
Bootstrapping Domain Ontology for

Semantic Web Services from Source Web Sites

Wensheng Wu1, AnHai Doan1, Clement Yu2, and Weiyi Meng3

1 University of Illinois, Urbana, USA
2 University of Illinois, Chicago, USA

3 Binghamton University, Binghamton, USA

Abstract. The vision of Semantic Web services promises a network of
interoperable Web services over different sources. A major challenge to
the realization of this vision is the lack of automated means of acquiring
domain ontologies necessary for marking up the Web services. In this
paper, we propose the DeepMiner system which learns domain ontologies
from the source Web sites. Given a set of sources in a domain of inter-
est, DeepMiner first learns a base ontology from their query interfaces.
It then grows the current ontology by probing the sources and discov-
ering additional concepts and instances from the data pages retrieved
from the sources. We have evaluated DeepMiner in several real-world do-
mains. Preliminary results indicate that DeepMiner discovers concepts
and instances with high accuracy.

1 Introduction

Past few years have seen an increasingly widespread deployment of Web services
in the e-commerce marketplace such as travel reservation, book selling, and car
sale services [21]. Among the most prominent contributing factors are several
XML-based standards, such as WSDL [26], SOAP [20], and UDDI [22], which
greatly facilitate the specification, invocation, and discovery of Web services.
Nevertheless, the interoperability of Web services remains a grand challenge.

A key issue in enabling automatic interoperation among Web services is to
semantically mark up the services with shared ontologies. These ontologies typi-
cally fall into two categories: service ontology and domain ontology. The service

ontology provides generic framework and language constructs for describing the
modeling aspects of Web services, including process management, complex ser-
vice composition, and security enforcement. Some well-known efforts are OWL-S
[5], WSFL [11], and WSMF [9]. The domain ontology describes concepts and con-
cept relationships in the application domain, and facilitate the semantic markups
on the domain-specific aspects of Web services such as service categories, seman-
tic types of parameters, etc. Clearly, such semantic markups are crucial to the
interoperation of the Web services.

Automatic acquisition of domain ontologies is a well-known challenging prob-
lem. To address this challenge, this paper proposes DeepMiner, a system for an

(a) Its query interface (b) A snippet of a data page

Fig. 1: A car sale Web site: query interface and data page

incremental learning of domain ontologies for semantically marking up the Web
services. DeepMiner is motivated by the following observations. First, we observe
that many sources, which may potentially provide Web services, typically have
already been providing similar services in their Web sites through query interface
(e.g. in HTML form) and Web browser support. To illustrate, consider buying a
car through a dealership’s Web site. The purchasing may be conducted by first
specifying some information on the desired vehicle such as make, model, and
pricing, on its query interface (Figure 1.a). Next, the source may respond with
the search result, i.e., a list of data pages (e.g., Figure 1.b), which typically con-
tain detailed information on the qualified vehicles. The user may then browse the
search result and place the order on the selected vehicle (e.g. through another
HTML form).

Second, we observe that query interfaces and data pages of the sources often
contain rich information on concepts, instances, and concept relationships in the
application domain. For example, there are six attributes in Figure 1.a, each is
denoted with a label and corresponds to a different concept. Some attributes
may also have instances, e.g., Distance has instances such as 25 Miles. Further,
the data page in Figure 1.b contains many additional concepts such as City,
State, Condition, etc., and instances such as Homewood for City and Fair for
Condition. Finally, the relative placement of attributes in the interface and data
pages indicates their relationships, e.g., closely related attributes, such as Make
and Model (both describe the vehicle), Zip Code and Distance (both concern the
location of the dealership), are typically placed near to each other.

Based on the above observations, the goal of DeepMiner is to effectively learn
a domain ontology from interfaces and data pages of a set of domain sources.
Achieving this goal requires DeepMiner to make several innovations.

– Incremental learning: As observed above, the knowledge acquired from
source interfaces only is often incomplete since data pages of the sources
may contain many additional information. Further, different sources may
contain a different set of concepts and instances. As such, DeepMiner learns
the domain ontology in a snowballing fashion: first, it learns a base ontology
from source interfaces; it then grows the current ontology by probing the
sources and learning additional concepts and instances from the data pages
retrieved from the sources.

– Handling heterogeneities among sources: Due to the autonomous na-
ture of sources, the same concept may be represented quite differently over
different sources. Another major challenge is thus to identify the semantic
correspondences between concepts learned from different sources. To address
this challenge, DeepMiner employs a clustering algorithm to effectively dis-
cover unique concepts over different interfaces. The learned ontology is then
exploited for discovering new concepts and instances from data pages.

– Knowledge-driven extraction: Extracting concepts and instances from
data pages is significantly more challenging than from query interfaces (since
concepts and instances on an interface are typically enclosed in a form con-
struct). To address this challenge, DeepMiner first exploits the current on-
tology to train concept classifiers. The concept classifiers are then employed
to effectively identify regions of a data page where concepts and instances
are located, discover presentation patterns, and perform the extraction.

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 defines the problem. Sections 4–5 describe the DeepMiner system. Em-
pirical evaluation is reported in Section 6. Section 7 discusses the limitations of
the current system. Section 8 concludes the paper.

2 Related Work

The problem of semantically marking up Web services is fundamental to the
automated discovery and interoperation of Web services and e-services. As such,
it is being actively researched [3, 4, 7, 8, 12, 14, 19, 23, 24].

There have been some efforts in learning domain ontology for Web services.
Our work is most closely related to [17], but different in several aspects. First,
[17] learns domain ontology from the documentations which might accompany
the descriptions of Web services, while our work exploits the information from
the source Web sites. Second, we extract concepts and instances from semi-
structured data over source interfaces and data pages, while [17] learns ontology
from natural language texts.

[15] proposes METEOR S, a framework for annotating WSDL files with con-
cepts from an existing domain ontology. The mappings between elements in the
WSDL files and the concepts in the ontology are identified by exploiting a suite
of matchers such as token matcher, synonym finder, and n-gram matcher. [10]
employs several machine learning algorithms for the semantic annotation of at-
tributes in source interfaces. The annotation relies on a manually constructed
domain ontology. Our work is complementary to these works in that we aim to
automatically learn a domain ontology from the information on the source Web
sites. The learned ontology can then be utilized to annotate the Web services.

There are several previous work on extracting instances and their labels from
data pages [1, 25]. A fundamental difference between these work and ours is that
we utilize existing knowledge in the growing ontology to effectively identify data
regions and occurrences of instances and labels on the data pages. We believe
that such a semantics-driven approach is also more efficient than their template-
induction algorithm which can have an exponential complexity [6].

w4

xx
xx
xx

xx
xx
xx

xx
xx
xx

xx
xx
xx

 C1: (L1,I1)
 C2: (L2,I2)
 C3: (L3,I3)
 C4: (L4,I4)
 C5: (L5,I5)

 C7: (L7,I7)

 C6: (L6,I6)

 C2: (L2’,I2’)

xx
xx
xx

(f)

(a)
(b)

Ontology

c

w2w1

Label classifier

Instance classifier

(d) Result page

concepts & insts

(e)
Source

interfaces

Source interface

Extracted

(c)

.

w3

Fig. 2: The DeepMiner architecture

The problem of matching interface attributes has also been studied in the
context of integrating deep Web sources (e.g., [27]). Our work extends these
works in the sense that the learned domain ontology can be used to construct a
global schema for the sources.

3 Problem Definition

We consider the problem of learning a domain ontology from a given set of
sources in a domain of interest. The learned domain ontology should have the
following components: (1) concepts: e.g. make, model, and class are concepts of
the auto sale domain. (2) instances of concept: e.g. Honda and Ford are instances
of the concept make. (3) synonyms: e.g. the concept make may also be denoted
by brand, car manufacturer, etc. (4) statistics: i.e., how frequent each concept
and its instances appear in the domain. (5) data types: of the concept instances,
e.g., instances of price are monetary values while instances of year are four-digit
numbers. (6) concept relationships: which include the grouping (e.g, make and
model), precedence (e.g., make should be presented before model), as well as the
taxonomic relationships between concepts.

In this paper, we describe DeepMiner with respect to learning components
(1)–(5). The details on the approaches for learning concept relationships will be
given in the full version of the paper.

4 The DeepMiner Architecture

The architecture of DeepMiner is shown in Figure 2. Given a set of sources,
DeepMiner starts by learning a base ontology O from source interfaces (step a).
Then, the ontology-growing cycle (steps b–f) is initiated. At each cycle, first
the current ontology O is exploited to train a label classifier C l and an instance
classifier Ci (step b). Next, DeepMiner poses queries to a selected source through
its interface (step c) and obtains a set of data pages from the source (step d).
The learned classifiers C l and Ci are then employed to identify data regions in
the data pages, from which DeepMiner extracts the occurrences of concepts and
their instances (step e). Finally, the obtained concepts and instances are merged
with O, resulting in a new ontology O′ for the next cycle (step f).

The rest of the section describes the process of learning base ontology. The
details on the ontology-growing cycle will be presented in Section 5.

Consider a set of source query interfaces in a domain of interest (e.g. Figure
1.a). A query interface may be represented by a schema which contains a set of

attributes. Each attribute may be associated with a label and a set of instances.
The label and instances of attributes can be obtained from the interface by
employing an automatic form extraction procedure [27].

Given a set of interfaces, DeepMiner learns a base ontology O which consists
of all unique concepts and their instances over the interfaces. Since similar at-
tributes (denoting the same concept) may be associated with different labels (e.g.
Make of the car may be denoted as Brand on a different interface) and different
sets of instances, a key challenge is thus to identify semantic correspondences
(i.e. mappings) of different attributes over the interfaces.

For this, DeepMiner employs a single-link clustering algorithm [27] to effec-
tively identify mappings of attributes over the interfaces. Specifically, the simi-
larity of two attributes is evaluated based on the similarity of their labels (with
the TF/IDF function commonly employed in Information Retrieval) and the
similarity of the data type and values of their instances. (For the attributes with
no instances, DeepMiner also attempts to glean their instances from the Web.)
The data type of instances is inferred from the values of instances via pattern
matching with a set of type-recognizing regular expressions. Finally, for each
produced cluster, DeepMiner adds into its base ontology a new concept which
contains the information obtained from the attributes in the cluster, including
labels, instances, data type, and statistics as described in Section 3.

5 Growing Ontology via Mining Data Pages

Denote the current ontology as O which contains a set of concepts, each of
which is associated with a set of labels and instances. This section describes how
DeepMiner grows O by mining additional concepts and instances from the data
pages of a selected source. Query submission will be described in Section 6.

5.1 Training Label and Instance Classifiers

DeepMiner starts by training label classifier C l and instance classifier Ci with
training examples automatically created from O. C l predicts the likelihood that
a given string (of words) s may represent a concept in O, while C i predicts the
likelihood that a given string s′ may be an instance of a concept in O.

Training label classifier: The label classifier C l is a variant of the k-nearest
neighbor (kNN) classifier [13], which performs the prediction by comparing the
string with the concept labels it has seen during the training phase.

Specifically, at the training phase, for each concept c ∈ O and each of its
labels l, a training example (l, c) is created and stored with the classifier. Then,
given a string s, C l makes predictions on the class of s based on the classes of
the stored examples whose similarity with s is larger than δ (i.e., the nearest
neighbors of s), by taking votes. The similarity between two strings is their
TF/IDF score [18].

Example 1. Suppose that O contains three concepts c1, c2, and c3. Further sup-
pose that the training examples stored with C l are (l1, c1), (l2, c2), (l3, c3), (l4,
c1), (l5, c2), and (l6, c3). Suppose that δ = .2.

Data region

Year:

b

Make:

Stratus

Model:

b1996 Dodgeb

font

td

trtr
td

font

b

tr

1996 Mechanic...

table

html

table

Fig. 3: The dom tree of Figure 1.b

Consider a string s and suppose that the labels in the first five training
examples (i.e., l1 to l5) are the ones whose similarity with s is greater than .2.
Since 2/5 of the nearest neighbors of s are from the concept c1, the confidence
score for c1 is .4. The predictions for other concepts are given similarly. ut

Training instance classifier: The instance classifier C i is a naive Bayes classifier
which performs the prediction based on the frequency of words which occur in
the instances of the concepts. Note that C i may also be implemented as a kNN
classifier, but since the number of instances of a concept is likely to be very large,
the naive Bayes classifier is typically more efficient since it does not require the
comparison with all the instances at the query time.

Specifically, for each instance i of a concept c in O, a training example (i′, c)
is created, where i′ is a bag-of-token representation of i with the stopwords in i
removed and the non-stop words stemmed. Then, given a string s, represented
by (w1, w2, · · · , wk), where wi are tokens. Ci assigns, for each concept c in O, a
prediction score p(c|s) computed as p(c)∗p(s|c)/p(s), where p(s) is

∑
c′inO

p(c′)∗
p(s|c′). Particularly, p(c) is estimated as the percentage of training examples
of class c. p(s|c) is taken to be p(w1|c) ∗ p(w2|c) ∗ · · · ∗ p(wk|c), based on the
assumption that tokens of s occur independently of each other given c. p(wi|c) is
estimated as the ratio n(wi, c)/n(c), where n(wi, c) is the number of times token
wi appears in training examples whose class is the concept c, and n(c) is the
total number of token positions in all training examples of class c.

5.2 Mining Concepts and Instances

Identifying data regions: A data region is a portion of a data page which contains
data records generated by the source, where each record consists of a set of
instances and their labels. (Note that some instances may not have labels.) To
illustrate, the data region in Figure 1.b is represented by a dashed box. Note
that a data page may contain more than one data regions.

To identify the data regions, DeepMiner exploits the following observations.
First, the current ontology O can be exploited to recognize data regions which
may often contain labels and instances of existing concepts in O. Second, the
label of a concept and its instances are often located in close proximity and
spatially aligned on the data page [1]. This placement regularity can be exploited
to associate the label of a concept with its instances.

Motivated by the above observations, DeepMiner starts by seeking the oc-
currences of concepts of O and their instances in the data page. Specifically,

consider a data page p represented by its DOM tree. For example, Figure 3
shows the DOM tree for the data page in Figure 1.b. First, the label classifier
Cl is employed to predict, for each text segment t (i.e. text node in the DOM
tree), the concept c which t most likely denotes (i.e., c is the concept which C l

assigns the highest score s with s > .5). Next, t is further verified to see if it
indeed denotes the concept c by checking if the text segment located below or
next to t is an instance of c. Intuitively, these two positions are the places where
instances of c are likely to be located.

To determine the relative position between two text segments, DeepMiner
employs an approach which directly works on the DOM tree of the data page.
The approach exploits the following observations on the characteristics of data
pages. First, within each data region, the sequence of text segments resulted from
a pre-order traversal of the DOM sub-tree for the data region often corresponds
to the left-right, top-down ordering of text segments when the data page is ren-
dered via Web browsers. Second, since data pages are automatically generated,
spatial alignments of text segments are often achieved via the table construct of
HTML, rather than via explicit white space characters such as “ ” which
are often found in manually generated Web pages, e.g., with some Web page
authoring tool. Based on these observations, DeepMiner takes the text segment
which follows t in the pre-order traversal of the DOM tree to be the segment
next to t, denoted as tn. Further, if t is located in the cell [i, j] of a table with
M rows and N columns, then all text segments at column j and row k, where
i + 1 ≤ k ≤ N , are taken to be the text segments below t, denoted as tbk

’s.
Next, the instance classifier C i is employed to determine, for each text seg-

ment tx among tn and tbk
’s, the concept in O which tx is most likely to be an

instance of. Suppose t′ has the largest confidence score among all these text seg-
ments and it is predicted to be an instance of class c′. Then, the text segment t
is determined to denote the concept c only if c′ = c. For example, State in Figure
1.b is recognized as a label for an existing concept c in O due to the fact that
it is highly similar to some known label of c and further that IL (which is a text
segment next to state) is predicted to be an instance of c by C i.

The above procedure results in a set of label-instance pairs, each for some
known concept in O. Data regions are then determined based on these label-
instance pairs as follows. Consider such a label-instance pair, denoted as (L, I).
If L is located in a table, then the data region induced by (L, I) comprises all
content of the table. Otherwise, suppose the least-common-ancestor of nodes for
L and I in the DOM tree is ω. The data region induced by (L, I) is then taken
to be the subtree rooted at ω. The intuition is that related concepts are typically
located near to each other in a data page and thus in the DOM tree of the data
page as well.

Example 2. The DOM subtree which corresponds to the identified data region
in Figure 1.b is marked with a dotted polygon in Figure 3. ut

Discovering presentation patterns: Once data regions are identified, DeepMiner
proceeds to extract concepts and their instances from the data regions. For this,

DeepMiner exploits a key observation that concepts and their instances within the
same data region are typically presented in a similar fashion, to give an intuitive
look-and-feel impression to users. For example, in Figure 1.b, the label of concept
is shown in bold font and ends with a colon, and the corresponding instance is
located right next to it, shown in normal font. Motivated by this observation,
DeepMiner first exploits known concepts and their instances to discover their
presentation patterns, and then applies the patterns to extract other concepts
and their instances from the same data region.

Specifically, a presentation pattern for a concept label L and its instance I in
a data region r is a 3-tuple: <α, β, γ>, where α is the tag path to L from the root
of the DOM subtree for r, β is the suffix of L (if any), and γ is the location of I
relative to L. These patterns are induced from the known occurrences of label-
instance pairs in the region r as follows. Denote the root of the DOM subtree
for r as ω. For each label-instance pair (Lx, Ix), we induce a pattern. First, α
is taken to be the sequence of HTML tags from ω to the text segment node for
Lx, ignoring all hyperlink tags (i.e., ‘a’). Second, if the text segment for Lx ends
with symbols such as ‘:’, ‘-’ and ‘/’, these symbols constitute β. Third, γ has two
possible values: next and below, depending on how Ix is located, relative to Lx.

Example 3. α for the data region in Figure 3 is (table, tr, td, font, b), β is the
suffix ‘:’, and the value of γ is next. ut

Extracting concept labels and instances: This step employs the learned patterns
to extract concept labels and their instances from the data region r. In particular,
α and β of a pattern are first applied to identify labels of other concepts in the
region and then the instances of the identified concepts are extracted in the
location relative to the labels as indicated by the γ part of the pattern.

Example 4. The learned pattern from Figure 3 will extract concept-instances
pairs from Figure 1.b such as: (Year, {1996}), (Make, {Dodge}), and (Posted,
{January 04, 2005}). ut

5.3 Merging with the Current Ontology

This step merges the label-instances pairs mined from the data pages into the
current ontology O. Specifically, for each label-instances pair e = (L, I), if e
belongs to an existing concept c, then L and I are added to the list of labels and
instances for c, respectively. The corresponding statistics for c are also updated
accordingly. Otherwise, a new concept will be created with L as a label and I
as a set of instances.

6 Empirical Evaluation

We have conducted preliminary experiments to evaluate DeepMiner. The experi-
ments use an e-commerce data set which contains sources over automobile, book
and job domains, with 20 sources in each domain [2]. Each source has a query
interface represented by a set of attributes. The average number of attributes for
the interfaces in the auto, book and job domains is 5.1, 5.4, and 4.6, respectively.

Domains
Base Ontology Data Regions Concept-Instances

Prec. Rec. Prec. Rec. Prec. Rec.

Auto 100 98.9 6/7 6/6 41/43 41/41

Book 100 90.4 8/8 8/8 41/41 41/43

Job 94.6 91.2 5/5 5/5 22/22 22/23

Table 1: The performance of DeepMiner

First, we evaluated the performance of DeepMiner on discovering unique con-
cepts over source interfaces. The performance is measured by two metrics: pre-

cision, which is the percentage of correct mappings of attributes among all the
mappings identified by the system, and recall, which is the percentage of correct
mappings among all mappings given by domain experts. In these experiments,
the clustering threshold is set to .25, uniformly over all domains. Results are
shown in columns 2–3 in Table 1.

It can be observed that attribute mappings are identified with high precision
over all domains, with a prefect precision in the auto and book domains and
around 95% for the job domain. Furthermore, good recalls are also achieved,
ranging from 90.4% in the book domain to 98.9% in the auto domain. Detailed
analysis indicates the challenge of matching some attributes in the book do-
main, e.g., DeepMiner failed to match attributes section and category since their
instances have very little in common. A possible remedy is to utilize the instances
obtained from data pages to help identify their mapping.

To isolate the effects of different components, we manually examined the
mapping results and corrected mismatches. This process takes only a couple of
minutes, since there are very few errors in each domain.

Next, we evaluated the performance of DeepMiner on identifying data regions.
For this, we randomly select five sources for each domain. For each source, query
submission is made by automatically formulating a query string which consists
of form element names and values, and posing the query to the source. If an
attribute does not have instances in its interface, the instances of its similar
attributes (available from the base ontology) are used instead. This probing
process is repeated until at least one valid data page is returned from the source,
judged based on several heuristics as employed in [16]. For example, pages which
contain phrases such as “no results” and “no matches” are regarded as invalid
pages.

For all data pages retrieved in each domain, we first manually identified the
number of data regions in the pages, and use it as the gold standard. Deep-
Miner’s performance is then measured by the number of data regions it correctly

identified, over all data regions it identified (i.e. precision), and over all the ex-
pected data regions as given by the gold standard (i.e. recall). Results are shown
in columns 4–5 of Table 1. It can observed that DeepMiner is very accurate in
identifying data regions: only one is incorrectly identified in the auto domain.

Finally, we evaluated DeepMiner’s performance on discovering concepts and
their instances from data pages. This was done by first manually determining
the number of concept labels and their instances in all data pages, and then
comparing the concept-instances pairs discovered by DeepMiner with this gold
standard. Results are shown in the last two columns of Table 1.

We observe that DeepMiner achieves very high accuracy consistently over dif-
ferent domains. We looked at the data pages it made mistakes and examined the
reasons. In particular, we note that there is a concept with label job description:
in www.aftercollege.com, but its instance is located in the same text segment as
the label, although the label does contain a delimiter ‘:’. It would be interesting
to extend DeepMiner to handle such cases. DeepMiner also made some errors in
Amazon.com. For example, currently it is difficult for DeepMiner to recognize
that only Prentice Hall in Prentice Hall (feb 8, 2008) is an instance of publisher.
We are currently developing a solution which exploits the existing ontology to
perform segmentation on the text segments.

7 Discussions & Future Work

We now address the limitations of the current DeepMiner system. The first issue
to address is to make the learning of presentation patterns more robust, e.g.,
handling possible non-table constructs. Currently, the relative positions of at-
tributes and their values are obtained by analyzing their appearance in the DOM
trees. An alternative is to render the data page with a Web browser and obtain
the spatial relationships (e.g., pixel distances and alignments) of attributes and
values from the rendered page. But this approach has a potential disadvantage
of being time-consuming.

Second, we plan to perform additional experiments with the system and
further examine its performance. Preliminary results indicated that data pages
are typically rich in attributes and values, and that a dozen of data pages per
Web site are often sufficient for learning a sizable ontology. As such, we expect
our approach to be scalable to a large number of Web sites.

Finally, it would be interesting to combine our approach with the approaches
of learning concepts and instances from the Web services already existing in the
B2B domain (e.g. [17]). Further, the ontology learned with our approach can be
utilized to train concept and instance classifiers, which can then be employed to
markup the Web services by the approaches such as [15].

8 Conclusions

We have described the DeepMiner system for learning domain ontology from the
source Web sites. The learned ontology can then be exploited to mark up Web
services. Its key novelties are (1) incremental learning of concepts and instances;
(2) effective handling of the heterogeneities among autonomous sources; and (3)
a machine learning framework which exploits existing ontology in the process
of learning new concepts and instances. Preliminary results indicated that it
discovers concepts and instances with high accuracy.

We are currently investigating several directions to extend DeepMiner: (a)
employ the learned ontology to segment complex text segments and recognize
instances in the segments; (b) utilize the instances gleaned from data pages
to assist in matching interface attributes; and (c) combine DeepMiner with the
approach of learning domain ontology from texts.

Acknowledgment: This research is supported in part by the following grants
from NSF: IIS-0414981 and IIS-0414939.

References

1. L. Arlotta, V. Crescenzi, G. Mecca, and P. Merialdo. Automatic annotation of
data extracted from large Web sites. In WebDB, 2003.

2. http://metaquerier.cs.uiuc.edu/repository/.
3. B. Benatallah, M. Hacid, A. Leger, C. Rey, and F. Toumani. On automating web

services discovery. VLDB Journal, 14(1), 2005.
4. F. Casati and M. Shan. Models and languages for describing and discovering e-

services. In Tutorial, SIGMOD, 2001.
5. The OWL-S Services Coalition. OWL-S: Semantic Markup for Web Services.

http://www.w3.org/Submission/OWL-S/.
6. V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner: Towards automatic data

extraction from large Web sites. In Proc. of VLDB, 2001.
7. G. Denker, L. Kagal, T. Finin, M. Paolucci, and K. Sycara. Security for daml web

services: Annotation and matchmaking. In ISWC, 2003.
8. M. Dumas, J. O’Sullivan, M. Hervizadeh, D. Edmond, and A. Hofstede. Towards

a semantic framework for service description. In DS-9, 2001.
9. D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF. Elec-

tronic Commerce: Research and Applications, 1, 2002.
10. A. Heß and N. Kushmerick. Machine learning for annotating semantic web services.

In AAAI Spring Symposium on Semantic Web Services, 2004.
11. F. Leymann. WSFL (Web Service Flow Language), 2001.
12. B. Li, W. Tsai, and L. Zhang. Building e-commerce systems using semantic appli-

cation framework. Int. J. Web Eng. Technol., 1(3), 2004.
13. T. Mitchell. Machine Learning. McGraw-Hill, 1997.
14. M. Paolucci and K. Sycara. Semantic web services: Current status and future

directions. In ICWS, 2004.
15. A. Patil, S. Oundhakar, A. Sheth, and K. Verma. METEOR-S: Web service anno-

tation framework. In WWW, 2004.
16. S. Raghavan and H. Garcia-Molina. Crawling the hidden Web. In VLDB, 2001.
17. M. Sabou, C. Wroe, C. Goble, and G. Mishne. Learning domain ontologies for web

service descriptions: an experiment in bioinformatics. In WWW, 2005.
18. G. Salton and M. McGill. Introduction to Modern Information Retrieval. McCraw-

Hill, New York, 1983.
19. K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller. Adding semantics to web

services standards. In ICWS, 2003.
20. SOAP. http://www.w3.org/TR/soap/.
21. http://uddi.microsoft.com/.
22. UDDI. http://www.uddi.org/.
23. D. VanderMeer, A. Datta, et al. FUSION: A system allowing dynamic Web service

composition and automatic execution. In CEC, 2003.
24. L. Vasiliu, M. Zaremba, et al. Web-service semantic enabled implementation of

machine vs. machine business negotiation. In ICWS, 2004.
25. J. Wang and F. Lochovsky. Data extraction and label assignment for Web

databases. In WWW, 2003.
26. WSDL. http://www.w3.org/TR/wsdl/.
27. W. Wu, C. Yu, A. Doan, and W. Meng. An interactive clustering-based approach

to integrating source query interfaces on the Deep Web. In SIGMOD, 2004.

