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ABSTRACT 
A search engine returned result page may contain search results 
that are organized into multiple dynamically generated sections in 
response to a user query. Furthermore, such a result page often also 
contains information irrelevant to the query, such as information 
related to the hosting site of the search engine. In this paper, we 
present a method to automatically generate wrappers for extracting 
search result records from all dynamic sections on result pages 
returned by search engines. This method has the following novel 
features: (1) it aims to explicitly identify all dynamic sections, 
including those that are not seen on sample result pages used to 
generate the wrapper, and (2) it addresses the issue of correctly 
differentiating sections and records. Experimental results indicate 
that this method is very promising. Automatic search result record 
extraction is critical for applications that need to interact with 
search engines such as automatic construction and maintenance of 
metasearch engines and deep Web crawling.  

1. INTRODUCTION 
A recent survey reveals that there are hundreds of thousands of 
search engines on the Web [8]. Many web applications, such as 
metasearch engines [18, 26], deep web crawlers [20] and shopping 
agents, need to interact with search engines. Thus there is a 
demand to develop automated tools (wrappers) to extract search 
result records (SRRs) from the HTML result pages returned by 
search engines. Some search engines, like Google and Amazon, 
have web services interfaces, which make automated extraction 
easier. But a vast majority of search engines do not have web 
services interfaces and there is no incentive for them to develop 
such interfaces because they support B2C (business to customer) 
applications only. We also note that XML has been used to deliver 
web data in many applications. However, almost all search engines 
still present their search results in HTML format. Therefore, 
applications that need to harvest data from the search results of 

search engines must deal with the problem of extracting results 
presented in HTML files.  

A typical search engine result page contains static, semi-dynamic 
and dynamic contents. In this paper, static contents refer to the 
portion that is query independent, i.e., they are identical on the 
result page of every query. Dynamic contents are the SRRs 
retrieved in response to a query. Each SRR is a semantically 
complete data unit corresponding to a retrieved entity (e.g., a book 
or a document). A SRR typically consists of a link to a retrieved 
Web page or database record (or further details about the SRR) and 
some pertinent information (snippet). If there is no ambiguity, the 
word “record” also refers to SRR in this paper. Semi-dynamic 
contents are those that may be affected by different queries but are 
generally independent of the content of any specific query. For 
example, in Figure 1, “Your search returned 578 matches” can be 
considered as semi-dynamic as its general format is independent of 
user queries and the dynamic component (the number of matches) 
is not directly related to the content of the query. As another 
example, section header “Encyclopedia” is semi-dynamic because 
it is common for all queries that retrieve at least one record from 
the Encyclopedia data repository of the search engine. If no result 
is retrieved from the Encyclopedia for a particular query, then this 
entire section, including the section header, will not be displayed. 
“Click here for more …” is also semi-dynamic as it appears only 
for sections that have more than five records. 

Intuitively, a dynamic section on a search result page is a set of all 
SRRs that appear consecutively and have certain common features 
such as a common header and a common display format. Many 
search engines produce result pages with multiple dynamic 
sections. For example, some search engines categorize or cluster 
search results (Figure 1) and some search engines display regular 
search results and sponsored links in different dynamic sections. A 
significant percentage of the search engines return result pages 
with multiple dynamic sections. For example, 19 out of the 100 
search engines from the dataset in [29] produce result pages with 
multiple dynamic sections.  
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In general, complete data extraction from web pages (including 
result pages returned from search engines) may consist of three 
tasks. The first is section extraction, i.e., extract all the sections 
from each page; the second is record extraction, i.e., extract the 
records within each section; and the third is data annotation, i.e., 
identify and annotate each data unit within each record. Existing 
work on data extraction (wrapper generation) has been mostly 
focused on record extraction (see the Related Work section) and 
some work on data annotation has also been reported (e.g., [24]). 
However, to the best of our knowledge, the section extraction 



problem as considered in this paper has not been explicitly studied 
before. 

In this paper, we investigate how to automatically extract all 
dynamic sections as well as SRRs within each dynamic section 
from search result pages. The emphasis is on dynamic section 
extraction. Static and semi-dynamic contents are utilized to help 
identify the boundaries of different dynamic sections. For the rest 
of this paper, when there is no confusion, “dynamic section” and 
“section” will be used interchangeably. An important requirement 
for our method is to maintain the section-record relationship, i.e., 
the extracted SRRs should be grouped by section. This requires 
that the sections be explicitly extracted. The benefit of keeping the 
section-record relationship is to make it easier to use them later as 
different applications may be interested in the SRRs in different 
sections. 

 
 

Figure 1. Part of a sample result page with  
multiple sections from healthcentral.com 

 
The task of automatically constructing a wrapper to extract all 
dynamic sections from the result pages of a search engine is 
challenging because the following problems need to be solved: 

• Non-uniform section format problem: Our observation 
indicates that even on the same result page, some dynamic 
sections may have the same format while other dynamic 
sections may have different formats. The lack of a general 
pattern for the sections on a result page makes it more difficult 
to extract the sections. Many researchers have studied the 
problem of automatic record extraction and the proposed 
techniques heavily depend on the fact that these records have 
similar patterns/formats [5, 15, 29]. Due to the non-uniformity 
of the section formats, the techniques proposed for extracting 
records cannot be directly applied to extracting sections.  

• Section-record granularity problem: Some consecutive 
sections with the same format may be mistakenly extracted as 
records while some large records may be incorrectly extracted 
as sections. In this paper, we refer the problem of correctly 
differentiating sections and records as the section-record 
granularity problem. 

• Hidden section extraction problem: Because dynamic sections 
may be query dependent, different result pages returned by the 
same search engine may contain different dynamic sections. A 
direct consequence of this phenomenon is that the 
sample/training pages that are used to generate the wrapper 
(extraction rules) may not contain all possible dynamic 
sections that the search engine may produce. In this paper, we 
call the problem of extracting sections that are unseen from 
training pages the hidden section extraction problem. 

<H T M L>
                 <H EA D > 
                 <BO D Y> 
                                  
                                 <T BO D Y> 
                                                 <T R> 
                                                 <T R> 
                                                 <T R> 
                                                                < T D > 
                                                 <T R>                     Your search returned 578 matches. 
                                                 <T R>               
                                                                < T D >           
                                                                                 <B> 
                                                                                             Ency clop edia 
                                                 <T R>                                           
                                                                 <T D >                 
                                                                                 <FO N T >       
                                                                                             1. 
                                                                 <T D >                  
                                                  <T R>                     <A >            
                                                                                             <FO N T >       
                                                                                                             K nee Injury  –Ency c …  
                                                                                 <BR>  
                                                                                 <FO N T >                 
                                                                                                 K nee Injury  
                                                 <T R> 
                                                   
  

Figure 2. Part of a DOM tree for the page in Figure 1 

The main contribution of this paper is the development and 
evaluation of a fully automatic and novel section extraction 
method that explicitly aims to tackle all of the above problems. 
The basic solution of our method first employs two independent 
techniques to identify potential dynamic sections and then merges 
these sections to obtain more accurate sections. To tackle the non-
uniform section format problem, the techniques for identifying 
potential dynamic sections do not utilize the similarities between 
sections. To tackle the section-record granularity problem, we 
propose a novel technique based on analyzing the inter-record 
distances and section cohesions. To tackle the hidden section 
extraction problem, we introduce the concept of section family. 
Another feature of our method is that it utilizes both tag structure 
information and the visual content information of each result web 
page. In addition, we also consider the issue of extracting the 
records within each section. Our record extraction method has no 
constraint on the minimum number of SRRs that must be in a 
section for the SRRs to be extracted. In contrast, current techniques 
require at least two or more records in a single section [15, 29]. 
Our experimental results indicate that our solution is quite 
effective. Automatic extraction of SRRs from search engine 
returned result pages is a critical technique for crawling/mining 
data from the deep web as the data in the deep web are largely 
hidden behind the search interfaces of deep web search systems. 

The rest of this paper is organized as follows. Section 2 presents a 
result page layout model. Section 3 provides an overview of our 
solution. Section 4 introduces the various content features on result 
web pages as well as various measures that are defined based on 
these features. These features and measures will be used by our 
extraction method. Section 5 discusses the details of our proposed 
solution to the section extraction problem. Section 6 reports the 
experimental results. Section 7 reviews related works. Section 8 
concludes the paper. 



2. RESULT PAGE LAYOUT MODEL 
For a given search engine, search result pages are usually produced 
by a script program. The designer of the program has a layout plan 
for all the contents on the result pages. This layout plan is 
essentially the result page schema of the search engine, which can 
be represented as (D, S, SD, L), where D, S and SD are dynamic 
sections, static contents and semi-dynamic contents, respectively, 
and L is the layout relationship between these sections/contents. 
Let D = (S1, …, Sm) be all the possible dynamic sections a result 
page may have based on the result page schema. Each Si will be 
called a section schema. An individual result page is an instance of 
the result page schema and a specific section is an instance of a 
section schema. It is possible that some section schemas have no 
instances on a particular result page (e.g., if no result is retrieved 
for a particular section). 

While the contents on a result page are laid out in a two-
dimensional space when the page is rendered on browsers, they 
can be represented in a one-dimensional space. DOM trees are 
widely used to represent web pages (see Figure 2 for an example). 
Non-tag contents, which are generally viewable contents on a 
browser, are leaves in DOM trees. A preorder traversal of a DOM 
tree of all non-tag contents will yield a sequence of the non-tag 
contents. Based on this view, the layout relationship L becomes a 
sequence of sections (Figure 3 provides an illustration, where the 
static sections form the template). 

 

sec tio n s 

reco rd s 

tem p la te  

Figure 3. Sections, records, and template 
We are interested in extracting all dynamic sections and the 
records within them only. If, for a given search engine, we can 
identify all sections with the correct order and construct a wrapper 
to extract the records for each section, then the list of wrappers 
with the same order as the sections will be a complete description 
of the rules for extracting sections as well as records from the 
result pages returned by the search engine. 

To facilitate people locating information, search engine result 
pages often place special information at the boundaries of a section. 
We will call such information as section boundary markers (SBM) 
in this paper. Based on the one-dimensional representation of web 
page content, a section may have a left boundary marker (LBM) 
and a right boundary marker (RBM). In Figure 1, “Encyclopedia” 
and “Click Here for More…” are the LBM and the RBM of the 
first section, respectively.  

SBMs could help extract sections and records they contain if they 
can be correctly identified. In some cases, SBMs are a must for 
correct section extraction. Consider the sample page in Figure 1. 
The LBM of each section is the section header (e.g., 
“Encyclopedia” for the first section). Since all sections on this 
page have exactly the same tag structures, without considering the 
SBMs, correctly extracting these sections would be very difficult, 

if not impossible. Our investigation based on the result pages of 
200 search engines shows that 96.9% of the sections have explicit 
boundary markers. How to accurately identify these boundary 
markers is an important problem we need to solve in this paper. 

Our section extraction method tries to generate section wrappers 
by identifying SBMs first. Experiments shows that this strategy 
can achieve promising performance. 

3. SOLUTION OVERVIEW 
Figure 4 shows the system overview of our solution. Our wrapper 
generation algorithm will be called MSE (for Multiple Section 
Extraction). The input to MSE is a set of n sample result pages 
from a search engine SE. These result pages are returned from SE 
in response to n different queries. The output of MSE is a wrapper 
(a set of rules) for extracting all dynamic sections (DSs) as well as 
all SRRs within them.  

Web 
Pages 

MRE

DSE

Refining 
MRs and DSs 

Refined Section 
Instances 

Record Mining 
From DSs

Section Instances 
Clustering 

Wrapper 
Building 

Wrapper family 
Building 

Section 
Wrappers

Checking Granu-
larity for  MRs

Figure 4. System overview 

MSE consists of the following steps: 

1. Render each result page and extract its content lines by a 
preorder-traversal of the DOM trees. We assign a line number 
(1, 2, …) to each content line.  

2. Extract record sections that contain multiple records from each 
result page. These sections will be called multi-record sections 
and denoted as MRs and the algorithm for extracting MRs will 
be denoted as MRE (for MR Extraction). (Note: The MRs 
identified by algorithm MRE may contain MRs with static 
contents and MRs with incorrect boundaries. In addition, 
sections that contain less than three records are generally not 
identified by MRE.) 

3. Identify dynamic sections (DS) by applying algorithm DSE 
(for DS Extraction). In order to perform this task, we need to 
identify candidate section boundary markers (CSBM) on each 
page. (Note: Some DSs identified by DSE in this step may be 
incorrect due to the difficulty to correctly identify all the 
SBMs.) 

4. Refine MRs and DSs by analyzing their relationships. (By 
comparing MRs with DSs, MRs containing static contents can 
be identified and discarded, and some incorrect boundaries of 
MRs and DSs can be corrected. Note that, in order to deal with 
the non-uniform section format problem, neither MRE nor 
DSE assumes there is a common format/pattern among 
different sections when performing section extraction.) 



5. Mine SRRs from DSs that have no corresponding MRs. (These 
DSs include sections that contain less than three SRRs. As a 
result, even a single SRR could be extracted from a section.) 

6. Check identified sections and records to see if they are 
correctly identified. (This is to tackle the section-record 
granularity problem.)  

7. Group extracted section instances from all sample result pages 
into clusters such that each cluster corresponds to the same 
section schema of the result page schema of the search engine. 

8. Generate the extraction wrapper for each section schema based 
on the section instances in the corresponding cluster. 

9. Generate section families, each of which is a class of section 
schemas that share some common features. (Section families 
are introduced to tackle the hidden section extraction problem.) 

Step 1 has already been discussed in our previous work [29] and 
will not be repeated in this paper. The details of the remaining 
steps will be provided in Section 5. 

4. BASIC CONTENT FEATURES OF 
RESULT PAGES 
In this section, we introduce the features that can be found from 
typical search result pages and are useful to our section extraction 
method. Among the tag structure features presented in Section 4.1, 
tag paths will be used in wrapper description to locate the sections, 
and are also used in DSE and section instance clustering to 
compare the contents on different web pages; the tag tree edit 
distance and tag forest edit distance are used for record mining. 
Section 4.2 presents basic visual features such as content lines, 
block, shape, etc, which are mainly used in MRE. We combine the 
tag structure features and visual features in Section 4.3 and Section 
4.4 to define the line distance, record distance, inter-record 
distance, record diversity and section cohesion. They are used for 
record mining and for differentiating sections and records. In 
section 4.5, we introduce section boundary markers, which can 
precisely bound sections and will be used in DSE, section refining, 
section instance clustering and wrapper building. 

4.1 Tag Structure Features 
A DOM tree of an HTML web page is a rooted, ordered, and 
labeled tree. Figure 2 shows part of the DOM tree of the web page 
in Figure 1 (many tag nodes are omitted for simplicity). 

All viewable content fragments on the rendered web page on a 
browser have a corresponding tag structure underneath. For each 
record, or section, we may extract its underneath tag structure, 
which normally is a tag forest. For example, the tag structure 
within the dotted ellipse in Figure 2 is the tag forest of the first 
record in Figure 1. For each section, there exists a minimum sub-
tree t in the DOM tree of a result page such that all SRRs in the 
section are located in t. Each SRR corresponds to a sub-forest in t.  

A node in a DOM tree can be located by following a path from the 
root to the node. Such a path is called a tag path in [29] (which is 
similar to an XPath). A tag path consists of a sequence of path 
nodes. Each path node pn consists of two components, the tag 
name (i.e., a tag node) and the direction, which indicates whether 
the next node following pn on the path is the next sibling of pn 

(indicated by “S”, called S node) or the first child of pn (indicated 
by “C”, called C node). The tag path of the text “Your search 
returned 578 matches” in Figure 2 is “{HTML} C {HEAD} S 
{BODY}C{TABLE}S{TABLE}S{TABLE}C {TBO DY}C {TR} 
C{TD}S{TD}S{TD}S{TD}C{TABLE}S{TABLE}S{TABLE}C{
TBODY}C{TR}S {TR}S{TR}C{TD}C”.  

Clearly, any node n on a DOM tree can be located by following the 
tag path of n. Compact tag path was proposed in [29] to remove 
“noises” on the original path, making it more robust when 
matching paths from the DOM trees of different pages. Two 
compact tag paths are compatible if and only if they contain the 
same sequence of C nodes. Let <c11, c12, … c1n> and <c21, c22, … 
c2n> be the sequences of C nodes of two compatible tag paths tp1 
and tp2, let sn(cii, cij) denote the number of S nodes between C 
nodes cii and cij, we define the distance between tp1 and tp2 as: 
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Since the underneath tag structure of any viewable content 
fragments on the rendered web page is (part of) a tag forest, we 
define a metric to measure the similarity between two tag forests. 
We use Dtt(t1,t2) to denote the tree edit distance [9] between two 
tag trees t1 and t2 normalized by the size of the larger tree between 
t1 and t2. Each tag forest tf can be considered as a string (ordered 
list) of tag trees <t1, t2, … tk>. We use Dtf(tf1, tf2) to denote string 
edit distance [24] between two tag forests tf1 and tf2 normalized by 
the length of the longer list between tf1 and tf2. 

4.2 Visual Content Features 
HTML tags convey rich semantics for web content presentation. 
Tag attributes and styles enrich web content further. Web data 
extraction techniques that use tag structures only will surely miss 
many important features of HTML. In this subsection, we 
introduce some visual content features that can be extracted from 
rendered web pages and used to improve data extraction 
performance. 

In this paper, we follow the method in [29] and define content lines 
as the basic constructs to capture visual features. One big 
advantage of using lines instead of tokens (like in many other 
studies) as the basic constructs is that a line consisting of multiple 
tokens has more precise semantic meaning than individual tokens 
(analogous to the relationship between phrases and individual 
words). A content line cl is a group of characters that visually form 
a horizontal line in the same section on the rendered page. Eight 
content line types (e.g., text line, link line, HR-line, etc.), each with 
a type code, are defined in [29] to capture the basic appearances of 
content lines. Also the left-most x coordinate of a content line on 
the rendered page is called the position code of the content line. 
One or more consecutive content lines form a block B, which is an 
ordered list <cl1, cl2, …, clk> such that cli represents the ith content 
line in B. Any search result record on a rendered web page is a 
block. For each block, a block shape (the left contour of the block 
as defined by the position code sequence of its member content 
lines) and block type code (the sequence of type codes of the 
content lines) can also be defined to capture the appearance of the 
block [29]. 



Based on the above concepts, the similarity between two blocks 
can be measured in terms of type distance, shape distance and 
position distance (Please see [29] for details.) 

In this paper, we introduce text attribute to capture more 
information about content lines. For a piece of text on a rendered 
web page, its text attribute represents the font (arial, times new 
roman, etc), size, style (plain, bold, and italic) and color (red, black, 
etc) of the text. Each text attribute ta is a quaternion <f, w, s, c>, 
where f, w, s and c represent font, size, style and color, respectively.  

A content line cl may contain texts with different text attributes. A 
set {ta}, denoted la, is defined to represent line text attribute. Each 
member ta is a text attribute in cl. We define the line text attribute 
distance between the line text attributes la1 and la2 of two content 
lines as: 

),max(21 21

211),( lala
lalalalaDtal I−=  (2) 

We use an ordered list < la1, la2, …, lak>, denoted as ba, to further 
represent the text attribute of a block <cl1, cl2, …, clk>, where lai is 
the text attribute set of cli. The block text attribute distance Dbta 
between the text attributes ba1 and ba2 of two blocks B1 and B2 is 
defined as the string edit distance between ba1 and ba2.  

4.3 Line Distance, Record Distance, Inter-
Record Distance 
Consider two content lines cl1 and cl2, with type codes tc1 and tc2, 
position codes pc1 and pc2, and line text attributes la1 and la2, 
respectively. The type distance Dtl between cl1 and cl2 is a value 
between 0 to 1 based on tc1 and tc2. The position distance Dpl is 
defined as K * log(1+|pc1 – pc2|); currently K is set to 0.127, which 
will restrict Dpl to be between 0 to 1 in most cases. The line text 
attribute distance is Dtal(la1, la2) as defined in Formula 2 above. In 
this paper, we define the line distance between cl1 and cl2 as 
follows: 

DtaluDpluDtluclclDline ×+×+×= 32121 ),(  (3) 

where u1, u2 and u3 are non-negative real numbers satisfying u1 + 
u2 + u3 = 1. 

Each record is a block. We have defined tag forest distance Dtf, 
block type distance Dbt, block shape distance Dbs, block position 
distance Dbp and block text attribute distance Dbta. We normalize 
block type distance in [29] to between 0 and 1, and we modified 
the block shape distance and block position distance definitions in 
[29] to normalize their values as well. Now we can define the 
record distance between two records r1 and r2 as follows: 

DbsvDbtvDtfvrrDrec ×+×+×= 32121 ),(  

DbtavDbpv ×+×+ 54    
(4) 

where v1, v2, v3, v4 and v5 are non-negative real numbers satisfying 
v1 + v2 + v3 + v4 + v5 = 1. 

For a section S with n records <r1, r2, …, rn>, we compute the 
average distance between the records in S to measure the inter-
record distance of S, denoted as Dinr(S). This distance will be 
used in Section 4.4 to introduce an important measure for our 
method. 
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4.4 Record Diversity and Section Cohesion 
A section S can be considered as a list of records or a list of 
content lines. After the content lines are obtained, we face the 
question of how to correctly partition/group these content lines into 
records. Previous works [5, 11, 15, 29] use DOM tree structures to 
find a tag structure as a separator to create a partition. There are 
two potential problems with these methods. First, consecutive 
records may be mistakenly combined into a big record. Second, a 
correct record may be wrongly split into several small false-
records. In this paper, we solve the content line partition problem 
differently by using a measure called section cohesion, such that 
the higher the cohesion of a partition is, the more likely the 
partition is correct.  

Our cohesion definition is based on the following observations: the 
records within a section tend to be similar to each other, while the 
lines within a record tend to be dissimilar to each other. To 
measure the degree of dissimilarity of the lines in a record, we 
define record diversity based on the line distance defined in 
Formula 3. More specifically, for a given record r with content 
lines <l1, l2, … lm>, its record diversity Div(r) is defined as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑ ∑

−

= += 2
),()(

1

1 1

m
ljliDlinerDiv

m

i

m

ij

 (6) 

The inter-record distance defined in Formula 5 measures the 
overall record similarity among all records of a section. Thus we 
have the following definition for the cohesion of a section S with 
records <r1, r2, …, rn>: 
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In summary, a good partition of a section should have high record 
diversity and low inter-record distance. With the concept of section 
cohesion, a new approach for partitioning content lines into records 
can now be used, i.e., by finding the partition with the highest 
cohesion. This method does not need to identify separators based 
on the tag structures. Alternatively, if different candidate 
separators exist, this approach can be used to determine which 
separator is most likely to be correct, i.e., the one that leads to the 
partition with the highest section cohesion. 

4.5 Section Boundary Marker 
We define the section boundary markers (SBMs) of a section S as 
content lines that are not members of any sections, and are located 
closest to S on the result page. More specifically, we define the left 
(right) section boundary marker LBM (RBM) of S as the content 
line that is not a member of any sections, and is located closest to S 
on the beginning (ending) side. SBMs are important for identifying 
dynamic sections. Our method for finding SBMs will be discussed 
in Section 5.2. 
 



5. SECTION WRAPPER BUILDING 
In this section, we provide the details of Steps 2-9 (see Section 3) 
of our dynamic section extraction algorithm. 

5.1 MR Extraction with MRE 
The MRE algorithm is revised from the ViNTs algorithm in [29] 
and is briefly reviewed here for the convenience of the readers. For 
each result page, it identifies consecutive content line patterns that 
occur more than two times. The pattern here refers to the sequence 
of content line types and positions. Then the list of content lines is 
partitioned into blocks by an identified pattern, such that each 
block contains the pattern and the pattern is located at the ending 
part of the block. There will be n different partitions if there are n 
patterns. For each partition, the extracted blocks are grouped by 
putting consecutive and visually similar [29] blocks into the same 
group. In this way, we obtain a set of groups, which are candidate 
sections, whose member blocks are candidate records. 

Candidate records may be real records, but they may also be blocks 
containing content lines from different records, or even false 
records. ViNTs algorithm [29] then identifies the first line of 
record within the content lines of each candidate record. Clearly, if 
the first lines of some consecutive records can be correctly 
identified, these records can also be correctly identified. Then the 
tag path to each identified first record line is used to represent the 
corresponding candidate record. Next, tentative wrappers are built 
from each set of three tag paths of every three consecutive 
candidate records. Each tentative wrapper goes through a 
verification process to see if it should be kept. Finally, verified 
wrappers are refined by finding appropriate section boundaries. 
The wrapper building, refining and verification steps of MRE are 
the same as in ViNTs [29]. 

We call the sections generated by applying tentative wrappers 
tentative multi-record sections (MRs), and they normally contain 4 
or more records. Next, we merge tentative MRs: if two MRs 
overlap considerably, we merge them into one group. We then 
apply a wrapper selection algorithm similar to the one in ViNTs to 
find the best MR for each MR group. Those best MRs are the 
extracted multi-record sections. 

The main difference between MRE and ViNTs is that ViNTs 
assumes there is only one (major) MR to be extracted, while the 
goal of MRE is to extract all MRs on a web page. Thus ViNTs 
compares all tentative MRs to find the best one as the major MR, 
while MRE groups tentative MRs by the screen areas they occupy, 
and then find out the best MR for each tentative MR group. 

Using only MRE to extract MRs has four potential problems. First, 
the boundary problem, i.e., some records near the two boundaries 
of an MR may be incorrectly extracted. Second, sections with less 
than three records will not be extracted. Third, some extracted 
sections may contain static contents with repeating patterns. Fourth, 
some extracted MRs may mistakenly take consecutive sections 
with the same format as records, and some large records may be 
incorrectly extracted as sections. In this paper these problems will 
be dealt with in subsequent steps to be described in the following 
subsections. 

5.2 Identifying DSs with DSE 

In this section, we present the DSE algorithm (Figure 5) for 
identifying DSs. This algorithm consists of two main steps: the 
first step (lines 1-11) identifies CSBMs (candidate SBMs) and the 
second step (lines 12-13) identifies DSs based on the CSBMs.  

DSE works on a pair of rendered sample result pages <p1, p2> at a 
time. Let L1 and L2 represent the content line sets of p1 and p2. We 
first clean semi-dynamic content lines by removing dynamic 
component(s) (lines 1-2). In order to identify SBMs that are semi-
dynamic in nature but have dynamic components, we need to 
remove these dynamic components from all content lines. For 
example, content line “Your search returned 578 matches” in 
Figure 1 has a dynamic component “578” (it is query dependent) 
and it needs to be removed in order to match a possible content 
line, say “Your search returned 89 matches”, on another result 
page. To achieve this, we remove all numbers and query terms 
(which were used to retrieve the result page) from all content lines. 
From now on, we consider only content lines with dynamic 
components removed. 

 

 

 

 

 

 

 

 

 

 

 
 

Algorithm DSE(L1, L2) 
1 for each line l ∈ L1 or L2
2     clean_line(l);     /* remove dynamic components */ 
/* Identify CSBMs */ 
3 for each line l ∈ L1
4     mc(l) = find_most_compatible_line(l, L2); 
5 for each line l ∈ L2
6     mc(l) = find_most_compatible_line(l, L1); 
7 for each line l ∈ L1 or L2
8     if (l = mc(mc(l))) then 
9         mark_as_CSBM(l); 
10 filter_CSBMs(L1); 
11 filter_CSBMs(L2); 
/* Identify DSs based on found CSBMs */ 
12 identify_DSs(L1); 
13 identify_DSs(L2); 

Figure 5. Algorithm DSE 

Next we identify tentative CSBMs (lines 3-9). We begin by 
identifying matching content lines from L1 and L2 such that they 
are likely to be SBMs. SBMs are typically static contents or semi-
dynamic contents on result pages. As a result, these content lines 
are likely to appear in both L1 and L2. Because the SBMs on the 
result page of a search engine are part of the template of the result 
page, the corresponding SBMs from two result pages of the same 
search engine usually have compatible tag paths. Thus procedure 
find_most_compatible_line(l, L) first finds the content lines in L 
that have the same text content as l and their tag paths are also 
compatible to l’s tag path. As l might match multiple content lines 
in L, the procedure returns the line with the smallest tag path 
distance (see Formula 1) to l as the most compatible line of l, 
denoted mc(l). To reduce false match, a content line l is recognized 
as a tentative CSBM if the most compatible line of mc(l) is l itself 
(lines 7-9). In other words, we only recognize content line pairs (l1, 
l2), l1 ∈ L1 and l2 ∈ L2, that satisfy mc(l1) = l2 and mc(l2) = l1, as 
tentative CSBMs.   

The algorithm next proceeds to filter out false tentative CSBMs. 
Some strings (patterns) that appear in many records in a section 
may lead to false SBMs. For example, in the result pages returned 
by Amazon.com, “Buy new: $XXX.XX” occurs frequently and it 



would be recognized as a tentative CSBM by the above process. 
The procedure filter_CSBMs(L) checks tentative CSBMs of L 
against the MR set extracted from the page of L. If a tentative 
CSBM appears in all member SRRs in any MR, it is removed.  

The second step (lines 12-13) of the DSE algorithm is to identify 
DSs based on the CSBMs found in the first step. The procedure 
identify_DSs(L) works as follows. First, the list of content lines of 
the page is partitioned into segments, such that each segment G 
satisfies the following conditions: (1) G contains consecutive 
content lines that are either all CSBMs or all non-CSBMs; and (2) 
G is not a proper sub-segment of any possible segment satisfying 
condition 1. The segments that contain consecutive content lines 
but are not CSBMs are recognized as (candidate) DSs. Each DS 
has a LBM (left boundary marker) and a RBM (right boundary 
marker), which are CSBMs and are not part of the DS. 

5.3 Refining MRs and DSs 
Now we have a set of MRs and a set of DSs. Each MR has the 
following properties: it contains three or more candidate records, 
which may not necessarily be correct (especially for records near 
the boundaries); the tag structures (tag forests) of member records 
are siblings in a common sub-tree of the DOM tree; the tag 
structures of all member records are similar; and, the content of 
records may be static or dynamic. As for each DS, its contents are 
always dynamic but its records have not been identified; its 
candidate LBM and RBM have been identified, but some of them 
may be incorrect.        

 

1. MR=DS 2. MR⊃DS 3. MR⊂DS 4. MR∩DS≠∅  5. MR∩DS=∅

Figure 6. Five cases of relationships between MRs and DSs 
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Figure 7. Case 4 in details 

Recall that our goal is to extract records from DSs. If a DS 
contains at least three records, then it should match an extracted 
MR. Note that MRs and DSs are obtained independently using 
different techniques. The main idea of the refining process is to 
utilize matching MRs and DSs to help obtain the correct 
boundaries for both MRs and DSs. We analyze the relationships 
between MRs and DSs based on the screen areas they occupy on 
the rendered page. Five cases can be identified as shown in Figure 
6: (1) an MR matches a DS exactly; (2) an MR contains some DSs; 
(3) a DS contains some MRs; (4) an MR intersects with a DS, and 
(5) an MR has no overlap with any DS, or a DS has no overlap 
with any MR. 

Case 1 reflects a perfect match. In this case, we have high 
confidence that the MR and DS both have correct boundaries. We 
keep such MRs and their records become the records in the 
corresponding DSs. For other cases, further work is needed. We 

discuss Case 4 and Case 5 only here as Cases 2 and 3 can be 
similarly handled as Case 4. 

For Case 4 (see Figure 7), three parts are identified: the extra MR 
part (EM), the overlapping part (OL) and the extra DS part (ED). 
Since the records in OL are verified by both MR and DS, we have 
high confidence that they are correct. The basic idea of our 
solution for finding the correct boundaries for DS and MR is based 
on the assumption that the records within the same section (either 
MR or DS) are similar and should have small record distances. 
More specifically, we achieve our goal by comparing the records 
in OL with the records in EM and ED. The algorithm for Case 4 is 
sketched in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm Refine_MR_DS_4(MR, DS) 
1 partition MR ∪ DS into three disjoint sets {EM, OL, ED}; 
   /* Dealing with EM part. */ 
2 while ∃ br ∈ EM and LBM ∈ br /*LBM is the LBM of DS */
3      if Davgrs(br, OL) > W * Dinr(OL) /* LBM is verified */ 
4          adjust MR by discarding EM; break;   
5      else  /* LBM is false */ 
6          find a new LBM in EM; 
   /* Dealing with ED part. */ 
7 while ED ≠ Φ 
8      form tentative records T: {rt1, rt2, …, rtk} from ED; 
9      find rt* ∈ T with smallest Davgrs(rt*, OL); 
10    if Davgrs(rt*, OL) ≤ W × Dinr(OL) 
11         add rt* to MR and truncate ED; 
12    else break; 
13 if ED ≠ Φ  
14     take ED as a new DS; 

Figure 8. Refining MR and DS: Case 4 

Since the LBM of the DS is the content line immediately before 
the first content line of the DS, there is a record br in EM that 
contains the LBM of the DS. To determine if the current LBM is 
correct, we compute the average record distance between br and all 
the records in OL, denoted as Davgrs(br, OL), based on the record 
distance Drec (Formula 4). If Davgrs(br, OL) > W * Dinr(OL), 
where Dinr(OL) is the inter-record distance between the records in 
OL (see Formula 5) and W is a parameter (1.8 is currently used), 
we consider br to be a record not matching the records already in 
the DS. As a result, we confirm the correctness of the LBM. And, 
accordingly, we truncate MR by discarding EM. Otherwise the 
LBM is considered to be incorrect. In this case, we find a new 
LBM for the DS. The new LBM is the CSBM immediately before 
the discarded LBM. We then adjust the EM (it becomes smaller) 
based on the new LBM. This process is repeated until a LBM is 
verified or the EM becomes empty.  

The ED contains a list of content lines <l1, l2, …, lk>. We try to 
form a tentative record by using l1. Then another tentative record 
by using l1 and l2 together, then another tentative record by using l1, 
l2 and l3 together, etc. By repeating this process, we will have k 
tentative records {rt1, rt2, …, rtk}, where rti consists of <l1, l2, …, 
li>. For each rti, we compute Davgrs(rti, OL), the average record 
distance between rti and all records in OL. Let rt* be the tentative 
record with the smallest Davgrs. If Davgrs(rt*, OL) ≤ W × 
Dinr(OL),  we accept rt* as a record in MR and adjust the ED 
accordingly, and then check the new ED in the same manner. If 
Davgrs(rt*, OL) > W  × Dinr(OL), we stop right here and if the 



remaining ED is not empty, we form a new DS based on remaining 
ED for further processing (see Section 5.4). 

As for Case 5, we discard the MRs that do not overlap with any DS 
because they are static items with repeating patterns. We keep all 
DSs (including the newly formed DSs) that do not overlap with 
any MRs because they are dynamic content for sure. These DSs 
usually have less than three records and cannot be detected by the 
MRE algorithm described in Section 5.2. 

In Section 5.4, we consider how to extract records from these DSs. 

5.4 Mining Records from DSs 
A DS consists of consecutive content lines with none of them 
being CSBMs. We introduce an algorithm to mine records from a 
DS. An advantage of the algorithm is that it does not require the 
input DS to contain multiple records. It has the potential to identify 
even a single record in a DS. 

We use tag forest separators (follow the approach in [29]) to 
partition the content (a tag forest) in a DS into records. The 
algorithm first tries to identify all possible tag forest separators, 
and then select the best partition as output. 

Suppose there are m partitions corresponding to m tentative tag 
forest separators. We need to select the best partition to turn the 
DS into an MR with a set of records. The main idea of our 
selection criteria is based on the definition of section cohesion in 
Section 4.4 (Formula 7). We compute section cohesions for all 
partitions and select the partition with the highest cohesion as the 
record mining result. 

Based on Formula 7, if a DS has just one record, the partition that 
produces the entire DS as a single record is likely to be selected. 
Thus the algorithm has the ability to find the only record in a DS. 

At the end of this step, every DS is turned into an MR (i.e., the 
records within the DS have been identified) and some MRs may 
have less than 3 records, and the SBMs of the DSs become the 
SBMs of the corresponding MRs.  

5.5 Solving Section-Record Granularity 
Problem 
The MRs generated by MRE and the refining step may have the 
section-record granularity problem. There are two cases. First, 
some consecutive sections with the same format may be 
mistakenly considered as records and grouped together to form an 
MR, or some consecutive records in one section may be 
mistakenly combined as one large single record. We refer to such a 
problem as oversized-record problem. Second, some large records 
may be incorrectly extracted as sections. This is referred to as the 
splitting-record problem. The splitting-record problem also refers 
to the situation where some record in an MR is incorrectly split 
into two or more smaller records while the section MR itself is 
correctly identified.  

To deal with the oversized-record problem, for a given MR, we 
check its largest record LR (having largest number of content lines) 
first. We apply the records mining algorithm described in Section 
5.4 in an attempt to mine records from LR. If only one record can 
be found in LR, we assume there is no oversized-record problem 
for this MR. Otherwise, we keep the newly mined small records 

and keep checking other large records in this MR. Still, we need to 
differentiate the case of sections being considered as records with 
the case of consecutive records being combined into a single 
record while the section is correctly identified. For the former case, 
we need to partition the original MR and recognize each record as 
a section. While for the latter case, we only need to adjust the 
record partition in the original MR. 

Let <R1, R2, …, Rn> represent the original MR. We check each pair 
of consecutive records. Without lose of generality, let R1 and R2 
represent the two consecutive records in question. Suppose after 
record mining, R1 consists of small records <r11, r12, ..., r1u> while 
R2 consists of small records <r21, r22, ..., r2v>. If R1 and R2 are 
actually sections, there should be some kind of visual 
representation, such as SBMs, a space, etc., to let the user separate 
them visually. While normally the case involving SBMs can be 
taken care of by the refining process described in Section 5.3, it is 
reasonable to think that there should be a special tag structure 
between R1 and R2 to separate them in all cases. Since R1 and R2 
are consecutive, such a special tag structure must be either part of 
the last small record r1u in R1, or part of the first small record r21 in 
R2, which will make r1u or r21 special. To detect this property, we 
compute the inter-record distance between the small records in R1 
and R2, referred to as Dinr(R1) and Dinr(R2) respectively. Then we 
compute the average record distance between r21 and all the 
records in R1, denoted as Davgrs(r21, R1), and the average record 
distance between r1u and all the records in R2, denoted as 
Davgrs(r1u, R2). If Davgrs(r21, R1) > W × Dinr(R1) or Davgrs(r1u, 
R2) > W × Dinr(R2), where W is a parameter (1.8 is used currently), 
we recognize R1 and R2 as actually sections, and we adjust the 
original section MR accordingly, i.e., R1 and R2 are removed from 
MR. Otherwise we use the mined small records to replace the 
original big record in the MR. 

Now we deal with the splitting-record problem. There are also two 
sub-cases: the sub-case where some large records are extracted as 
sections, and the sub-case where a record is split into smaller 
records while the section is correctly identified. We present how to 
check the existence of the latter case for each MR first.  

Let <r1, r2, …, rn> be the records in the MR that contains a possible 
large record L in question. We consider all the records in MR 
together rather than only those in L. Note that <r1, r2, …, rn> 
represent one possible way of partitioning MR into records. We 
tentatively combine each pair of two consecutive records as one 
possible large record: <r1, r2> as the first record,  <r3, r4> as the 
second record, etc. By doing that, we have a new record partition 
of MR. We do this for each three, four, … and n consecutive 
records to get a series of new partitions of MR. Then we compute 
the cohesion of each partition using Formula 6. If a partition P 
other than <r1, r2, …, rn> has the highest cohesion, we would take 
P as the partition of MR. 

Note that records in all MRs have been checked by the above step. 
Then we check the existence of the case where large records are 
extracted as sections. If there exists a set of consecutive MRs that 
are siblings under the same sub-tree of the DOM tree, and all MRs 
in the set consist of only one record, then these sections are likely 
to be large records mistakenly recognized as sections. In this case, 
we form a new section with each original section in the set as a 
record and remove the original sections. 



5.6 Grouping Section Instances of the Same 
Section Schema 
At this stage, we have a set of refined MRs for each sample page. 
To improve reliability, an MR on one sample page is certified only 
if it matches with an MR in at least another sample page. All 
matching MRs from different sample pages are section instances of 
the same section schema. We apply the stable marriage algorithm 
[16] here to find out the matching MRs, with a minor modification 
to allow no match. A matching score is computed between two 
MRs from two pages based on their tag path similarity, SBM 
similarity and tag forest similarity. If the matching score of two 

MRs is below a threshold they will not be matched even when they 
have the highest matching score among all the MR pairs from the 
two sample pages.  

Figure 9. An example graph of section instances 
Consider an undirected graph SG = (V, E), where each vertex v ∈ 
V corresponds to an MR on a page and an edge e ∈ E exists 
between two vertices vi and vj if the MR corresponding to vi on one 
page matches the MR corresponding to vj on another page. Figure 
9 shows an example.  

A clique C (Vc, Ec) is a sub graph of SG (V, E) such that Vc ⊂ V 
and Ec ⊂ E and for every vi ∈ Vc and vj ∈ Vc, i ≠ j, there is an e ∈ 
Ec between vi and vj. Each maximum clique in SG of size 2 or 
greater is a section instance group of the same section schema. We 
apply the Bron-Kerbosch algorithm [4] to find all maximum 
cliques in SG of size 2 or greater and take these cliques as the 
section instance groups for wrapper building. By doing this, we 
ignore dangling section instances (MRs) that have no matches in 
any other sample page. 

5.7 Constructing Section Wrappers from 
Section Instance Groups 
A section wrapper is a set of rules that can be applied to the tag 
tree of a result page to extract a section and the records it contains. 
In this paper, a section wrapper is a quaternion <pref, seps, LBMs, 
RBMs>, where pref represents the tag path that leads to the 
minimum sub-tree t that contains all records in this section, seps is 
the separator set used to partition the sub-forest of t into records, 
LBMs and RBMs are the sets of left and right boundary markers of 
the section. The same techniques for identifying pref and seps as 
proposed in [29] are adopted in our approach. 

For each group of matching section instances (MRs), we combine 
the tag paths of member sections that lead to the minimum sub-

trees containing all the records to generate pref, then combine their 
separators, LBMs and RBMs to generate seps, LBMs, and RBMs, 
respectively, for the corresponding section schema. Combining tag 
paths is carried out by converting each tag path into a compact tag 
path (see Section 4.1) and merging the compact tag paths [29]. 
While combining LBMs and RBMs is based on simple majority 
vote. 

5.8 Section Family 
Because we build section wrappers based on sample pages, due to 
the step described in Section 5.6, only those section schemas with 
instances occurred in at least one pair of sample pages could be 
detected and certified. The current set of section wrappers will 
miss so-called hidden sections (i.e., section instances of those 
section schemas that do not occur in any sample page) as well as 
section instances that occur on only one sample page.  
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We propose the concept of section family to deal with the hidden 
section extraction problem. This method can also handle the 
section instances that occur on only one sample page. A section 
family represents a class of section schemas that share some 
common features. The following are two types of section families 
that are among those considered by our approach: 

1. All member section schemas have the same pref and seps, and 
their LBMs (RBMs) share the same line text attribute, which is 
different from the line text attribute of any content line in any 
record. Figure 10 shows the tag structure of an example. The 
pref for both sections is <HTML>C<BODY> 
C …<TBODY>C, and the seps for both sections contains only 
one sub-tree rooted at a <TR>. For this example, we assume 
that their LBMs (RBMs) share the same line text attribute. 

2. All member section schemas have the same seps, and their 
prefs have the same prefix as well as the same suffix, and their 
LBMs (RBMs) share the same line text attribute, which is 
different from the line text attribute of any content line in any 
record. Figure 11 shows the tag structure of an example. We 
assume the seps, LBMs and RBMs satisify the condition as 
Type 1 section family. Note that the pref of section 1 is: 
<HTML>C<BODY>C…<TBODY>C<TR>S<TR>S<TR>C<
TD>C, while the pref of section 2 is: 
<HTML>C<BODY>C…<TBODY>C<TR>S<TR>S<TR>S<
TR>S<TR>C<TD>C. They share the same prefix 
<HTML>C<BODY>C … <TBODY>C<TR>S <TR>S and the 
same suffix <TR>C<TD>C. 
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Figure 10. Tag structure illustrating a Type 1 section family 



 
Figure 11. Tag structure illustrating a Type 2 section family 

In a Type 1 section family, all records in all member section 
schemas are siblings right under the sub-tree denoted by pref on 
the DOM tree. Thus the Type 1 section family wrapper can be 
represented as a quaternion <pref, seps, aLBMs, aRBMs>, where 
aLBMs and aRBMs represent the text attributes of the left and right 
boundary markers, respectively. In a Type 2 section family, all 
member section schemas are siblings right under the sub-tree 
denoted by the common prefix of prefs, while the common suffix 
of prefs are the relative tag paths that lead to the sub-trees 
containing the records in each member section schema.  Thus we 
can use a quintuple <ppref, spref, seps, aLBMs, aRBMs> to 
represent a Type 2 section family wrapper. Here ppref is the 
common prefix of the prefs of all member section schemas, while 
spref is the common suffix of the prefs of all member section 
schemas. 

We check all section wrappers produced in Section 5.7 to see if 
some of them can be combined to form Type 1 or Type 2 section 
wrapper families. If so, the corresponding section wrapper family 
is constructed and the original section wrappers from which the 
section wrapper family is built are deleted. 

6. EXPERIMENTS 
We built a prototype system to test the MSE algorithm. On a 
laptop with a Pentium M 1.3G processor, the system can construct 
section wrappers for a search engine with 5 sample pages in 20 to 
50 seconds. Once the wrappers are built, the section and record 
extraction from a new result page can be done in a small fraction 
of a second. 

The test bed consists of 100 search engines from the ViNTs test 
bed dataset 2 [29], plus 19 additional search engines that organize 
their SRRs into multiple sections. Among the 100 search engines 
from the ViNTs test bed dataset 2, 19 return result pages with more 
than one dynamic section. Therefore, 38 search engines in the test 
bed return multiple dynamic sections, while 81 search engines 
return only one dynamic section. 

For each search engine, 10 result pages are collected by manually 
submitting 10 different queries. In order to test the robustness of 
the extracted wrappers, we partition the 10 pages into two subsets: 
5 sample/training pages and 5 test pages. Only the sample pages 
are used for wrapper construction and parameter/threshold tuning. 
Then the wrappers are tested on both parts. We use the recall and 
precision measures (which are widely used to evaluate information 
retrieval systems) to evaluate the performance of our system for 

extracting dynamic sections as well as records they contain. Recall 
is the percentage of the correct sections (records) that are extracted 
while precision is the percentage of the extracted sections (records) 
that are correct. 
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The test results are shown in a number of tables below. Rows 
labeled as “S pgs” give the results on sample pages, while rows 
labeled as “T pgs” give the results on test pages. Rows labeled as 
“Total” give the results based on all pages. Table 1 shows the 
section extraction results on all 119 search engines, totally 1,190 
pages are tested. Table 2 shows the section extraction results on the 
38 search engines whose result pages have multiple dynamic 
sections, totally 380 pages are tested. The columns labeled as 
“#Actual”,  “#Extracted”, “#Perfect” and “#Partially Correct” give 
the numbers of sections that are actually present, extracted, 
perfectly extracted and partially correctly extracted, respectively. 
A section is perfectly extracted if all records in that section are 
extracted, and, no incorrect records are extracted. If more than 
60% of the records in a section are extracted but some records are 
not extracted, we consider the section to be partially correctly 
extracted. The columns under “Perfect” give the performance 
(recall and precision) based on perfectly extracted sections, while 
the columns under “Total” give the performance if the partially 
correctly extracted sections are also acceptable. 

The slight performance drop from the results for sample pages to 
those for test pages indicates the constructed wrappers are quite 
robust. We can see that the total recall and precision on all search 
engines for perfect extraction are 84.3% and 80.6%, respectively. 
But if we take partially correct sections into consideration, the 
numbers rise to 97.6% and 93.2%, respectively. A close 
examination of those partially correctly extracted sections reveals 
that the majority of the problems is caused by missing some 
records or falsely extracting some records. This is verified by 
Table 3, which shows the record extraction performance on all 
perfectly and partially correctly extracted sections. We can see that 
98.7% of all records are extracted, with a precision of 98.8%.  

Table 1. Section extraction results on all 119 search engines 

Recall % Precision % 
#Actual#Extr

acted
#Per
fect

#Partially 
Correct PerfectTotal Perfect Total

S pgs 1057 1106 899 136 85.0 97.9 81.3 93.6 
T pgs 981 1028 820 134 83.6 97.2 79.8 92.8 
Total 2038 2134 1719 270 84.3 97.6 80.6 93.2 

Table 2. Section extraction results on 38 search engines whose 
result pages have multiple dynamic sections 

Recall % Precision % 
#Actual#Extr

acted
#Per
fect

#Partially 
Correct PerfectTotal Perfect Total

S pgs 652 670 538 92 82.5 96.6 80.2 94.0 
T pgs 590 611 468 95 79.3 95.4 76.6 92.1 
Total 1242 1281 1006 187 81.0 96.1 78.5 93.1 

Table 3. Record extraction results on all perfectly and partially 
correctly extracted sections. 

 #Actual #Extracted #Correct Recall % Precision %
S pgs 9615 9597 9490 98.7 98.9 
T pgs 8248 8245 8139 98.7 98.7 
Total 17863 17842 17628 98.7 98.8 



Table 1 shows that the total precision (93.1%) of section extraction 
is lower than the total recall (96.1%), which indicates that for the 
current implementation, the problem of extracting incorrect 
sections is more serious than that of missing correct sections. The 
main reason for false extraction is that the system takes the missing 
records from some sections to form new sections. While the major 
reasons for missing records are: incorrect identification of SBMs 
and the existence of problematic DOM tree structures of some 
sections — our wrapper design requires that the tag structures of 
all records of a section be siblings under a common sub-tree, but 
some sections may contain records whose tag structures are not 
siblings. 

7. RELATED WORKS 
There have been a lot of researches on web data extraction recently. 
Readers may refer to [14] for a survey on major earlier works. 
Earlier wrapper generation techniques [1, 3, 12, 13, 16, 19, 28] are 
mostly semi-automatic or even manual, relying on training and 
human assistance to different extents. These techniques are 
becoming impractical as more and more large-scale web 
applications are emerging, such as building large-scale metasearch 
engines or building metasearch engines on-demand [18, 26]. 
Consequently, more recent works try to reduce or even totally 
eliminate human assistance. 

Both RoadRunner [10] and EXALG [2] model the creating of web 
pages as enwrapping data by tokens following a template. 
RoadRunner compares a pair of web pages at a time to induce the 
template while EXALG works on a set of Web pages of the same 
class at the same time. IEPAD [7] assumes that repeating token 
patterns contain data to be extracted. PAT trees and some 
heuristics are applied to extract candidate patterns, from which a 
human user selects the best one. DeLa [24] extends the pattern idea 
by introducing a multi-level pattern extraction algorithm to build 
regular expressions to represent the nested schema of data on the 
web page automatically.  

While RoadRunner, EXALG, IEPAD and DeLa consider the web 
page as a token string, many other researches consider the web 
page as a tag tree. Omini [5] and the method in [11] assume that 
there is a minimum data-rich sub-tree, which is detected by 
applying some heuristics. A separator, which is an HTML tag that 
can segment the sub-tree into data objects, is determined by 
another set of heuristics. Omini improves [11] by removing the 
domain specific ontology and uses a different set of heuristics to 
achieve better performance. MDR [15, 27] extracts the data-rich 
sub-tree indirectly by detecting the existence of multiple similar 
generalized-nodes, which is a collection of child nodes of the sub-
tree. Then each generalized-node is checked to extract records. 
ViPER [23] extends the technique in [15] by utilizing some visual 
features. The work in [20] explicitly studies the tree edit distance 
problem by introducing a tree mapping algorithm and applies it to 
domain based page clustering and news extraction. ViNTs [29] 
utilizes both visual content features as well as tag tree structures. It 
assumes that the data records are located in a minimum data-rich 
sub-tree and are separable by separators of tag forests. 

A somewhat related research problem is Web page segmentation 
(e.g., [6, 22]) whose goal is to partition web pages into semantic 
fragments (called blocks or pagelets by different researchers). The 
focus of this type of work is to differentiate fragments with 
different characteristics such as different styles and different 
refresh cycles. The fragments here are in general different from the 
dynamic sections discussed in this paper. First, fragments may 

include static blocks. Second, multiple continuous dynamic 
sections are likely to be treated as a single fragment. In addition, 
Web page segmentation does not consider identifying records 
within each fragment because supporting data extraction from web 
pages is not one of its intended applications. 

None of the above works, with the exception of MDR [15], pays 
attention to the section extraction problem, which is the main focus 
of this paper. The models presented by RoadRunner, EXALG, and 
DeLa do not accommodate the existence of data sections, while 
IEPAD, Omini, and ViNTs simply assume that there exists only 
one section to be extracted. MDR has the ability to output multiple 
sections but it does not differentiate dynamic sections from static 
contents. It also does not address the non-uniform format problem 
and the section-record granularity problem. (The hidden section 
extraction problem does not occur for MDR as it does not generate 
wrapper, which can lead to other problems such as lower 
efficiency.) Furthermore, MDR works well only for table and form 
enwrapped records while our method does not have this limitation. 
Our experimental results reported in [29] show that ViNTs is 
significantly more accurate than MDR in extracting SRRs from the 
main (largest) section. Another weakness of MDR is that it can 
only detect sections with at least two records whereas our method 
does not have this problem.  

Finally, we would like to point out the relationships and 
differences between this work and our previous work reported in 
[29]. First, the work in [29] was focused on record extraction from 
a single section (the main section) whereas our current work is 
focused on section extraction while also extracting records within 
each section. Second, the multi-record extraction (MRE) algorithm 
described in Section 5.1 in this paper is essentially from [29] with 
slight extension. MRE is just one component among many in our 
solution to the section extraction problem. Other than this 
component, the overall techniques in [29] and the current paper are 
completely different. Issues such as the non-uniform format 
problem, the section-record granularity problem, and the hidden 
section extraction problem are not addressed in [29]. Third, the 
techniques developed in this paper can help record extraction of 
ViNTs in two aspects: (1) the requirement that a section must 
contain at least three records is no longer needed; and (2) section 
boundaries can be more accurately identified. As a result, the 
accuracy of record extraction can be improved (the results are not 
reported here).  

8. CONCLUSIONS 
In this paper, we presented an algorithm (MSE) to tackle the 
problem of automatically extracting dynamic sections as well as 
search result records within these sections. We believe this is the 
first work that explicitly aims at extracting all dynamic sections 
from Web pages. We identified several new challenges for 
providing a comprehensive solution to the dynamic section 
extraction problem, i.e., the non-uniform section format problem, 
the section-record granularity problem and the hidden section 
extraction problem. MSE attempted to address these challenges 
with promising results. Our solution can potentially be very useful 
for all Web applications that need to interact with web-based 
search systems, including regular search engines and e-commerce 
search engines. By being able to extract search result records from 
all dynamic sections and maintaining the section-record 



relationships, MSE allows an application to select the desired 
sections for data extraction.  

Preliminary experimental results indicate that the proposed 
technique is very promising but with room for improvement. We 
plan to investigate how to further improve the accuracy of 
identifying section boundary markers and to carry out additional 
experiments to evaluate the effectiveness of each component of the 
MSE solution. 
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