski. Reflective
remote method invocation. Concurrency: Practice and Ezperience, 10(11-13):911-926,
1998.

[30] J. Waldo. Remote Procedure calls and Java Remote Method Invocation. IEEE Con-
currency, pages 5—7, 1998.

[31] Roy Williams. XSIL: Java/XML for Scientific Data, 7-00.
http://www.cacr.caltech.edu/SDA /xsil.

15

e10k Linked List Serialize/Deserialize

10* L LS A AN T
—— apachesoap Serialize 3
— nexus Serialize j
10° H — nanosoap Serialize E
—— sun Serialize 3
—— apachesoap Deserialize]
102 H nanosoap Deserialize -
— sun Deserialize E
10 b 4
10° b

Ll

Time (sec)
=
O\
A
T

Ll

107 5
10°F 3
107k E
10°F 3
10°° N L P P e
10° 10 10° 10° 10* 10°
Nodes in Linked List
e10k Linked List Serialize/Deserialize Throughput
10° 3 E
—— apachesoap Serialize
t —— nexus Serialize
10°L —k— nanosoap Serialize 4
—k— sun Serialize
r —¥— apachesoap Deserialize
L nanosoap Deserialize
7 —k— sun Deserialize B
10°¢
O
$10°F E
[E
Q E
s L
o b
10° L **/‘(—*‘**\4\ i
10* 3 4
10° 3 E
102 Lt s P | s P | s P | s N
10" 107 10° 10* 10°

Nodes in Linked List

Figure 5: Serialization-deserialization for linked list on E10K (top: speed, bottom: through-
put).

16

Size in Bytes of Linked List

10 ———— . T 7
* MiniSoap-Link *
O ApacheSoap-Link % *
107 Nexus-Link i
0 Sun-Link *
Q 1]
a
a
10° o E
Q u]
0 ¥
210 9
)
g ¥ ;
a
10* ¥ E
®
=]
=]
o
103 [n] 4
10? . N | . N | . N | . A
10" 10° 10° 10* 10°
Nodes in List
. Size in Bytes of Array of Doubles
F 1
o
o o
[m]
10°F E
r [m]
(@]
o)
4
10 o
0 (@]
g 0 ?
@ o)
5 (0]
10 !
:; o a8 * MiniSoap—Array
o O ApacheSoap—-Array
Nexus—-Array
[n} O Sun-Array
107 1
10t . N | . N | . N | -
10" 10° 10° 10* 10°

Elements in Array

Figure 6: Serialization-deserialization sizes for linked list (top) and array (bottom) on E10K.

17

30~ ServerSending .

330 Server-Serialization L
320 } Server Preparing Packet
240 } Server Enters Send Skefeton
230 } Server Disassembte-Packet
20— scveOeseriafizaton
215 . Server Buffering

% 210 i Server Receiving

G440~ Chent Extracting Rewr Value
430 ——Client Disassemble Packet |
420 —Client Deserialization |
410 —tistening— NG
140 I ciient Sending

130 - Cicnt Serialization
120 ——Gﬁem'PTepaliug Packet

110 I I I I I I I I I I

0.5 1 15 2 25 3 35 4 45 5
Elapsed Time

o

Figure 7: Gantt diagram for roundtrip for linked list of size 1000 on sparcl0

18

NexusRMI Registry

SoapRMI Registry

JavaRMI Registry

A

\

)

)

A

Y

MetaLookup Object

MetaBind Object

i \ Server i
Protocol
Y Table 4
Client Server
\ Client
\
A Protocol A
Table
Y
Selection
Meta Stub » Logic
i \\ Protocol Suite
v 4 Sa y v X
Nexus | |[Soap Java Java Soap Nexus
RMI RMI RMI | » RMI RMI RMI
Stub Stub Stub Skel Skel Skel

Figure 8: Multi-protocol design

19

A Overall RoundTrip Time Plots

| linux_linux Array Performance) linux_linux Linked List Performance
10 T T 10 T T
— nexusrmi — nexusrmi
—— soaprmi —— soaprmi
— socket — socket
—— sunrmi —— sunrmi
10° E 10 / E
107 E 10° b E
o o
Q Q
2 2
0] 0]
£ £
= =
107 E 107 E
10°F E 107} E
10740 ‘1 ‘2 ‘3 ‘4 5 10730 ‘1 ‘2 ‘3 ‘4 5
10 10 10 10 10 10 10 10 10 10 10 10
Entries in Array Nodes in Linked List
. linux-jdk13_linux-jdk13 Array Performance s linux-jdk13_linux-jdk13 Linked List Performance
10 T T 10 T T T
— nexusrmi — nexusrmi
—— soaprmi —— soaprmi
— socket — socket
—— sunrmi —— sunrmi
107 E 10° E
/\‘(’I/
g = S g
& 2 — 20t
o107 o . E 2 10 E
£ il £
= /) =
/
/s
N
10°F E 107 E
I
10740 ‘1 ‘2 ‘3 4 10730 ‘1 ‘2 ‘3 4
10 10 10 10 10 10 10 10 10 10
Entries in Array Nodes in Linked List

Figure 9: Roundtrip times from Linux to Linux on a LAN.Left side: Arrays; Right side: Linked
Lists; Top: JDK1.2; Bottom: JDK1.3.

20

| sparc10_sparc10 Array Performance sparc10_sparc10 Linked List Performance

10 T T 10° T T
—— nexusrmi —— nexusrmi
— soaprmi —— soaprmi
— socket — socket
—— sunrmi —— sunrmi
, 10 E
100 ¢ E
10° £ E
10’ E
o) o)
Q Q
N [UBC
° o 10 E
£ £
F F
107 E
107 E
10°F E .
10°F E
10" | | | | 10 | | | |
10° 10' 10° 10° 10* 10° 10° 10' 10° 10° 10* 10°
Entries in Array Nodes in Linked List
| sparc10-jdk13_sparc10-jdk13 Array Performance) sparc10-jdk13_sparc10-jdk13 Linked List Performance
10 T T 10 T T T T
—— nexusrmi —— nexusrmi
—— soaprmi —— soaprmi
— socket — socket
—— sunrmi —— sunrmi
, 10 E
100 ¢ E
10° £ E
10’ E
oy o)
Q Q
2 (B
° o 10 E
£ £
F F
107 E
107 E
10°F E .
10°F E
10" | | | | 10 | | | |
10° 10' 10° 10° 10* 10° 10° 10' 10° 10° 10* 10°
Entries in Array Nodes in Linked List

Figure 10: Roundtrip times from sparcl0 to sparcl0 on a LAN.Left side: Arrays; Right side:
Linked Lists; Top: JDK1.2; Bottom: JDK1.3.

21

. e10k_e10k Array Performance s e10k_e10k Linked List Performance

10 T T 10 T T
— nexusrmi — nexusrmi
— soaprmi —— soaprmi
— socket — socket
—— sunrmi —— sunrmi
10° E
107 E
107 E
o o
Q Q
&, 2 2
o 10 9]
£ £
= =
107 E
¥
T
10°) — .
10° —
10740 ‘1 ‘2 ‘3 ‘4 5 10740 ‘1 ‘2 ‘3 ‘4 5
10 10 10 10 10 10 10 10 10 10 10 10
Entries in Array Nodes in Linked List
| local_remote Array Performance) local_remote Linked List Performance
10 T T 10 T T
— nexusrmi — nexusrmi
—— soaprmi —— soaprmi
— socket — socket
—— sunrmi —— sunrmi
10*
10° E
10°
o o
Q Q
RS 2
010°F 9]
£ £
= =
10"
107 E
107
10730 ‘1 ‘2 ‘3 ‘4 5 10730 ‘1 ‘2 ‘3 ‘4 5
10 10 10 10 10 10 10 10 10 10 10 10
Entries in Array Nodes in Linked List

Figure 11: Roundtrip times between Sun E10K’s on a LAN (top)and remote Sparc’s (bottom).
Left side: Arrays; Right side: Linked Lists.

22

B Overall throughput plots

10

—— nexusrmi
—— soaprmi
—#— socket
— sunrmi

bytes/sec
=
15)

sparc10_sparc10 Array Throughput
T

10! 10° 10* 10°
Entries in Array
; e10k_e10k Array Throughput
10 T T

—— nexusrmi
—— soaprmi
—#— socket
— sunrmi //*

10

bytes/sec
=
S

10

Figure 12: Roundtrip throughputs between Sparc 10’s on LAN (top) and E10K’s (bottom),

Entries in Array

arrays (left) and linked lists (right).

sparc10_sparc10 Linked List Throughput

10

—k— nexusrmi
—— soaprmi
—#— socket
— sunrmi

i /

bytes/sec
=
15}

104

T T
%

—

10

10! 10° 10° 10* 10
Nodes in Linked List
; e10k_e10k Linked List Throughput
10 T T
—k— nexusrmi
—+— soaprmi o
—— socket —
— sunrmi */*’ B
10°

bytes/sec
=
S

10'%

10
10

23

10° 10
Nodes in Linked List

10

for

C Serialize/Deserialize time plots

linux Array Serialize/Deserialize

10 ‘ : 10° I \ \
— apachesoap Serialize — apachesoap Serialize
— nexus Serialize — nexus Serialize
— nanosoap Serialize — nanosoap Serialize
10° | — sun Serialize . i , || sun Serialize .
— apachesoap Deserialize 10" H — apachesoap Deserialize g
nanosoap Deserialize nanosoap Deserialize
— sun_ Deserialize — sun_ Deserialize
10’ E
10° 1
~107F | _
[5))
Q Q
N &, 2
° 010 b
£ £
F otk i =
-4
10+ q
107]\\\L d ﬁ
-6
; — 10°F N
10760 ‘1 ‘Z ‘3 ‘4 10780 ‘1 ‘Z ‘3 ‘4
10 10 10 10 10 10 10 10 10 10 10 10
Number of Array Entries Nodes in Linked List
| linux-jdk13 Array Serialize/Deserialize) linux-jdk13 Linked List Serialize/Deserialize
10 T T 10 T T T
— apachesoap Serialize — apachesoap Serialize
— nexus Serialize — nexus Serialize
o || — nanosoap Serialize , || — nanosoap Serialize
100§ sun Serialize 3 100§ sun Serialize 3
— apachesoap Deserialize — apachesoap Deserialize
nanosoap Deserialize nanosoap Deserialize
w0t— sun Deserialize | 100 L= sun Deserialize)
—
107} 1 _ E 107 E
8 . T g .
S 10 — I E o107 E
E I~ E
= - =
-
_—
07 1 4 10°L i
10°F 4 107 4
107 E 107 E
1077 0 : 1 : 2 ‘ 3 4 1076 0 1 ' 2 3 4
10 10 10 10 10 10 10 10 10 10

Number of Array Entries

linux Linked List Serialize/Deserialize

Nodes in Linked List

Figure 13: Serialization-deserialization times for Linux machines using JDK1.2 (top) and JDK1.3
(bottom), for arrays (left) and linked lists (right).

24

| sparc10 Array Serialize/Deserialize sparc10 Linked List Serialize/Deserialize

10 T T T 10° T T T
apachesoap Serialize — apachesoap Serialize
nexus Serialize — nexus Serialize
nanosoap Serialize 10° H— nanosoap Serialize E
10° H sun Serialize i ~—sun Seridlize
apachesoap Deserialize — apachesoap Deserialize
nanosoap Deserialize 10° H nanosoap Deserialize <
sun Deserialize — sun_ Deserialize
-1
10 F E| 0tk i
10 & 4
~107F E
%) %)
7] 7]
2 [P
° 010 ¢ E
£ £
otk il = .
10°F E
-3
10°E B 10 E
107 E
10°F E
10° E
g _ - L
" 1 I — ; —
10 5 L \\\\\H\l L \\\HHZ L \\\HH\G L \\\HH\A L \\\HHS 10 S L \\\\\H\l L \\\HH\Z L \\\HH\G L \\\HH\A L \\\HHS
10 10 10 10 10 10 10 10 10 10 10 10
Number of Array Entries Nodes in Linked List
| e10k Array Serialize/Deserialize . €10k Linked List Serialize/Deserialize
10 T T T 10 T T T
apachesoap Serialize — apachesoap Serialize
nexus Serialize g — nexus Serialize
0 nanosoap Serialize 10° | — nanosoap Serialize E
10" { sun Serialize 3 ~——sun Serialize
apachesoap Deserialize — apachesoap Deserialize
nanosoap Deserialize 10° H nanosoap Deserialize <
10" sun Deserialize | — sun Deserialize /
10 E
-2
10°F E!
10° b E

Time (sec)
=
S,
I
Time (sec)
=
S

; 107 4
107 4
107} E
10°F 4
107 4
-6 T
10°F | i
10°F 4
10’7 L L L L 10’6 L L L L
10° 10* 10° 10° 10* 10° 10° 10* 10° 10° 10* 10°
Number of Array Entries Nodes in Linked List

Figure 14: Serialization-deserialization times for Sparc (top) and E10000 (bottom), for arrays (left)
and linked lists (right).

25

D Serialize-deserialize throughput plots

sparc10 Array Serialize/Deserialize Throughput

sparc10 Linked List Serialize/Deserialize Throughput

T T T T T
9
ol ~—] 10°¢ E
¥ —¥— apachesoap Serialize
—¥— apachesoap Serialize — nexus Serialize
—— nexus Serialize % 1080 — nanosoap Serialize 4
—#— nanosoap Serialize —%— sun Serialize
10°F — sun Serialize 4 —+— apachesoap Deserialize
—+— apachesoap Deserialize nanosoap Deserialize
nanosoap Deserialize 10k —k sun Deserialize 4
—k sun Deserialize
7
10 ¢ E
" —
2 ///M —* 2 105 L 4
2 2
" "
g g
B B
Qo Qo
6
10°F E 10°k i
10'k E
10°F E
10°F E
10t E
| | | | 10° Lt | | |
10' 10° 10° 10* 10' 10° 10° 10*
Number of Array Entries Nodes in Linked List
e10k Array Serialize/Deserialize Throughput €10k Linked List Serialize/Deserialize Throughput
T T T T T T T
* . =
] \ 10° |
10 ¢ E —
— — apachesoap Serialize
* * —*— apachesoap _Se_nallze —+ nexus Serialize
e —k nexus Serialize 1% —— nanosoap Serialize 4
— nanosoap Serialize —#— sun Serialize
1% A k= sun Serialize . i —*— apachesoap Deserialize
P —#— apachesoap Deserialize nanosoap Deserialize
* nanosoap Deserialize 10k —= sun Deserialize 4
—k sun Deserialize
10'F E T e
% # ¥ —
8 gk ‘* g 10°k - E
B B
Q Q
> =
a a
10°F E |
e
*/// —
105 = - 777;777*”””%5— —% Bl E
_
/%,,*%7777***‘*]
10°'F / E|
| | | | 107 Lt | | |
10* 10° 10° 10* 10° 10* 10° 10° 10* 10°
Number of Array Entries Nodes in Linked List
Figure 15: Serialization-deserialization throughputs for Sparc (top) and E10000 (bottom), for

arrays (left) and linked lists (right).

26

