Automatic Extraction of Dynamic Record Sections
From Search Engine Result Pages

Hongkun Zhao, Weiyi Meng

SUNY at Binghamton
Binghamton, NY 13902, USA

{hkzhao, meng} @cs.binghamton.edu

ABSTRACT

A search engine returned result page may contain search results
that are organized into multiple dynamically generated sections in
response to a user query. Furthermore, such a result page often also
contains information irrelevant to the query, such as information
related to the hosting site of the search engine. In this paper, we
present a method to automatically generate wrappers for extracting
search result records from all dynamic sections on result pages
returned by search engines. This method has the following novel
features: (1) it aims to explicitly identify all dynamic sections,
including those that are not seen on sample result pages used to
generate the wrapper, and (2) it addresses the issue of correctly
differentiating sections and records. Experimental results indicate
that this method is very promising. Automatic search result record
extraction is critical for applications that need to interact with
search engines such as automatic construction and maintenance of
metasearch engines and deep Web crawling.

1. INTRODUCTION

A recent survey reveals that there are hundreds of thousands of
search engines on the Web [8]. Many web applications, such as
metasearch engines [18, 26], deep web crawlers [20] and shopping
agents, need to interact with search engines. Thus there is a
demand to develop automated tools (wrappers) to extract search
result records (SRRs) from the HTML result pages returned by
search engines. Some search engines, like Google and Amazon,
have web services interfaces, which make automated extraction
easier. But a vast majority of search engines do not have web
services interfaces and there is no incentive for them to develop
such interfaces because they support B2C (business to customer)
applications only. We also note that XML has been used to deliver
web data in many applications. However, almost all search engines
still present their search results in HTML format. Therefore,
applications that need to harvest data from the search results of

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish, to
post on servers or to redistribute to lists, requires a fee and/or special
permission from the publisher, ACM.

VLDB ‘06, September 12—-15, 2006, Seoul, Korea.

Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

Clement Yu

University of Illinois at Chicago
Chicago, IL 60607, USA

yu@cs.uic.edu

search engines must deal with the problem of extracting results
presented in HTML files.

A typical search engine result page contains static, semi-dynamic
and dynamic contents. In this paper, static contents refer to the
portion that is query independent, i.e., they are identical on the
result page of every query. Dynamic contents are the SRRs
retrieved in response to a query. Each SRR is a semantically
complete data unit corresponding to a retrieved entity (e.g., a book
or a document). A SRR typically consists of a link to a retrieved
Web page or database record (or further details about the SRR) and
some pertinent information (snippet). If there is no ambiguity, the
word “record” also refers to SRR in this paper. Semi-dynamic
contents are those that may be affected by different queries but are
generally independent of the content of any specific query. For
example, in Figure 1, “Your search returned 578 matches” can be
considered as semi-dynamic as its general format is independent of
user queries and the dynamic component (the number of matches)
is not directly related to the content of the query. As another
example, section header “Encyclopedia” is semi-dynamic because
it is common for all queries that retrieve at least one record from
the Encyclopedia data repository of the search engine. If no result
is retrieved from the Encyclopedia for a particular query, then this
entire section, including the section header, will not be displayed.
“Click here for more ...” is also semi-dynamic as it appears only
for sections that have more than five records.

Intuitively, a dynamic section on a search result page is a set of all
SRRs that appear consecutively and have certain common features
such as a common header and a common display format. Many
search engines produce result pages with multiple dynamic
sections. For example, some search engines categorize or cluster
search results (Figure 1) and some search engines display regular
search results and sponsored links in different dynamic sections. A
significant percentage of the search engines return result pages
with multiple dynamic sections. For example, 19 out of the 100
search engines from the dataset in [29] produce result pages with
multiple dynamic sections.

In general, complete data extraction from web pages (including
result pages returned from search engines) may consist of three
tasks. The first is section extraction, i.e., extract all the sections
from each page; the second is record extraction, i.e., extract the
records within each section; and the third is data annotation, i.e.,
identify and annotate each data unit within each record. Existing
work on data extraction (wrapper generation) has been mostly
focused on record extraction (see the Related Work section) and
some work on data annotation has also been reported (e.g., [24]).
However, to the best of our knowledge, the section extraction

problem as considered in this paper has not been explicitly studied
before.

In this paper, we investigate how to automatically extract all
dynamic sections as well as SRRs within each dynamic section
from search result pages. The emphasis is on dynamic section
extraction. Static and semi-dynamic contents are utilized to help
identify the boundaries of different dynamic sections. For the rest
of this paper, when there is no confusion, “dynamic section” and
“section” will be used interchangeably. An important requirement
for our method is to maintain the section-record relationship, i.e.,
the extracted SRRs should be grouped by section. This requires
that the sections be explicitly extracted. The benefit of keeping the
section-record relationship is to make it easier to use them later as
different applications may be interested in the SRRs in different
sections.

¥our search returned 572 matches.

Encyclopedia

1. Knee Injury —-Encyclopedia-- (4/10/2002 1:07:00 PM)
Knee Injury

2, Wirasound in Obstetrics —Encyclopedia— (4/10/9002 1:07:00 P}
Ultrasound in Obstetrics

2. Lupus and Pregnancy ——Encyclopedia-- (4/10/2002 1:07:00 PM)
Lupus and Pregnancy

4. Colic -Encyclopedia-- (4/10/2002 1:07:00 PMI

Colic
S. Lymphoma —Encyclopedia— (4/10/2002 1:07:00 PMY
Lymphoma

Click Here for More

Dr. Dean Edell
1. e are Still Too Fat, sgain —Dr. Dean-— (2/9/2004)

MNews

1. &aMe Guides Doctors on Older Drivers ——Mews—- (7/20/20032)

i 2. Mental liness Strikes Bahies, Too —-MNews-- (4/16/0003]

But their plight is getting more attention
2. Eating Pyramid Style --MNews-- (1/25/2003]
Food guide helps you eat healthier

4, Guided Lasers Help Treat Uterine Fibroids —-MNews— (9/27/2002)
Mew method uses MRI to help doctors see what they're doing

S. Panel: Cut Salt, Let Thirst Be Water Guide ——Mews-- (2/1 12004

Click Here for More

Peoples Pharmacy
1. Antidepressant Can Raise Cholesterol —-People's Pharmacy-- {12/1/2

2. another Fish 0il Tale Of Gray Hair Gone --People's Pharmacy -- (8/4/2

Figure 1. Part of a sample result page with
multiple sections from healthcentral.com

The task of automatically constructing a wrapper to extract all
dynamic sections from the result pages of a search engine is
challenging because the following problems need to be solved:

e Non-uniform section format problem: Our observation
indicates that even on the same result page, some dynamic
sections may have the same format while other dynamic
sections may have different formats. The lack of a general
pattern for the sections on a result page makes it more difficult
to extract the sections. Many researchers have studied the
problem of automatic record extraction and the proposed
techniques heavily depend on the fact that these records have
similar patterns/formats [5, 15, 29]. Due to the non-uniformity
of the section formats, the techniques proposed for extracting
records cannot be directly applied to extracting sections.

e Section-record granularity problem: Some consecutive
sections with the same format may be mistakenly extracted as
records while some large records may be incorrectly extracted
as sections. In this paper, we refer the problem of correctly
differentiating sections and records as the section-record
granularity problem.

e Hidden section extraction problem: Because dynamic sections
may be query dependent, different result pages returned by the
same search engine may contain different dynamic sections. A
direct consequence of this phenomenon is that the
sample/training pages that are used to generate the wrapper
(extraction rules) may not contain all possible dynamic
sections that the search engine may produce. In this paper, we
call the problem of extracting sections that are unseen from
training pages the hidden section extraction problem.

<HTML>

E<HEAD>
<BQDY>
'

T <TBODY>
! <TR>
! <TR>
! <TR>
' L <TD>
E f—<TR> L Your search returned 578 matches.
| <TR>
' <TD>
\ —
! i b N L Encyclopedia
1 <TR> e~
S <TD> RN
." Tl
\ 1 T
\ <TD> ~<
R <TR> <A> S
. ' —— .
S H Knee Injury —Encyc s
\\\
 \
o AN
Tl b——Knee Injury H
L—<TR> S~ !

Figure 2. Part of a DOM tree for the page in Figure 1

The main contribution of this paper is the development and
evaluation of a fully automatic and novel section extraction
method that explicitly aims to tackle all of the above problems.
The basic solution of our method first employs two independent
techniques to identify potential dynamic sections and then merges
these sections to obtain more accurate sections. To tackle the non-
uniform section format problem, the techniques for identifying
potential dynamic sections do not utilize the similarities between
sections. To tackle the section-record granularity problem, we
propose a novel technique based on analyzing the inter-record
distances and section cohesions. To tackle the hidden section
extraction problem, we introduce the concept of section family.
Another feature of our method is that it utilizes both tag structure
information and the visual content information of each result web
page. In addition, we also consider the issue of extracting the
records within each section. Our record extraction method has no
constraint on the minimum number of SRRs that must be in a
section for the SRRs to be extracted. In contrast, current techniques
require at least two or more records in a single section [15, 29].
Our experimental results indicate that our solution is quite
effective. Automatic extraction of SRRs from search engine
returned result pages is a critical technique for crawling/mining
data from the deep web as the data in the deep web are largely
hidden behind the search interfaces of deep web search systems.

The rest of this paper is organized as follows. Section 2 presents a
result page layout model. Section 3 provides an overview of our
solution. Section 4 introduces the various content features on result
web pages as well as various measures that are defined based on
these features. These features and measures will be used by our
extraction method. Section 5 discusses the details of our proposed
solution to the section extraction problem. Section 6 reports the
experimental results. Section 7 reviews related works. Section 8
concludes the paper.

2. RESULT PAGE LAYOUT MODEL

For a given search engine, search result pages are usually produced
by a script program. The designer of the program has a layout plan
for all the contents on the result pages. This layout plan is
essentially the result page schema of the search engine, which can
be represented as (D, S, SD, L), where D, S and SD are dynamic
sections, static contents and semi-dynamic contents, respectively,
and L is the layout relationship between these sections/contents.
Let D = (Sy, ..., Sp) be all the possible dynamic sections a result
page may have based on the result page schema. Each S; will be
called a section schema. An individual result page is an instance of
the result page schema and a specific section is an instance of a
section schema. It is possible that some section schemas have no
instances on a particular result page (e.g., if no result is retrieved
for a particular section).

While the contents on a result page are laid out in a two-
dimensional space when the page is rendered on browsers, they
can be represented in a one-dimensional space. DOM trees are
widely used to represent web pages (see Figure 2 for an example).
Non-tag contents, which are generally viewable contents on a
browser, are leaves in DOM trees. A preorder traversal of a DOM
tree of all non-tag contents will yield a sequence of the non-tag
contents. Based on this view, the layout relationship L becomes a
sequence of sections (Figure 3 provides an illustration, where the
static sections form the template).

template

| I I I e B
N

sections

records

Figure 3. Sections, records, and template

We are interested in extracting all dynamic sections and the
records within them only. If, for a given search engine, we can
identify all sections with the correct order and construct a wrapper
to extract the records for each section, then the list of wrappers
with the same order as the sections will be a complete description
of the rules for extracting sections as well as records from the
result pages returned by the search engine.

To facilitate people locating information, search engine result

pages often place special information at the boundaries of a section.

We will call such information as section boundary markers (SBM)
in this paper. Based on the one-dimensional representation of web
page content, a section may have a left boundary marker (LBM)
and a right boundary marker (RBM). In Figure 1, “Encyclopedia”
and “Click Here for More...” are the LBM and the RBM of the
first section, respectively.

SBMs could help extract sections and records they contain if they
can be correctly identified. In some cases, SBMs are a must for
correct section extraction. Consider the sample page in Figure 1.
The LBM of each section is the section header (e.g.,
“Encyclopedia” for the first section). Since all sections on this
page have exactly the same tag structures, without considering the
SBMs, correctly extracting these sections would be very difficult,

if not impossible. Our investigation based on the result pages of
200 search engines shows that 96.9% of the sections have explicit
boundary markers. How to accurately identify these boundary
markers is an important problem we need to solve in this paper.

Our section extraction method tries to generate section wrappers
by identifying SBMs first. Experiments shows that this strategy
can achieve promising performance.

3. SOLUTION OVERVIEW

Figure 4 shows the system overview of our solution. Our wrapper
generation algorithm will be called MSE (for Multiple Section
Extraction). The input to MSE is a set of n sample result pages
from a search engine SE. These result pages are returned from SE
in response to n different queries. The output of MSE is a wrapper
(a set of rules) for extracting all dynamic sections (DSs) as well as
all SRRs within them.

M oot Ninne
Web Refining P From DSs
Pages IMRs and DSs
DSE Checking Granu-|
larity for MRs

Wrapper family \@—{ Wrapper |g—Section Instances A 4
Building Building (Clustering <

S i

‘Wrappers

Figure 4. System overview
MSE consists of the following steps:

1. Render each result page and extract its content lines by a
preorder-traversal of the DOM trees. We assign a line number
(1,2, ...) to each content line.

2. Extract record sections that contain multiple records from each
result page. These sections will be called multi-record sections
and denoted as MRs and the algorithm for extracting MRs will
be denoted as MRE (for MR Extraction). (Note: The MRs
identified by algorithm MRE may contain MRs with static
contents and MRs with incorrect boundaries. In addition,
sections that contain less than three records are generally not
identified by MRE.)

3. Identify dynamic sections (DS) by applying algorithm DSE
(for DS Extraction). In order to perform this task, we need to
identify candidate section boundary markers (CSBM) on each
page. (Note: Some DSs identified by DSE in this step may be
incorrect due to the difficulty to correctly identify all the
SBMs.)

4. Refine MRs and DSs by analyzing their relationships. (By
comparing MRs with DSs, MRs containing static contents can
be identified and discarded, and some incorrect boundaries of
MRs and DSs can be corrected. Note that, in order to deal with
the non-uniform section format problem, neither MRE nor
DSE assumes there is a common format/pattern among
different sections when performing section extraction.)

5. Mine SRRs from DSs that have no corresponding MRs. (These
DSs include sections that contain less than three SRRs. As a
result, even a single SRR could be extracted from a section.)

6. Check identified sections and records to see if they are
correctly identified. (This is to tackle the section-record
granularity problem.)

7. Group extracted section instances from all sample result pages
into clusters such that each cluster corresponds to the same
section schema of the result page schema of the search engine.

8. Generate the extraction wrapper for each section schema based
on the section instances in the corresponding cluster.

9. Generate section families, each of which is a class of section
schemas that share some common features. (Section families
are introduced to tackle the hidden section extraction problem.)

Step 1 has already been discussed in our previous work [29] and
will not be repeated in this paper. The details of the remaining
steps will be provided in Section 5.

4. BASIC CONTENT FEATURES OF
RESULT PAGES

In this section, we introduce the features that can be found from
typical search result pages and are useful to our section extraction
method. Among the tag structure features presented in Section 4.1,
tag paths will be used in wrapper description to locate the sections,
and are also used in DSE and section instance clustering to
compare the contents on different web pages; the tag tree edit
distance and tag forest edit distance are used for record mining.
Section 4.2 presents basic visual features such as content lines,
block, shape, etc, which are mainly used in MRE. We combine the
tag structure features and visual features in Section 4.3 and Section
4.4 to define the line distance, record distance, inter-record
distance, record diversity and section cohesion. They are used for
record mining and for differentiating sections and records. In
section 4.5, we introduce section boundary markers, which can
precisely bound sections and will be used in DSE, section refining,
section instance clustering and wrapper building.

4.1 Tag Structure Features

A DOM tree of an HTML web page is a rooted, ordered, and
labeled tree. Figure 2 shows part of the DOM tree of the web page
in Figure 1 (many tag nodes are omitted for simplicity).

All viewable content fragments on the rendered web page on a
browser have a corresponding tag structure underneath. For each
record, or section, we may extract its underneath tag structure,
which normally is a tag forest. For example, the tag structure
within the dotted ellipse in Figure 2 is the tag forest of the first
record in Figure 1. For each section, there exists a minimum sub-
tree t in the DOM tree of a result page such that all SRRs in the
section are located in t. Each SRR corresponds to a sub-forest in t.

A node in a DOM tree can be located by following a path from the
root to the node. Such a path is called a tag path in [29] (which is
similar to an XPath). A tag path consists of a sequence of path
nodes. Each path node pn consists of two components, the tag
name (i.e., a tag node) and the direction, which indicates whether
the next node following pn on the path is the next sibling of pn

(indicated by “S”, called S node) or the first child of pn (indicated
by “C”, called C node). The tag path of the text “Your search
returned 578 matches” in Figure 2 is “{HTML} C {HEAD} S
{BODY}C{TABLE}S{TABLE}S{TABLE}C {TBO DY}C {TR}
C{TD}S{TD}S{TD}S{TD}C{TABLE}S{TABLE}S{TABLE}C{
TBODY}C{TR}S {TR}S{TR}C{TD}C".

Clearly, any node n on a DOM tree can be located by following the
tag path of n. Compact tag path was proposed in [29] to remove
“noises” on the original path, making it more robust when
matching paths from the DOM trees of different pages. Two
compact tag paths are compatible if and only if they contain the
same sequence of C nodes. Let <Cly, Cl,, ... C1,> and <c2;, C2,, ...
€2,> be the sequences of C nodes of two compatible tag paths tp,
and tp,, let sn(ci;, Cij) denote the number of S nodes between C
nodes Ci; and cij, we define the distance between tp; and tp, as:

Zn: sn(cl;,cl;_) = sn(c2;,c2,,)|

Dtp (tp,,tp,) = =2 M
P (tp.tp.) max(sn(cl,,cl,),sn(c2,,c2,))

Since the underneath tag structure of any viewable content
fragments on the rendered web page is (part of) a tag forest, we
define a metric to measure the similarity between two tag forests.
We use Dtt(t;,t) to denote the tree edit distance [9] between two
tag trees t; and t, normalized by the size of the larger tree between
t; and t;. Each tag forest tf can be considered as a string (ordered
list) of tag trees <tj, t,, ... t>. We use Dtf(tf}, tf,) to denote string
edit distance [24] between two tag forests tf; and tf, normalized by
the length of the longer list between tf; and tf,.

4.2 Visual Content Features

HTML tags convey rich semantics for web content presentation.
Tag attributes and styles enrich web content further. Web data
extraction techniques that use tag structures only will surely miss
many important features of HTML. In this subsection, we
introduce some visual content features that can be extracted from
rendered web pages and used to improve data extraction
performance.

In this paper, we follow the method in [29] and define content lines
as the basic constructs to capture visual features. One big
advantage of using lines instead of tokens (like in many other
studies) as the basic constructs is that a line consisting of multiple
tokens has more precise semantic meaning than individual tokens
(analogous to the relationship between phrases and individual
words). A content line cl is a group of characters that visually form
a horizontal line in the same section on the rendered page. Eight
content line types (e.g., text line, link line, HR-line, etc.), each with
a type code, are defined in [29] to capture the basic appearances of
content lines. Also the left-most x coordinate of a content line on
the rendered page is called the position code of the content line.
One or more consecutive content lines form a block B, which is an
ordered list <cly, cly, ..., cl> such that cl; represents the ith content
line in B. Any search result record on a rendered web page is a
block. For each block, a block shape (the left contour of the block
as defined by the position code sequence of its member content
lines) and block type code (the sequence of type codes of the
content lines) can also be defined to capture the appearance of the
block [29].

Based on the above concepts, the similarity between two blocks
can be measured in terms of type distance, shape distance and
position distance (Please see [29] for details.)

In this paper, we introduce text attribute to capture more
information about content lines. For a piece of text on a rendered
web page, its text attribute represents the font (arial, times new
roman, etc), size, style (plain, bold, and italic) and color (red, black,
etc) of the text. Each text attribute ta is a quaternion <f, w, s, ¢>,
where f, w, s and ¢ represent font, size, style and color, respectively.

A content line ¢l may contain texts with different text attributes. A
set {ta}, denoted la, is defined to represent line text attribute. Each
member ta is a text attribute in cl. We define the line text attribute
distance between the line text attributes la; and la, of two content
lines as:

Dtal(la,,la,) =1—% @)

max(‘ la,

B

We use an ordered list < lay, la,, ..., la,>, denoted as ba, to further
represent the text attribute of a block <cly, cl, ..., cl,>, where la; is
the text attribute set of cl;. The block text attribute distance Dbta
between the text attributes ba, and ba, of two blocks B, and B, is
defined as the string edit distance between ba; and ba,.

4.3 Line Distance, Record Distance, Inter-

Record Distance

Consider two content lines cl; and cl,, with type codes tc; and tc,,
position codes pc; and pc,, and line text attributes la; and la,,
respectively. The type distance Dtl between cl, and cl, is a value
between 0 to 1 based on tc; and tc,. The position distance Dpl is
defined as K * log(1+|pc; — pc,|); currently K is set to 0.127, which
will restrict Dpl to be between 0 to 1 in most cases. The line text
attribute distance is Dtal(la;, 1a,) as defined in Formula 2 above. In
this paper, we define the line distance between cl; and cl, as
follows:

Dline(cl,,cl,) =u, x Dtl +u, x Dpl +u, x Dtal 3)

where U, U, and U3 are non-negative real numbers satisfying u; +
U2 + U3 = 1

Each record is a block. We have defined tag forest distance Dtf,
block type distance Dbt, block shape distance Dbs, block position
distance Dbp and block text attribute distance Dbta. We normalize
block type distance in [29] to between 0 and 1, and we modified
the block shape distance and block position distance definitions in
[29] to normalize their values as well. Now we can define the
record distance between two records r; and r, as follows:

Drec(r,,r,) =V, x Dtf +Vv, x Dbt + v, x Dbs
+Vv, x Dbp+ v, x Dbta 4)

where Vv, Vo, V3, V4 and Vs are non-negative real numbers satisfying
V1+V2+V3+V4+V5: 1.

For a section S with n records <ry, r,, ..., >, we compute the
average distance between the records in S to measure the inter-
record distance of S, denoted as Dinr(S). This distance will be
used in Section 4.4 to introduce an important measure for our
method.

n-1

Dinr (S) =)’ zn: Drec (ri,rj)/@J 5)

i=1 j=i+l

4.4 Record Diversity and Section Cohesion

A section S can be considered as a list of records or a list of
content lines. After the content lines are obtained, we face the
question of how to correctly partition/group these content lines into
records. Previous works [5, 11, 15, 29] use DOM tree structures to
find a tag structure as a separator to create a partition. There are
two potential problems with these methods. First, consecutive
records may be mistakenly combined into a big record. Second, a
correct record may be wrongly split into several small false-
records. In this paper, we solve the content line partition problem
differently by using a measure called section cohesion, such that
the higher the cohesion of a partition is, the more likely the
partition is correct.

Our cohesion definition is based on the following observations: the
records within a section tend to be similar to each other, while the
lines within a record tend to be dissimilar to each other. To
measure the degree of dissimilarity of the lines in a record, we
define record diversity based on the line distance defined in
Formula 3. More specifically, for a given record r with content
lines <ly, |, ... I,,>, its record diversity Div(r) is defined as:

m (©)

The inter-record distance defined in Formula 5 measures the
overall record similarity among all records of a section. Thus we
have the following definition for the cohesion of a section S with
records <ry, Iy, ..., Iy>:

m-1

Div(r)=>" Zm: Dline (li, 1j)

i=1 j=i+l

Zn: Div(r,) /n -
COhS(S) = m

In summary, a good partition of a section should have high record
diversity and low inter-record distance. With the concept of section
cohesion, a new approach for partitioning content lines into records
can now be used, i.e., by finding the partition with the highest
cohesion. This method does not need to identify separators based
on the tag structures. Alternatively, if different candidate
separators exist, this approach can be used to determine which
separator is most likely to be correct, i.e., the one that leads to the
partition with the highest section cohesion.

4.5 Section Boundary Marker

We define the section boundary markers (SBMs) of a section S as
content lines that are not members of any sections, and are located
closest to S on the result page. More specifically, we define the left
(right) section boundary marker LBM (RBM) of S as the content
line that is not a member of any sections, and is located closest to S
on the beginning (ending) side. SBMs are important for identifying
dynamic sections. Our method for finding SBMs will be discussed
in Section 5.2.

5. SECTION WRAPPER BUILDING

In this section, we provide the details of Steps 2-9 (see Section 3)
of our dynamic section extraction algorithm.

5.1 MR Extraction with MRE

The MRE algorithm is revised from the ViNTs algorithm in [29]
and is briefly reviewed here for the convenience of the readers. For
each result page, it identifies consecutive content line patterns that
occur more than two times. The pattern here refers to the sequence
of content line types and positions. Then the list of content lines is
partitioned into blocks by an identified pattern, such that each
block contains the pattern and the pattern is located at the ending
part of the block. There will be n different partitions if there are n
patterns. For each partition, the extracted blocks are grouped by
putting consecutive and visually similar [29] blocks into the same
group. In this way, we obtain a set of groups, which are candidate
sections, whose member blocks are candidate records.

Candidate records may be real records, but they may also be blocks
containing content lines from different records, or even false
records. ViNTs algorithm [29] then identifies the first line of
record within the content lines of each candidate record. Clearly, if
the first lines of some consecutive records can be correctly
identified, these records can also be correctly identified. Then the
tag path to each identified first record line is used to represent the
corresponding candidate record. Next, tentative wrappers are built
from each set of three tag paths of every three consecutive
candidate records. Each tentative wrapper goes through a
verification process to see if it should be kept. Finally, verified
wrappers are refined by finding appropriate section boundaries.
The wrapper building, refining and verification steps of MRE are
the same as in ViNTs [29].

We call the sections generated by applying tentative wrappers
tentative multi-record sections (MRs), and they normally contain 4
or more records. Next, we merge tentative MRs: if two MRs
overlap considerably, we merge them into one group. We then
apply a wrapper selection algorithm similar to the one in ViNTs to
find the best MR for each MR group. Those best MRs are the
extracted multi-record sections.

The main difference between MRE and ViNTs is that ViNTs
assumes there is only one (major) MR to be extracted, while the
goal of MRE is to extract all MRs on a web page. Thus ViNTs
compares all tentative MRs to find the best one as the major MR,
while MRE groups tentative MRs by the screen areas they occupy,
and then find out the best MR for each tentative MR group.

Using only MRE to extract MRs has four potential problems. First,
the boundary problem, i.e., some records near the two boundaries
of an MR may be incorrectly extracted. Second, sections with less
than three records will not be extracted. Third, some extracted
sections may contain static contents with repeating patterns. Fourth,
some extracted MRs may mistakenly take consecutive sections
with the same format as records, and some large records may be
incorrectly extracted as sections. In this paper these problems will
be dealt with in subsequent steps to be described in the following
subsections.

5.2 Identifying DSs with DSE

In this section, we present the DSE algorithm (Figure 5) for
identifying DSs. This algorithm consists of two main steps: the
first step (lines 1-11) identifies CSBMs (candidate SBMs) and the
second step (lines 12-13) identifies DSs based on the CSBMs.

DSE works on a pair of rendered sample result pages <p;, p,> at a
time. Let L, and L, represent the content line sets of p; and p,. We
first clean semi-dynamic content lines by removing dynamic
component(s) (lines 1-2). In order to identify SBMs that are semi-
dynamic in nature but have dynamic components, we need to
remove these dynamic components from all content lines. For
example, content line “Your search returned 578 matches” in
Figure 1 has a dynamic component “578” (it is query dependent)
and it needs to be removed in order to match a possible content
line, say “Your search returned 89 matches”, on another result
page. To achieve this, we remove all numbers and query terms
(which were used to retrieve the result page) from all content lines.
From now on, we consider only content lines with dynamic
components removed.

IAlgorithm DSE(L,, L,)

1 for each line | € L orL,

2 clean line(l); /* remove dynamic components */
* Identify CSBMs */

3 for each line | € L,

4 mc(l) = find_most_compatible line(l, L,);
5 for each line | € L,

6 mc(l) = find_most_compatible line(l, L,);
7 for each line | € L orL,

8 if (I = mc(mc(l))) then

9 mark_as CSBM(I);

10 filter CSBMs(L,);

11 filter CSBMs(L,);

* Identify DSs based on found CSBMs */

12 identify_DSs(L;);

13 identify DSs(L,);

Figure 5. Algorithm DSE

Next we identify tentative CSBMs (lines 3-9). We begin by
identifying matching content lines from L, and L, such that they
are likely to be SBMs. SBMs are typically static contents or semi-
dynamic contents on result pages. As a result, these content lines
are likely to appear in both L, and L,. Because the SBMs on the
result page of a search engine are part of the template of the result
page, the corresponding SBMs from two result pages of the same
search engine usually have compatible tag paths. Thus procedure
find_most_compatible line(l, L) first finds the content lines in L
that have the same text content as | and their tag paths are also
compatible to I’s tag path. As | might match multiple content lines
in L, the procedure returns the line with the smallest tag path
distance (see Formula 1) to | as the most compatible line of I,
denoted mc(l). To reduce false match, a content line | is recognized
as a tentative CSBM if the most compatible line of mc(l) is | itself
(lines 7-9). In other words, we only recognize content line pairs (1,
L), I} € L, and I, € L,, that satisfy mc(l;) = I, and mc(l,) = 1, as
tentative CSBMs.

The algorithm next proceeds to filter out false tentative CSBMs.
Some strings (patterns) that appear in many records in a section
may lead to false SBMs. For example, in the result pages returned
by Amazon.com, “Buy new: $XXX.XX” occurs frequently and it

would be recognized as a tentative CSBM by the above process.
The procedure filter CSBMs(L) checks tentative CSBMs of L
against the MR set extracted from the page of L. If a tentative
CSBM appears in all member SRRs in any MR, it is removed.

The second step (lines 12-13) of the DSE algorithm is to identify
DSs based on the CSBMs found in the first step. The procedure
identify DSs(L) works as follows. First, the list of content lines of
the page is partitioned into segments, such that each segment G
satisfies the following conditions: (1) G contains consecutive
content lines that are either all CSBMs or all non-CSBMs; and (2)
G is not a proper sub-segment of any possible segment satisfying
condition 1. The segments that contain consecutive content lines
but are not CSBMs are recognized as (candidate) DSs. Each DS
has a LBM (left boundary marker) and a RBM (right boundary
marker), which are CSBMs and are not part of the DS.

5.3 Refining MRs and DSs

Now we have a set of MRs and a set of DSs. Each MR has the
following properties: it contains three or more candidate records,
which may not necessarily be correct (especially for records near
the boundaries); the tag structures (tag forests) of member records
are siblings in a common sub-tree of the DOM tree; the tag
structures of all member records are similar; and, the content of
records may be static or dynamic. As for each DS, its contents are
always dynamic but its records have not been identified; its
candidate LBM and RBM have been identified, but some of them

may be incorrect.

2. MR5DS

1. MR=DS 3. MRcDS 4. MRADSx» 5. MRADS=g

Figure 6. Five cases of relationships between MRs and DSs

MR Extra MR part

Overlapping part

DS /__ Extra DS part

Figure 7. Case 4 in details

Recall that our goal is to extract records from DSs. If a DS
contains at least three records, then it should match an extracted
MR. Note that MRs and DSs are obtained independently using
different techniques. The main idea of the refining process is to
utilize matching MRs and DSs to help obtain the correct
boundaries for both MRs and DSs. We analyze the relationships
between MRs and DSs based on the screen areas they occupy on
the rendered page. Five cases can be identified as shown in Figure
6: (1) an MR matches a DS exactly; (2) an MR contains some DSs;
(3) a DS contains some MRs; (4) an MR intersects with a DS, and
(5) an MR has no overlap with any DS, or a DS has no overlap
with any MR.

Case 1 reflects a perfect match. In this case, we have high
confidence that the MR and DS both have correct boundaries. We
keep such MRs and their records become the records in the
corresponding DSs. For other cases, further work is needed. We

discuss Case 4 and Case 5 only here as Cases 2 and 3 can be
similarly handled as Case 4.

For Case 4 (see Figure 7), three parts are identified: the extra MR
part (EM), the overlapping part (OL) and the extra DS part (ED).
Since the records in OL are verified by both MR and DS, we have
high confidence that they are correct. The basic idea of our
solution for finding the correct boundaries for DS and MR is based
on the assumption that the records within the same section (either
MR or DS) are similar and should have small record distances.
More specifically, we achieve our goal by comparing the records
in OL with the records in EM and ED. The algorithm for Case 4 is
sketched in Figure 8.

Algorithm Refine MR DS 4(MR, DS)
1 partition MR U DS into three disjoint sets {EM, OL, ED};
/* Dealing with EM part. */
2 while 3 br € EM and LBM € br /*LBM is the LBM of DS */
3 if Davgrs(br, OL) > W * Dinr(OL) /* LBM is verified */
4 adjust MR by discarding EM; break;
5 else /* LBM is false */
6 find a new LBM in EM;
/* Dealing with ED part. */
7 while ED # @
8 form tentative records T: {rt, rt, ..., rty} from ED;
9 find rt* € T with smallest Davgrs(rt*, OL);

10 if Davgrs(rt*, OL) <W X Dinr(OL)
11 add rt* to MR and truncate ED;
12 else break;

13ifED # @

14 take ED as a new DS;

Figure 8. Refining MR and DS: Case 4

Since the LBM of the DS is the content line immediately before
the first content line of the DS, there is a record br in EM that
contains the LBM of the DS. To determine if the current LBM is
correct, we compute the average record distance between br and all
the records in OL, denoted as Davgrs(br, OL), based on the record
distance Drec (Formula 4). If Davgrs(br, OL) > W * Dinr(OL),
where Dinr(OL) is the inter-record distance between the records in
OL (see Formula 5) and W is a parameter (1.8 is currently used),
we consider br to be a record not matching the records already in
the DS. As a result, we confirm the correctness of the LBM. And,
accordingly, we truncate MR by discarding EM. Otherwise the
LBM is considered to be incorrect. In this case, we find a new
LBM for the DS. The new LBM is the CSBM immediately before
the discarded LBM. We then adjust the EM (it becomes smaller)
based on the new LBM. This process is repeated until a LBM is
verified or the EM becomes empty.

The ED contains a list of content lines <l;, I, ..., [|>. We try to
form a tentative record by using |;. Then another tentative record
by using |; and |, together, then another tentative record by using I,
I, and |; together, etc. By repeating this process, we will have k
tentative records {rt;, rt,, ..., rty}, where rt; consists of <ly, I, ...,
I;>>. For each rt;, we compute Davgrs(rt;, OL), the average record
distance between rt; and all records in OL. Let rt* be the tentative
record with the smallest Davgrs. If Davgrs(rt*, OL) < W x
Dinr(OL), we accept rt* as a record in MR and adjust the ED
accordingly, and then check the new ED in the same manner. If
Davgrs(rt*, OL) > W x Dinr(OL), we stop right here and if the

remaining ED is not empty, we form a new DS based on remaining
ED for further processing (see Section 5.4).

As for Case 5, we discard the MRs that do not overlap with any DS
because they are static items with repeating patterns. We keep all
DSs (including the newly formed DSs) that do not overlap with
any MRs because they are dynamic content for sure. These DSs
usually have less than three records and cannot be detected by the
MRE algorithm described in Section 5.2.

In Section 5.4, we consider how to extract records from these DSs.

5.4 Mining Records from DSs

A DS consists of consecutive content lines with none of them
being CSBMs. We introduce an algorithm to mine records from a
DS. An advantage of the algorithm is that it does not require the
input DS to contain multiple records. It has the potential to identify
even a single record in a DS.

We use tag forest separators (follow the approach in [29]) to
partition the content (a tag forest) in a DS into records. The
algorithm first tries to identify all possible tag forest separators,
and then select the best partition as output.

Suppose there are m partitions corresponding to m tentative tag
forest separators. We need to select the best partition to turn the
DS into an MR with a set of records. The main idea of our
selection criteria is based on the definition of section cohesion in
Section 4.4 (Formula 7). We compute section cohesions for all
partitions and select the partition with the highest cohesion as the
record mining result.

Based on Formula 7, if a DS has just one record, the partition that
produces the entire DS as a single record is likely to be selected.
Thus the algorithm has the ability to find the only record in a DS.

At the end of this step, every DS is turned into an MR (i.e., the
records within the DS have been identified) and some MRs may
have less than 3 records, and the SBMs of the DSs become the
SBMs of the corresponding MRs.

5.5 Solving Section-Record Granularity
Problem

The MRs generated by MRE and the refining step may have the
section-record granularity problem. There are two cases. First,
some consecutive sections with the same format may be
mistakenly considered as records and grouped together to form an
MR, or some consecutive records in one section may be
mistakenly combined as one large single record. We refer to such a
problem as oversized-record problem. Second, some large records
may be incorrectly extracted as sections. This is referred to as the
splitting-record problem. The splitting-record problem also refers
to the situation where some record in an MR is incorrectly split
into two or more smaller records while the section MR itself is
correctly identified.

To deal with the oversized-record problem, for a given MR, we
check its largest record LR (having largest number of content lines)
first. We apply the records mining algorithm described in Section
5.4 in an attempt to mine records from LR. If only one record can
be found in LR, we assume there is no oversized-record problem
for this MR. Otherwise, we keep the newly mined small records

and keep checking other large records in this MR. Still, we need to
differentiate the case of sections being considered as records with
the case of consecutive records being combined into a single
record while the section is correctly identified. For the former case,
we need to partition the original MR and recognize each record as
a section. While for the latter case, we only need to adjust the
record partition in the original MR.

Let <Ry, Ry, ..., R> represent the original MR. We check each pair
of consecutive records. Without lose of generality, let R; and R,
represent the two consecutive records in question. Suppose after
record mining, R; consists of small records <ry, ri, ..., r,> while
R, consists of small records <r,;, s, ..., > If Ry and R, are
actually sections, there should be some kind of visual
representation, such as SBMs, a space, etc., to let the user separate
them visually. While normally the case involving SBMs can be
taken care of by the refining process described in Section 5.3, it is
reasonable to think that there should be a special tag structure
between R; and R, to separate them in all cases. Since R, and R,
are consecutive, such a special tag structure must be either part of
the last small record ry, in Ry, or part of the first small record r,; in
R,, which will make ry, or ry; special. To detect this property, we
compute the inter-record distance between the small records in R;
and R,, referred to as Dinr(R;) and Dinr(R,) respectively. Then we
compute the average record distance between r,; and all the
records in R;, denoted as Davgrs(r,;, R;), and the average record
distance between r;, and all the records in R,, denoted as
Davgrs(ry,, R,). If Davgrs(ry;, Ry) > W x Dinr(R;) or Davgrs(r,,,
R,) > W x Dinr(R,), where W is a parameter (1.8 is used currently),
we recognize R, and R, as actually sections, and we adjust the
original section MR accordingly, i.e., R; and R, are removed from
MR. Otherwise we use the mined small records to replace the
original big record in the MR.

Now we deal with the splitting-record problem. There are also two
sub-cases: the sub-case where some large records are extracted as
sections, and the sub-case where a record is split into smaller
records while the section is correctly identified. We present how to
check the existence of the latter case for each MR first.

Let <ry, ry, ..., r,> be the records in the MR that contains a possible
large record L in question. We consider all the records in MR
together rather than only those in L. Note that <ry, rp, ..., r,>
represent one possible way of partitioning MR into records. We
tentatively combine each pair of two consecutive records as one
possible large record: <ry, r;> as the first record, <r3, r;> as the
second record, etc. By doing that, we have a new record partition
of MR. We do this for each three, four, ... and n consecutive
records to get a series of new partitions of MR. Then we compute
the cohesion of each partition using Formula 6. If a partition P
other than <ry, r,, ..., ;> has the highest cohesion, we would take
P as the partition of MR.

Note that records in all MRs have been checked by the above step.
Then we check the existence of the case where large records are
extracted as sections. If there exists a set of consecutive MRs that
are siblings under the same sub-tree of the DOM tree, and all MRs
in the set consist of only one record, then these sections are likely
to be large records mistakenly recognized as sections. In this case,
we form a new section with each original section in the set as a
record and remove the original sections.

5.6 Grouping Section Instances of the Same
Section Schema

At this stage, we have a set of refined MRs for each sample page.
To improve reliability, an MR on one sample page is certified only
if it matches with an MR in at least another sample page. All
matching MRs from different sample pages are section instances of
the same section schema. We apply the stable marriage algorithm
[16] here to find out the matching MRs, with a minor modification
to allow no match. A matching score is computed between two
MRs from two pages based on their tag path similarity, SBM
similarity and tag forest similarity. If the matching score of two

. [
Ignored section 1 1
instance

MRs is below a threshold they will not be matched even when they
have the highest matching score among all the MR pairs from the
two sample pages.

Figure 9. An example graph of section instances

Consider an undirected graph SG = (V, E), where each vertex v €
V corresponds to an MR on a page and an edge € € E exists
between two vertices V; and v; if the MR corresponding to v; on one
page matches the MR corresponding to Vj on another page. Figure
9 shows an example.

A clique C (Vc, Ec) is a sub graph of SG (V, E) such that Ve ¢ V
and Ec c E and for every Vi € Vcand vj € Vc, i #], thereisane
Ec between v; and v;. Each maximum clique in SG of size 2 or
greater is a section instance group of the same section schema. We
apply the Bron-Kerbosch algorithm [4] to find all maximum
cliques in SG of size 2 or greater and take these cliques as the
section instance groups for wrapper building. By doing this, we
ignore dangling section instances (MRs) that have no matches in
any other sample page.

5.7 Constructing Section Wrappers from
Section Instance Groups

A section wrapper is a set of rules that can be applied to the tag
tree of a result page to extract a section and the records it contains.
In this paper, a section wrapper is a quaternion <pref, seps, LBMs,
RBMs>, where pref represents the tag path that leads to the
minimum sub-tree t that contains all records in this section, Seps is
the separator set used to partition the sub-forest of t into records,
LBMs and RBMs are the sets of left and right boundary markers of
the section. The same techniques for identifying pref and seps as
proposed in [29] are adopted in our approach.

For each group of matching section instances (MRs), we combine
the tag paths of member sections that lead to the minimum sub-

trees containing all the records to generate pref, then combine their
separators, LBMs and RBMs to generate seps, LBMs, and RBMs,
respectively, for the corresponding section schema. Combining tag
paths is carried out by converting each tag path into a compact tag
path (see Section 4.1) and merging the compact tag paths [29].
While combining LBMs and RBMs is based on simple majority
vote.

5.8 Section Family

Because we build section wrappers based on sample pages, due to
the step described in Section 5.6, only those section schemas with
instances occurred in at least one pair of sample pages could be
detected and certified. The current set of section wrappers will
miss so-called hidden sections (i.e., section instances of those
section schemas that do not occur in any sample page) as well as
section instances that occur on only one sample page.

We propose the concept of section family to deal with the hidden
section extraction problem. This method can also handle the
section instances that occur on only one sample page. A section
family represents a class of section schemas that share some
common features. The following are two types of section families
that are among those considered by our approach:

1. All member section schemas have the same pref and seps, and
their LBMs (RBMs) share the same line text attribute, which is
different from the line text attribute of any content line in any
record. Figure 10 shows the tag structure of an example. The
pref for both sections is <HTML>C<BODY>
C ...<TBODY>C, and the seps for both sections contains only
one sub-tree rooted at a <TR>. For this example, we assume
that their LBMs (RBMs) share the same line text attribute.

2. All member section schemas have the same seps, and their
prefs have the same prefix as well as the same suffix, and their
LBMs (RBMs) share the same line text attribute, which is
different from the line text attribute of any content line in any
record. Figure 11 shows the tag structure of an example. We
assume the seps, LBMs and RBMs satisify the condition as
Type 1 section family. Note that the pref of section 1 is:
<HTML>C<BODY>C...<TBODY>C<TR>S<TR>S<TR>C<
TD>C, while the pref of section 2 s
<HTML>C<BODY>C...<TBODY>C<TR>S<TR>S<TR>S<
TR>S<TR>C<TD>C. They share the same prefix
<HTML>C<BODY>C ... <TBODY>C<TR>S <TR>S and the
same suffix <TR>C<TD>C.

<HTML>

<HEAD>
<BCI)DY>
1

<TBODY>

F— <TR>

—— <TR>

F—— <TR> LBM of Section 1

r—————

—— <TR> RBM of Section 1

LBM of Section 2

<TR> RBM of Section 2

Figure 10. Tag structure illustrating a Type 1 section family

<HTML>
<HEAD>
<B(?DY>

I
—— <TBODY>

— <TR>
—— <TR>

—

<TD>
- _q_LBM of Segtion l_ oo oo

'
|
i

<TR>
'
H 1 RBM of Section 1
<TR>
|_<T >
'

. .
Lo AR o oo Section T
[:
:
.

Figure 11. Tag structure illustrating a Type 2 section family

In a Type 1 section family, all records in all member section
schemas are siblings right under the sub-tree denoted by pref on
the DOM tree. Thus the Type 1 section family wrapper can be
represented as a quaternion <pref, seps, aLBMs, aRBMs>, where
aLBMs and aRBMs represent the text attributes of the left and right
boundary markers, respectively. In a Type 2 section family, all
member section schemas are siblings right under the sub-tree
denoted by the common prefix of prefs, while the common suffix
of prefs are the relative tag paths that lead to the sub-trees
containing the records in each member section schema. Thus we
can use a quintuple <ppref, spref, seps, aLBMs, aRBMs> to
represent a Type 2 section family wrapper. Here ppref is the
common prefix of the prefs of all member section schemas, while
spref is the common suffix of the prefs of all member section
schemas.

We check all section wrappers produced in Section 5.7 to see if
some of them can be combined to form Type 1 or Type 2 section
wrapper families. If so, the corresponding section wrapper family
is constructed and the original section wrappers from which the
section wrapper family is built are deleted.

6. EXPERIMENTS

We built a prototype system to test the MSE algorithm. On a
laptop with a Pentium M 1.3G processor, the system can construct
section wrappers for a search engine with 5 sample pages in 20 to
50 seconds. Once the wrappers are built, the section and record
extraction from a new result page can be done in a small fraction
of a second.

The test bed consists of 100 search engines from the ViNTs test
bed dataset 2 [29], plus 19 additional search engines that organize
their SRRs into multiple sections. Among the 100 search engines
from the ViNTs test bed dataset 2, 19 return result pages with more
than one dynamic section. Therefore, 38 search engines in the test
bed return multiple dynamic sections, while 81 search engines
return only one dynamic section.

For each search engine, 10 result pages are collected by manually
submitting 10 different queries. In order to test the robustness of
the extracted wrappers, we partition the 10 pages into two subsets:
5 sample/training pages and 5 test pages. Only the sample pages
are used for wrapper construction and parameter/threshold tuning.
Then the wrappers are tested on both parts. We use the recall and
precision measures (which are widely used to evaluate information
retrieval systems) to evaluate the performance of our system for

extracting dynamic sections as well as records they contain. Recall
is the percentage of the correct sections (records) that are extracted
while precision is the percentage of the extracted sections (records)
that are correct.

The test results are shown in a number of tables below. Rows
labeled as “S pgs” give the results on sample pages, while rows
labeled as “T pgs” give the results on test pages. Rows labeled as
“Total” give the results based on all pages. Table 1 shows the
section extraction results on all 119 search engines, totally 1,190
pages are tested. Table 2 shows the section extraction results on the
38 search engines whose result pages have multiple dynamic
sections, totally 380 pages are tested. The columns labeled as
“#Actual”, “#Extracted”, “#Perfect” and “#Partially Correct” give
the numbers of sections that are actually present, extracted,
perfectly extracted and partially correctly extracted, respectively.
A section is perfectly extracted if all records in that section are
extracted, and, no incorrect records are extracted. If more than
60% of the records in a section are extracted but some records are
not extracted, we consider the section to be partially correctly
extracted. The columns under “Perfect” give the performance
(recall and precision) based on perfectly extracted sections, while
the columns under “Total” give the performance if the partially
correctly extracted sections are also acceptable.

The slight performance drop from the results for sample pages to
those for test pages indicates the constructed wrappers are quite
robust. We can see that the total recall and precision on all search
engines for perfect extraction are 84.3% and 80.6%, respectively.
But if we take partially correct sections into consideration, the
numbers rise to 97.6% and 93.2%, respectively. A close
examination of those partially correctly extracted sections reveals
that the majority of the problems is caused by missing some
records or falsely extracting some records. This is verified by
Table 3, which shows the record extraction performance on all
perfectly and partially correctly extracted sections. We can see that
98.7% of all records are extracted, with a precision of 98.8%.

Table 1. Section extraction results on all 119 search engines

#HEXtri#Per#tPartially] Recall % | Precision %
acted|fect| Correct [PerfectTotal[Perfect] Total
S pgs| 1057 [1106]|899 136 85.0 197.9| 81.3 | 93.6
T pgs| 981 [1028]820 134 83.6 197.2| 79.8 | 92.8
Total | 2038 (2134|1719 270 84.3 197.6| 80.6 | 93.2

#Actual

Table 2. Section extraction results on 38 search engines whose
result pages have multiple dynamic sections

#EXtrPerttPartially) Recall % | Precision %
acted|fect| Correct PerfectTotal[Perfect| Total
Spgs| 652 | 670 [538] 92 82.5 [96.6| 80.2 | 94.0
T pgs| 590 | 611 [468] 95 793 1954 76.6 | 92.1
Total | 1242 |1281[1006] 187 81.0 [96.1] 78.5 | 93.1

#Actual

Table 3. Record extraction results on all perfectly and partially
correctly extracted sections.

#Actual HExtracted #Correct | Recall % |Precision %
Spgs| 9615 9597 9490 98.7 98.9
T pgs| 8248 8245 8139 98.7 98.7
Total| 17863 17842 17628 98.7 98.8

Table 1 shows that the total precision (93.1%) of section extraction
is lower than the total recall (96.1%), which indicates that for the
current implementation, the problem of extracting incorrect
sections is more serious than that of missing correct sections. The
main reason for false extraction is that the system takes the missing
records from some sections to form new sections. While the major
reasons for missing records are: incorrect identification of SBMs
and the existence of problematic DOM tree structures of some
sections — our wrapper design requires that the tag structures of
all records of a section be siblings under a common sub-tree, but
some sections may contain records whose tag structures are not
siblings.

7. RELATED WORKS

There have been a lot of researches on web data extraction recently.

Readers may refer to [14] for a survey on major earlier works.
Earlier wrapper generation techniques [1, 3, 12, 13, 16, 19, 28] are
mostly semi-automatic or even manual, relying on training and
human assistance to different extents. These techniques are
becoming impractical as more and more large-scale web
applications are emerging, such as building large-scale metasearch
engines or building metasearch engines on-demand [18, 26].
Consequently, more recent works try to reduce or even totally
eliminate human assistance.

Both RoadRunner [10] and EXALG [2] model the creating of web
pages as enwrapping data by tokens following a template.
RoadRunner compares a pair of web pages at a time to induce the
template while EXALG works on a set of Web pages of the same
class at the same time. IEPAD [7] assumes that repeating token
patterns contain data to be extracted. PAT trees and some
heuristics are applied to extract candidate patterns, from which a
human user selects the best one. DeLa [24] extends the pattern idea
by introducing a multi-level pattern extraction algorithm to build
regular expressions to represent the nested schema of data on the
web page automatically.

While RoadRunner, EXALG, IEPAD and DeLa consider the web
page as a token string, many other researches consider the web
page as a tag tree. Omini [5] and the method in [11] assume that
there is a minimum data-rich sub-tree, which is detected by
applying some heuristics. A separator, which is an HTML tag that
can segment the sub-tree into data objects, is determined by
another set of heuristics. Omini improves [11] by removing the
domain specific ontology and uses a different set of heuristics to
achieve better performance. MDR [15, 27] extracts the data-rich
sub-tree indirectly by detecting the existence of multiple similar
generalized-nodes, which is a collection of child nodes of the sub-
tree. Then each generalized-node is checked to extract records.
ViPER [23] extends the technique in [15] by utilizing some visual
features. The work in [20] explicitly studies the tree edit distance
problem by introducing a tree mapping algorithm and applies it to
domain based page clustering and news extraction. ViNTs [29]
utilizes both visual content features as well as tag tree structures. It
assumes that the data records are located in a minimum data-rich
sub-tree and are separable by separators of tag forests.

A somewhat related research problem is Web page segmentation
(e.g., [6, 22]) whose goal is to partition web pages into semantic
fragments (called blocks or pagelets by different researchers). The
focus of this type of work is to differentiate fragments with
different characteristics such as different styles and different
refresh cycles. The fragments here are in general different from the
dynamic sections discussed in this paper. First, fragments may

include static blocks. Second, multiple continuous dynamic
sections are likely to be treated as a single fragment. In addition,
Web page segmentation does not consider identifying records
within each fragment because supporting data extraction from web
pages is not one of its intended applications.

None of the above works, with the exception of MDR [15], pays
attention to the section extraction problem, which is the main focus
of this paper. The models presented by RoadRunner, EXALG, and
DeLa do not accommodate the existence of data sections, while
IEPAD, Omini, and ViNTs simply assume that there exists only
one section to be extracted. MDR has the ability to output multiple
sections but it does not differentiate dynamic sections from static
contents. It also does not address the non-uniform format problem
and the section-record granularity problem. (The hidden section
extraction problem does not occur for MDR as it does not generate
wrapper, which can lead to other problems such as lower
efficiency.) Furthermore, MDR works well only for table and form
enwrapped records while our method does not have this limitation.
Our experimental results reported in [29] show that ViNTs is
significantly more accurate than MDR in extracting SRRs from the
main (largest) section. Another weakness of MDR is that it can
only detect sections with at least two records whereas our method
does not have this problem.

Finally, we would like to point out the relationships and
differences between this work and our previous work reported in
[29]. First, the work in [29] was focused on record extraction from
a single section (the main section) whereas our current work is
focused on section extraction while also extracting records within
each section. Second, the multi-record extraction (MRE) algorithm
described in Section 5.1 in this paper is essentially from [29] with
slight extension. MRE is just one component among many in our
solution to the section extraction problem. Other than this
component, the overall techniques in [29] and the current paper are
completely different. Issues such as the non-uniform format
problem, the section-record granularity problem, and the hidden
section extraction problem are not addressed in [29]. Third, the
techniques developed in this paper can help record extraction of
ViNTs in two aspects: (1) the requirement that a section must
contain at least three records is no longer needed; and (2) section
boundaries can be more accurately identified. As a result, the
accuracy of record extraction can be improved (the results are not
reported here).

8. CONCLUSIONS

In this paper, we presented an algorithm (MSE) to tackle the
problem of automatically extracting dynamic sections as well as
search result records within these sections. We believe this is the
first work that explicitly aims at extracting all dynamic sections
from Web pages. We identified several new challenges for
providing a comprehensive solution to the dynamic section
extraction problem, i.e., the non-uniform section format problem,
the section-record granularity problem and the hidden section
extraction problem. MSE attempted to address these challenges
with promising results. Our solution can potentially be very useful
for all Web applications that need to interact with web-based
search systems, including regular search engines and e-commerce
search engines. By being able to extract search result records from
all dynamic sections and maintaining the section-record

relationships, MSE allows an application to select the desired
sections for data extraction.

Preliminary experimental results indicate that the proposed
technique is very promising but with room for improvement. We
plan to investigate how to further improve the accuracy of
identifying section boundary markers and to carry out additional
experiments to evaluate the effectiveness of each component of the
MSE solution.

9. ACKNOWLEDGMENTS

This work is supported in part by the following NSF grants: IIS-
0414981, 11S-0414939 and CNS-0454298.

10. REFERENCES

[1] B. Adelberg. NoDoSE — A Tool for Semi-Automatically
Extracting Structured and Semistructured Data from Text
Documents. SIGMOD Conference, 1998.

[2] A. Arasu, H. Garcia-Molina. Extracting Structured Data from
Web Pages. SIGMOD Conference, 2003.

[3] R. Baumgartner, S. Flesca and G. Gottlob. Visual Web
Information Extraction with Lixto. VLDB Conference, 2001.

[4] C. Bron, J. Kerbosch, Algorithm 457: Finding All Cliques of
an Undirected Graph. Commu. of the ACM, Sep 1973.

[5] D. Buttler, L. Liu, C. Pu. A Fully Automated Object
Extraction System for the World Wide Web. ICDCS 2001.

[6] D. Cai, S. Yu, J. Wen, W. Ma. Block-based Web Search.
SIGIR Conference, 2004.

[7] C. Chang, S. Lui. IEPAD: Information Extraction based on
Pattern Discovery. WWW 2001.

[8] K. Chang, B. He, C.Li, M. Patel, and Z. Zhang, Structured
Databases on the Web: Observations and Implications.
SIGMOD Record, 33(3), September 2004.

[9] S. Chawathe. Comparing Hierarchical Data in External
Memory. VLDB Conference, 1999.

[10] V. Crescenzi, G. Mecca, P. Merialdo. RoadRunner: Towards
Automatic Data Extraction from Large Web Sites. VLDB
Conference, 2001.

[11] D. Embley, Y. Jiang, Y. Ng. Record-Boundary Discovery in
Web Documents. SIGMOD Conference, 1999.

[12] C. Hsu and M. Dung. Generating Finite-State Transducers for
Semi-structured Data Extraction from the Web. Information
Systems. 23(8): 521-538, 1998.

[13] N. Kushmerick, D. Weld, R. Doorenbos. Wrapper Induction
for Information Extraction. IJCAI, 1997.

[14] A. Laender, B. Ribeiro-Neto, A. da Silva, J. Teixeira. A Brief
Survey of Web Data Extraction Tools. ACM SIGMOD
Record, 31(2), 2002.

[15] B. Liu, R. Grossman and Y. Zhai. Mining Data Records in
Web Pages. SIGKDD, 2003.

[16] L. Liu, C. Pu and W. Han. XWRAP: An XML-Enabled
Wrapper Construction System for Web Information Sources.
ICDE, 2000.

[17] D. McVitie, L. Wilson. The Stable Marriage Problem. Comm.
of the ACM, 14(7), July 1971.

[18] W. Meng, C. Yu, K. Liu. Building Efficient and Effective
Metasearch Engines. ACM Compu. Surv., 34(1), 2002.

[19] 1. Muslea, S. Minton, C. Knoblock. A Hierarchical Approach
to Wrapper Induction. Int’l Conf. on Auton. Agents, 1999.

[20] S. Raghavan, H. Garcia-Molina. Crawling the Hidden Web.
VLDB Conference, 2001.

[21] D. Reis, P. Golgher, A. Silva, A. Laender. Automatic Web
News Extraction Using Tree Edit Distance. WWW 2004.

[22] L. Ramaswamy, A. Iyengar, L. Liu, F. Douglis. Automatic
Detection of Fragments in Dynamically Generated Web
Pages. WWW 2004.

[23] K. Simon, G. Lausen. ViPER: Augmenting Automatic
Information Extraction with Visual Perceptions. CIKM 2005.

[24] J. Wang, F. Lochovsky. Data Extraction and Label
Assignment for Web Databases. WWW 2003.

[25] S. Wu, U. Manber. Fast Text Searching Allowing Errors.
Comm. of the ACM, 35(10), 1992.

[26] Z. Wu, V. Raghavan et al. Towards Automatic Incorporation
of Search Engines into a Large-Scale Metasearch Engine.
IEEE/WIC WI-2003 Conf., 2003.

[27] Y. Zhai, B. Liu. Web Data Extraction Based on Partial Tree
Alignment. WWW 2005.

[28] Y. Zhai, B. Liu. Extracting Web Data Using Instance-Based
Learning. WISE 2005.

[29] H. Zhao, W. Meng, Z. Wu, V. Raghavan, C. Yu. Fully
Automatic Wrapper Generation for Search Engines. WWW
2005.

	ABSTRACT
	A search engine returned result page may contain search resu
	1. INTRODUCTION
	2. RESULT PAGE LAYOUT MODEL
	3. SOLUTION OVERVIEW
	4. BASIC CONTENT FEATURES OF RESULT PAGES
	5. SECTION WRAPPER BUILDING

	Figure 5. Algorithm DSE
	Figure 8. Refining MR and DS: Case 4
	Figure 11. Tag structure illustrating a Type 2 section famil
	7. RELATED WORKS

	9. ACKNOWLEDGMENTS

