IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31,

NO. 4, APRIL 2019

Normalization of Duplicate Records
from Multiple Sources

Yongquan Dong™, Eduard C. Dragut™, Member, IEEE, and Weiyi Meng™, Senior Member, IEEE

Abstract—Data consolidation is a challenging issue in data integration. The usefulness of data increases when it is linked and fused
with other data from numerous (Web) sources. The promise of Big Data hinges upon addressing several big data integration
challenges, such as record linkage at scale, real-time data fusion, and integrating Deep Web. Although much work has been conducted
on these problems, there is limited work on creating a uniform, standard record from a group of records corresponding to the same real-
world entity. We refer to this task as record normalization. Such a record representation, coined normalized record, is important for both

769

front-end and back-end applications. In this paper, we formalize the record normalization problem, present in-depth analysis of
normalization granularity levels (e.g., record, field, and value-component) and of normalization forms (e.qg., typical versus complete).
We propose a comprehensive framework for computing the normalized record. The proposed framework includes a suit of record
normalization methods, from naive ones, which use only the information gathered from records themselves, to complex strategies,
which globally mine a group of duplicate records before selecting a value for an attribute of a normalized record. We conducted
extensive empirical studies with all the proposed methods. We indicate the weaknesses and strengths of each of them and recommend

the ones to be used in practice.

Index Terms—Record normalization, data quality, data fusion, web data integration, deep web

1 INTRODUCTION

HE Web has evolved into a data-rich repository contain-
ing a large amount of structured content spread across
millions of sources. The usefulness of Web data increases
exponentially (e.g., building knowledge bases, Web-scale
data analytics) when it is linked across numerous sources.
Structured data on the Web resides in Web databases [1]
and Web tables [2]. Web data integration is an important
component of many applications collecting data from Web
databases, such as Web data warehousing (e.g., Google and
Bing Shopping; Google Scholar), data aggregation (e.g.,
product and service reviews), and metasearching [3].
Integration systems at Web scale need to automatically
match records from different sources that refer to the same
real-world entity [4], [5], [6], find the true matching records
among them and turn this set of records into a standard
record for the consumption of users or other applications.
There is a large body of work on the record matching problem
[7] and the truth discovery problem [8]. The record matching
problem is also referred to as duplicate record detection [9],
record linkage [10], object identification [11], entity resolution

e Y. Dong is with the School of Computer Science and Technology, Jiangsu
Normal University, Xuzhou, Jiangsu 221116, China.
E-mail: tomdyq@163.com.

e E.C. Dragut is with the Department of Computer and Information Sciences,
Temple University, Philadelphia, PA 19022. E-mail: edragut@temple.edu.

o W. Meng is with the Computer Science Department, Binghamton University,
Binghamton, NY 13902. E-mail: meng@cs.binghamton.edu.

Manuscript received 13 Dec. 2017; revised 8 May 2018; accepted 20 May
2018. Date of publication 5 June 2018; date of current version 5 Mar. 2019.
(Corresponding author: Eduard C. Dragut.)

Recommended for acceptance by . Levandoski.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TKDE.2018.2844176

<+

[12], or deduplication [13] and the truth discovery problem
is also called as truth finding [14] or fact finding [15]—a
key problem in data fusion [16], [17]. In this paper, we assume
that the tasks of record matching and truth discovery
have been performed and that the groups of true matching
records have thus been identified. Our goal is to generate a
uniform, standard record for each group of true matching
records for end-user consumption. We call the generated
record the normalized record. We call the problem of comput-
ing the normalized record for a group of matching records
the record normalization problem (RNP), and it is the focus of
this work. RNP is another specific interesting problem in
data fusion.

Record normalization is important in many application
domains. For example, in the research publication domain,
although the integrator website, such as Citeseer or Google
Scholar, contains records gathered from a variety of sources
using automated extraction techniques, it must display a
normalized record to users. Otherwise, it is unclear what
can be presented to users: (i) present the entire group of
matching records or (ii) simply present some random record
from the group, to just name a couple of ad-hoc approaches.
Either of these choices can lead to a frustrating experience
for a user, because in (i) the user needs to sort/browse
through a potentially large number of duplicate records,
and in (ii) we run the risk of presenting a record with miss-
ing or incorrect pieces of data.

Record normalization is a challenging problem because
different Web sources may represent the attribute values of
an entity in different ways or even provide conflicting data.
Conlflicting data may occur because of incomplete data, differ-
ent data representations, missing attribute values, and even
erroneous data. For example, Table 1 contains four records

1041-4347 © 2018 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8460-7034
https://orcid.org/0000-0001-8460-7034
https://orcid.org/0000-0001-8460-7034
https://orcid.org/0000-0001-8460-7034
https://orcid.org/0000-0001-8460-7034
https://orcid.org/0000-0002-3103-054X
https://orcid.org/0000-0002-3103-054X
https://orcid.org/0000-0002-3103-054X
https://orcid.org/0000-0002-3103-054X
https://orcid.org/0000-0002-3103-054X
https://orcid.org/0000-0002-7246-2058
https://orcid.org/0000-0002-7246-2058
https://orcid.org/0000-0002-7246-2058
https://orcid.org/0000-0002-7246-2058
https://orcid.org/0000-0002-7246-2058
mailto:
mailto:
mailto:

770 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,

VOL.31, NO.4, APRIL2019

TABLE 1
Four Records for the Same Publication: R,, R;,, R., and R, are Extracted from
Different Websites and R,,,,.,, is Constructed Manually

Fields author title venue date pages

R, Halevy, A.; Rajaraman A.; Ordille, J. Data integration: the teenage in proc 32nd int conf on Very 2006
years large data bases

Ry A.Halevy, A. Rajaraman, J. Ordille Data integration: the teenage in VLDB 2006 9-16
years

R. A.Halevy, A. Rajaraman, J. Ordille Data integration: the teenage in proc 32nd conf on Very 2006 pp.9-16
years large data bases

R4 A.Halevy, A. Rajaraman, J. Ordille = Data integration: the teenage 2006 9-16
years

Ruorm Alon Halevy, Anand Rajaraman, Data integration: the teenage in proceedings of the 32nd 2006 9-16

Joann Ordille years international conference on
Very large data bases
Rield A.Halevy, A. Rajaraman, J. Ordille Data integration: the teenage in proc 32nd int conf on Very 2006 pp.9-16

years

large data bases

corresponding to the same entity (publication). They are
extracted from different websites. Record R, is constructed
by hand for illustration purposes. One notices that the same
publication has different representations in different websites.
For instance, the field author uses the format ”last-name,
first-name-initial” in the record R, but the values of the same
field in the records R;, R., and R; use the format ”first-
name-initial. last-name”. One can also observe that the value
of the field pages is absent in R,. The field venue has incom-
plete values in three of the four records and has no value
in Ry; it contains the abbreviations “proc”, “int”, “conf” to
represent “proceedings”, “international” and “conference”,
respectively, in the records R, and R,; it contains the acronym
“VLDB” to represent “Very Large Data Bases” while missing
“proceedings of the 32nd international conference on” in R;.
Some values of the attributes of R,,., cannot be acquired
directly from the given set of matching records, such as the
first names of the authors. They could be obtained by mining
external sources, such as a search engine. In this paper, we
focus on the best-effort record normalization: we compute R,
from the set of matching records and do not explore external
sources. Furthermore, this paper only focuses on the normali-
zation of text data, and we will leave the normalization of
data involving numeric and more complex values as future
work.

Brief Overview of the Proposed Solution. We identify three
levels of normalization granularity: record, field, and value-
component.

Record level assumes that the values of the fields within
a record are governed by some hidden criterion and that
together create a cohesive unit that is user-friendly. As a
consequence, this normalization favors building the nor-
malized record from entire records among the set of match-
ing records rather than piecing it together from field values
of different records. Thus, any of the matching records (ide-
ally, that has no missing values) can be the normalized
record. Using our running example in Table 1, the record R,
is a possible choice for the normalized record with this level
of normalization granularity.

Field level assumes that record level is often inadequate
in practice because records contain fields with incomplete
values. Recall that these records are the products of auto-
matic data extraction tools, which are not perfect and thus

may produce errors [18]. This normalization level ignores
the cohesion factor in the record normalization level and
assumes that a user is better served when each field of the
normalized record has as easy to understand a value as pos-
sible, selected from among the values in the set of matching
records. It treats each field of the normalized record inde-
pendently, finds a normalized value (according to some cri-
terion) per field, and creates the normalized record by
stitching together the normalized values of the fields. The
normalized record may not resemble any of the matching
records, but it will convey the same information as any of
them, in a user-friendlier form than any of the individual
records. For example, consider the field venue of Rj;¢q. We
may take (according to a number of criteria that we will
describe in later sections) the value “in proc 32nd int conf
on Very large data bases” from record R, (Table 1) as its
normalized value.

Value-component level takes the field level normaliza-
tion a step “deeper.” It assumes that in general the value of
a field may comprise of multiple pieces some of which may
not be easy to grasp by an ordinary user. For example, a
field (such as venue) may contain arcane acronyms illegible
to an ordinary user. A normalization solution in accordance
with this level will yield a value for a field with the property
that the individual components of the value are themselves
normalized. The resulted (normalized) value may not phys-
ically exist in any of the matching records. For example, the
values of R,, R;, and R, for the field venue contain acro-
nyms, incomplete, and unexpanded terms. We can synthe-
size a normalized value for this field by mining the set of
records and make the following inferences:

Vs

e “proc”, “int”, “conf” are the abbreviations of “proce-
edings”, “international” and “conference”, respec-
tively, and

e the collocation “in proceedings of the” appears fre-
quently as a whole unit.

Thus, we can create a normalized value for venue, at the

value-component level, as follows.

(1) We take the value suggested previously by the field-
level for venue and replace the abbreviations in it

”

with the complete words and change it into ”in

DONG ET AL.: NORMALIZATION OF DUPLICATE RECORDS FROM MULTIPLE SOURCES 771

proceedings 32nd international conference on Very
large data bases”.

(2) We find that “in proceedings” is the part of the collo-
cation “in proceedings of the”.

(3) We use the collocation to replace “in proceedings”.

(4) Finally, we get the normalized value of venue, “in
proceedings of the 32nd international conference on
Very large data bases”.

A quick visual inspection of the records R, — Ry shows
that this value, although desirable, is not present in any of
these records. After each field gets its normalized value
according to the value-component level, we piece them
together to create the normalized record.

Naive solutions to RNP are often inadequate. For example,
one simple solution for the field-level normalization is to
return the most common string of each field as its normalized
field value. However, this strategy is inadequate in the pres-
ence of records with missing values. In our running example,
this approach will produce the value “in proc 32nd int conf
on Very large data bases” for the field venue, but the value
“in proceedings of the 32nd international conference on Very
large data bases” is clearly much better when complete cita-
tion information is desirable. Providing non-naive strategies
to the three normalization levels is a challenging task. For
example, a key challenge in providing a solution according to
value-component level is that a value-component may com-
prise multiple adjacent pieces and the value of a field may
contain components with uneven lengths (e.g., “in proceed-
ings of the” and “conf” are value components in venue).
They need to be discovered and normalized, computationally.

Contributions. In this paper we aim to develop a frame-
work for constructing normalized records systematically.
This paper has the following contributions:

e We propose three levels of granularities for record
normalization along with methods to construct nor-
malized records according to them.

e We propose a comprehensive framework for system-
atic construction of normalized records. Our frame-
work is flexible and allows new strategies to be
added with ease. To our knowledge, this is the first
piece of work to propose such a detailed framework.

e We propose and compare a range of normalization
strategies, from frequency, length, centroid and fea-
ture-based to more complex ones that utilize result
merging models from information retrieval, such as
(weighted) Borda.

e We introduce a number of heuristic rules to mine
desirable value components from a field. We use
them to construct the normalized value for the field.

e We perform empirical studies on publication
records. The experimental results show that the pro-
posed weighted-Borda-based approach significantly
outperforms the baseline approaches.

The rest of the paper is organized as follows. Section 2
defines the problem. Section 3 introduces the granularity
levels for record normalization. Section 4 presents the over-
all framework and the normalization techniques. Section 5
reports the experimental results. Section 6 gives a brief over-
view of the related work. Section 7 concludes the paper and
discusses several open research issues.

2 PROBLEM DEFINITION

Let E be a set of real-word entities relevant for the application
domain at hand, say scientific publications. Denote by
R = {ry,r9,...,m} the set of matching records that refer to
an entity e € E, where ne is the number of the matching
records for the entity e, |R°| = ne. The records may be col-
lected from Web databases (e.g.,, ACM Digital Library) or
from ad-hoc publication lists (e.g., author home pages). The
entity e has a set of fields (attributes), 'S = { J1s fas -5 firs) },
where |FS| is the number of the fields of the entity e. We use
the notation r;[f;] to refer to the value of the field f; in the
record r;. We assume the NULL value for each field without a
value.

Record Normalization Problem. Create a normalized record
nr. for each entity e € F from the set of matching records
R° that summarizes the information about e as accurately as
possible.

Currently, there is not a widely accepted standard for
record normalization, but there are a few prerequisites of a
good normalized record:

(1) Error-free: A normalized record should avoid errors,
such as misspellings or incorrect field values, as
much as possible.

(2) Comprehensive: A normalized record should contain a
value for each field whenever possible.

(3) Representative: A normalized record should reflect
the commonality among the matched records.

3 NORMALIZATION GRANULARITIES AND FORMS

In this section, we first present three levels of record nor-
malization. Then we give two forms of normalization.

3.1 Levels of Record Normalization

We propose three levels of normalization: record, field, and
value-component. Note that regardless of the chosen level
of normalization, the goal is to provide users with some
form of normalized record that is the easiest to grasp by an
ordinary user.

3.1.1 Record-Level Normalization

The record-level normalization assumes that each record
r; € R is a cohesive unit, in the sense that taken together the
values r;|[f;] of the fields f; in r; give a coherent depiction of
entity e. The assumption, while intuitively appealing and
allows to build the theoretical underpins for constructing nor-
malized records, needs to be taken with a grain of salt in prac-
tice. R® contains a mixture of candidate normalized records
and records with incomplete or arcane representations of e,
which may be difficult to understand by ordinary users. The
challenge is to select a record r; € R° that is most likely to be a
reasonable candidate. The selection can be performed accord-
ing to several criteria (described in Section 4.1). One elemen-
tary criterion is to demand that the selected record must have
a value for each field. Note that R, in Table 1 meets the con-
straints of this strategy.

3.1.2 Field-Level Normalization

Field-level normalization selects a normalized value for
each field f; independently and concatenates the selected

772 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31,

values of all fields into a normalized record. The normalized
value for the field f; is one of the values that appear among
the records in R in the field f; and it is selected according
to some criteria (e.g., more descriptive). The normalized
record formed in this way may consist of field values from
different records. For example, Ry.q in Table 1 is the nor-
malized record constructed out of the field values of R, -
R;. The values of Ry in the fields venue and pages are
taken from R, and R,, respectively, because they are the
most descriptive. The record obtained by concatenating
these field values does not exist among the matching
records. In general, the normalized record may not corre-
spond to any of the original set of matching records.

3.1.3 Value-Component-Level Normalization

Value-component level is at an even finer granularity than
the field-level. It seeks to create a normalized field value

Uy orm fOT a field f; that is as expressive as possible (to mini-
mize ambiguity) but still semantically equivalent to any of
the (correct) values r;[f;], 7; € R°. It builds on the assump-
tion that ;[f;] is a concatenation of components ¢;’c5’ . . ck’j
For example, the components of venue in R, are: “in proc,”
“32nd,” “int,” “conf,” “on,” and “Very large data bases.”
We note that some of the components ¢;” are incomplete
(e.g., “in proc”). Incompleteness can take several forms. For
instance, ¢;’ may be a half-finished collocation, such as “i
proc,” or an abbreviation, such as “conf.” Our goal here is
two-fold: (1) Detect the incomplete components ¢;” of a field
value and (2) for each incomplete ¢;” find an (equivalent)
replacement d;’ that addresses its 1nc0mpleteness In our
running example, if ¢;” = “conf” then d;’ = “conference.” In
this work, we assume that d” is present among the records
in R°. We leave the task of extracting d;” from external sour-
ces for future work. Under this (fmer level) normalization
goal, not only we may generate a normalized record that
does not appear in R¢, but the field values of the normalized
record themselves may not appear in R°.

3.2 Normalization Forms
We present two forms of normalization for a normalized
record: typical and complete.

3.2.1 Typical Normalization

The purpose of typical normalization is to produce a normal-
ized record that resemblances many of the matching records
without modifying any of the field values. One way to define
it is by frequency of occurrence. With this definition, the
record-level normalization will yield a record representation
that appears most often among the set of matching records for
an entity. The field-level normalization will select the most
frequent value for each field in the normalized record. Other
strategies are clearly conceivable to perform typical normali-
zation and we present additional alternatives in Section 4. The
value-component level normalization inherently does not
produce typical normalized records because it may create new
values for some of the fields of the normalized records.

3.2.2 Complete Normalization

Complete normalization seeks to produce the normalized
record with the property that the value of each of its fields

NO. 4, APRIL2019

matching
records for an
entity e

record-level strategy ranking
[RL ranker1) - (RL ranker,)

field-level strategy ranking
(FL ranker,) --(FL ranker,)

RL-S FL-S
rank merging
RL-M
top-1 selection
yFLS JFL-M
RL-S RL-M [concatenation |
JFLS [FL-M
L typical strategy L typical merging L typical strategy L typical merging
normalized records normalized records| normalized records | [normalized records
...... (RL_TMNR (
(RL_TSNR, (FL TSNR,. {

Fig. 1. The typical normalization framework.

is both complete (not missing component) and self-explana-
tory. For example, there are several different representa-
tions of an author’s name, such as full name versus first
name initial and last name. One would consider the former
to be a better, less ambiguous representation of an author’s
name than the latter. Likewise, a fully spelled out confer-
ence name or journal name is better than its abbreviated
counterpart. A record in this form of normalization is
unique modulo certain set of transformations, such as per-
mutation (e.g., “the 32nd international conference on Very
large data bases, in proceedings of”) or replacement with
equally unambiguous (e.g., “in proceedings of the thirty
second international conference on Very large data bases”)
of value components. This form of normalization is difficult
to achieve in practice. Instead, we strive to produce a ver-
sion of the normalized record as complete and self-
explanatory as possible given the data at hand. Only the
value-component-level strategy can achieve this form of
normalization. The reason is that normalization at the
record-level and field-level are inherently confined to work
with monolithic field values (not value components) from
the matching records, which are often incomplete.

4 OUR APPROACH

In this section, we first present our overall framework.
Then, we give the details of our solutions.

4.1 Solution Framework

We follow different steps for the two normalization forms.
Fig. 1 shows the steps of the typical normalization frame-
work and Fig. 2 shows those of the complete normalization
framework.

In both frameworks, the input is the set of matching
records R° for an entity e. Different normalization strategies
may be employed at each step in the normalization frame-
work. Different choices will yield different normalized
records for the same set of matching records. The normalized
records are represented by parallelograms in Figs. 1 and 2. At
every granularity level, we perform two categories of

DONG ET AL.: NORMALIZATION OF DUPLICATE RECORDS FROM MULTIPLE SOURCES 773

field-level strategy ranking
reprocessing —>f
PrevOeS S (rankery)

VCL-S VCL-M

matching
records for
an entity e

Itop—l selectionl | pruning |

VCL-S VCL-M

completing with the knowledge
mined from every field

VCL-M

rank merging

VCL-S

VCL complete merging
normalized record

VCL-CMNR

VCL complete strategy
normalized record

VCL-CSNR;
VCL-CSNR,

Fig. 2. The complete normalization framework.

approaches: single-strategqy and multi-strategy approaches. In
Figs. 1 and 2, the string suffix “-5” on the arrows denotes a sin-
gle-strategy approach and “-M” denotes a multi-strategy
approach; “RL” stands for “record-level”, “FL” stands for
“field-level” and ”“VCL" stands for “value-component-level”.

4.1.1 Typical Normalization Framework

The typical normalization framework has two paths (Fig. 1):
record-level and field-level. The former works with whole
records from R It includes a number of record-level
rankers (RL rankers) to rank the records in R according to
their fitness to represent the normalized record for entity e.
In the single-strategy approach, each ranker recommends
the top-1 candidate in its ranked list as the normalized
record. In Fig. 1, RL_TSNR; denotes the normalized record
recommended by the ith ranker. If we instead use the multi-
strategy approach, then we employ rank merging method-
ologies [3] to select the final normalized record. In the
multi-strategy approach each ranker acts as a voter and the
records in R° are the candidates (for the normalized record).
Each ranker ranks the records in descending order of prefer-
ence. After pruning out the records which have small proba-
bilities to become the normalized record, only the top-k
records are kept at each ranker as possible candidates for
the normalized record. The ranked lists of records produced
independently by rankers are merged into a global ranked
list. The top-1 candidate record of the global list becomes
the normalized record.

The typical normalization with field-level granularity
works with whole field values. It includes a range of field-
level rankers (FL rankers) to rank the field values of a field
based on their fitness to serve as the normalized value for
that field. The single-strategy approach uses one value
ranker per field. The top candidates for each field are
concatenated to construct the normalized record. The multi-
strategy approach employs multiple value rankers per field
fj; it merges the top-k ranked lists of values produced by

the various rankers for f; and selects the top value as the
normalized value for f;. The final normalized record is con-
structed by taking the normalized value of each field f;.

4.1.2 Complete Normalization Framework

The complete normalization form works at the value-com-
ponent granularity level. It first performs a pre-processing
step to consolidate each field format into a single format
across all records in R‘. For example, the field (author)
name is consolidated into “last-name first-name”. Then it
uses field-level rankers to rank the values of every field.
Next, it prunes out some of the values that are unlikely to
become the normalized value for that field. The pruning is
discussed in Section 5.3.3. It divides the values of a field
into components and mines them to determine a more consis-
tent and legible (by ordinary users) value for the field. The
single- and multi-strategy approaches are applied here simi-
larly as described in Section 4.1.1.

In the following sections, we give the details of our key
techniques: (1) ranking-based strategies, (2) value compo-
nent mining, and (3) ranked list merging.

4.2 Ranking-Based Strategies

We utilize four ranking strategies: frequency, length, centroid,
and feature-based. We use them to construct several rankers at
record and field levels. To give a uniform presentation, we
refer to records and their fields as units in this section. Let U
be a bag of units for the same entity e. (It is a bag because the
same value or the same record may appear multiple times.) U
has p distinct units denoted by U = {uy, ..., u,}. If a ranker y
ranks a unit u higher than another unit v then we interpret
this as saying that u is more appropriate as a normalized unit
than v, according to y.

4.2.1 Frequency Ranker
This ranker is defined as the ordered list of distinct units
FR(U) = [ug, ..., u), 1)

where u; appears more frequently than u; in U, fori < j.

4.2.2 Length Ranker
Length ranker is defined as the ordered list of distinct units

LR(U) = [u1, ..., up, (2

where the character length of u; is larger than that of u;,
1<i<j<p

4.2.3 Centroid Ranker

Let SM be a similarity measure between units. We define
the unit centroid score of u € U to be
1
UCS(u) = —5 > oy, SM(u, v), (3)
Ul vel
where «,, , a, denote the occurrence frequencies of v and v in
U, respectively. The centroid ranker gives the ordered list of

distinct units
CR(U) = [uh cee 7u[)}> (4)

where UCS(u;) > UCS(u;), 1 <i < j<p.

774 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31,

We use three similarity measures for SM: edit-distance,
bigram, and Winkler similarity.

(1) Edit-distance is the number of edit operations neces-
sary to transform one string into another [19]. The
edit-distance between strings a and b is computed as
follows:

ed(a,b)

S‘ €4 7b :77
imeala,b) = e Tl D)

(5)
where |a| and |b| denote the lengths of a and b,
respectively. and ed(a, b) is the edit distance between
these two strings.

(2) The bigram similarity measure is based on 2-character
sub-strings contained in a string. The bigram similar-
ity measure between strings a and b is computed as
follows:

2 x |bigram(a) N bigram(b)]

|bigram(a)| + |bigram(b)] ©

Simbigram (CL, b) -

where bigram(a) and bigram(b) denote the bags of
2-grams of the strings a and b, respectively.

(3) The Winkler similarity measure is based on Jaro metric
which is given by the number and order of the com-
mon characters in them [20]. The Winkler similarity
measure between strings a and b is computed as
follows:

max(P,4)
10

where Jaro(a,b) is the Jaro similarity between a and b.
P is the length of the longest common prefix of ¢ and b.

Simw (a,b) = Jaro(a,b) + (1 = Jaro(a,b)), (7)

4.2.4 Feature-Based Ranker

For u € U, let ®(u) = {¢(v),...,¢,(uv)} be a vector of binary
feature functions¢ : U — {0,1} that compute evidence indi-
cating whether u should be selected as the normalized unit,
where £ denotes the number of features. For example, the
value of the jth feature function ¢;(u) may be 1 if unit u is
ranked as the first one by the length ranker. Let
O = {61,...,60;} be a vector of real-valued weights associ-
ated with the features.

We can compute a score for the event that « is chosen as
the normalized unit by taking the dot product of the feature
vector and weight vector

t(u,0) = O(u) - 0. ®)
Let the binary random variable C,, be 1 if unit u is the nor-

malized unit of U. Given 0O and u, we can compute the prob-
ability of C, (denoted by pn(u)) as

e w0

(Cu = 1]u, 0) > 9(t(u, ©))
1

14e

pn(u) =p)

(10)

9(z) =

where the score for the unit u is normalized by the scores for
every other matching unit. g is the standard logistic function.
Feature-based ranker is defined as the ordered list of dis-
tinct units
FBR(U) =

(11)

[u’h .. ’7up]7

where pn(u;) > pn(u;), 1 <i < j<p.

NO. 4, APRIL2019

Let TS={< vi,l1 > - < Yrs), Z\TS\ >1} be a training
set, where v; is the ith record in the training set and

[- 1 if v; is the normalized unit of an entity
10 otherwise.

We estimate © from the training set by minimizing the cost
function L(0, TS) of the data

|S|Z li log(g

v; €TS
+(1 = 1)log(1 — g(z(vi,©))].

We use L2 regularization to penalize the overall cost of L to
mitigate over-fitting. We find the setting of ® that minimizes
Equation (12) using the limited-memory BFGS, a gradient
ascent method with a second-order approximation [21].

The features for the feature-based rankers are as follows:

Strategy Features. These features are all binary, indicating
if a unit is the first, second, or third highest ranked unit
according to some strategy ranker.

Text Features. We compute two features that examine the
properties of the strings themselves. One is the acronym fea-
ture which is true if the matching unit contains a token in a
list of known acronyms (e.g., “VLDB” in our running exam-
ple). Another is the abbreviation feature which is true, if the
matching unit contains a token in a list of known abbrevia-
tions (e.g., “conf” for “conference”). The acronym list is
obtained from the Web (e.g., www.acronymfinder.com) and
the abbreviation list is mined from the existing dataset
which will be given in Section 4.3.1.

L(®,TS) = (z(vi, 9)))

(12)

4.3 Value Component Mining

We begin this section with a number of definitions to make
the following description clear and consistent. Let
Val(f;) = {ri[f;]|ri € R°} be the collection of all values of the
field f; among the records in R°.

Definition 4.1. The inverse document frequency(idf) of a
term or a consecutive sequence of terms c is defined as

B

, 13
{ri|lri € Re, ¢ € m[f5]}] 43

idf(c, R%) =

where | - | denotes set cardinality (the number of records in our
case). Note that when ¢’s frequency increases, ¢’s id f decreases.

Definition 4.2. A collocation is a sequence of consecutive terms
in r;[f;] with the property that its idf is less than a given
threshold n,;,;. The length of a collocation is the number of
words (terms) it contains. n-collocation denotes a collocation
of length n (terms).

For example, in the field venue, “proceedings of” is a
2-collocation, “in proceedings of” is a 3-collocation and “in
proceedings of the ” is a 4-collocation.

Definition 4.3. A k-collocation kc is a subcollocation of an
n-collocation nc if ke is a substring of ne (implicitly, k < n).

For example, “proceedings of” is a subcollocation of “in
proceedings of” which in turn is a subcollocation of “in pro-
ceedings of the”.

www.acronymfinder.com

DONG ET AL.: NORMALIZATION OF DUPLICATE RECORDS FROM MULTIPLE SOURCES

Definition 4.4. An n-collocation c is a template collocation if
it is not a subcollocation of any other collocation.

Note that whether or not an n-collocation is a template
collocation depends on the value of the threshold #;,,. For
example, “in proceedings of the” becomes a template collo-
cation if it is not contained in another collocation and it
appears sufficiently frequently (so its idf is below ;).

Since we pursue a template collocation co-occurrence
mining in this work, we require additional definitions to
quantify the joint occurrence of template collocations. We
denote by TC the set of template collocations in Val(f;). For
two template collocations tci, tey € TCj, let p(tc;) be the fre-
quency of te; in Val(f;) and p(tci, tey) be the pair frequency
in Val(f;). They are defined as

p(ter) = {v|v € Val(f;),tc; is a substring of v}|
p(ter, ter) = [{v|v € Val(f;),ter and tey are substrings of v}|.

Definition 4.5. A template collocation tc; is an asymmetric
twin (a-twin) of a template collocation tc; if it satisfies the fol-
lowing two conditions:

1) p(ter,tes) > p(ter,te), Vic € TC) Ate # tey, and
2) p(ter, tea)

p(tes)
where n,,., 1s the threshold.

Ntcer-

For example, the template collocation “conference on” is
an a-twin of template collocation “in proceedings of the”
because it co-occurs most frequently with “in proceedings of
the” and the ratio of p(“conference on”, “in proceedings of
the”) and p(“in proceedings of the”) is larger than threshold
Nieer iIN OUr dataset.

With the help of these definitions we are able to uncover
“hidden” knowledge from the collection of values of a field
Val(f;), which can then be used to perform value-component-
level normalization for the field f;. We base our inference on
three main empirical observations. (1) Many common value
components of a field are abbreviations, which need to be
expanded to improve the readability of the normalized
record. For example, in the field venue, “proc” is often used
to represent “proceedings.” (2) The subcollocation relation is
a useful tool to organize the components of the values of a
field in a partial order and then identify a template collocation
from them. For example, “in proceedings of the” is a template
collocation, but it oftentimes takes the form of subcollocations
such as “proceedings of”, “proceedings of the” and “in
proceedings”, which should be replaced with the template
collocation. (3) Template collocations tend to co-occur fre-
quently. For example, “conference on” frequently co-occurs
with “in proceedings of the”.

In this section, we present a method to mine relationships
between collocations from the field values. The proposed
method has three steps: (1) find pairs of the form “abbreviation
and its definition” (Section 4.3.1), (2) find template collocations
with their subcollocations (Section 4.3.2), and (3) find a-twin
template collocations (Section 4.3.3).

4.3.1 Mining Abbreviation-Definition Pairs

We use a number of heuristics to determine whether given
two value components s and ¢, s is an abbreviation of ¢. In this

775

section, a value component is a word (or term). As we men-
tioned previously, in this paper we consider only fields with
the string data type. We define the neighboring context of a
word w within the set of values of a field f; as the set of pairs
(left_neighbor_word, right_neighbor_word) with the property
that the substring left_neighbor_word w right_neighbor_word
is a substring of a value of f; in some record in R°. If w
is the beginning word of a field value, we use a special
start-symbol “(s)” to mark left_neighbor_word. If it is the
last word in the field value, we use the special end-sym-
bol “(/s)” to mark right_neighbor_word. For example, the
words “proceedings” and “proc” occur many times in
the field venue, and they share a good fraction of their
neighboring contexts, such as (in, of), ({s), of), (in, acm).
“proc” is also the prefix of “proceedings”, so we become
increasingly confident that “proc” is a possible abbrevia-
tion of “proceedings”. The algorithm for finding pairs of
the form (s,t), where s is an abbreviation of ¢, is given
in Algorithm 1.

Algorithm 1. Mining Abbreviation-Definition Pairs

Input: Val(f;) = {r:[f;]|r: € R} : the collection of all values of
the field f;
Output: AWP: a set of abbreviation-word pairs
: cwords = (); AWP = ();
: pwords = tokenize(Val(f;))
uwords = unique(pwords);
for each uword € uwords do
if len(uword) > ny,, and id f(uword, R°) < n;,s then
insert uword into cwords;
end if
: end for
: for each cword € cwords do
10: pa_words = getWordsBySameContext (cword, uwords, 1,,,);
11: if pa_words # () then

PN XN

NeJ

12: abbreviations = get Abbreviations (cword, pa_words);
13: endif

14: if abbreviations # () then

15: for each abbreviation € abbreviations do

16: insert (abbreviation, cword) into AWP;

17: end for

18: endif

19: end for

20: return AWP

Algorithm 1 starts with initializing two sets: cwords and
AWP, where cwords stores the words that are likely to have
abbreviations and AWP stores the final abbreviation-word
pairs. In line 2, the function tokenize segments all field val-
ues in Val(f;) into individual words and stores them into
pwords. In line 3, the function unique looks for unique words
and stores them into wwords. In lines 4-8, the words in
uwords whose lengths are larger than a threshold 7, and
their idfs are less than a threshold 7,,; become candidate
words with abbreviations. They are stored into cwords. 1,
and 7,,; are empirically set. For each cword in cwords, lines
9 to 19 find its possible abbreviations. The function
getWordsBySameContext looks for the possible abbreviated
words for each wword in wwords. It accomplishes this task
by measuring the size of the intersection of the neighboring
contexts of uword and cword. Then it sorts the words in

776 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31,

descending order of the size of the intersection with the
neighboring context of uword, retains only the top 7,,, of
them and returns them in the set pa_words. In line 12, the
function get Abbreviations finds the words in pa_words that
are prefixes of cword. It returns them in abbreviations. For
each abbreviation in abbreviations, the pair (abbreviation,
cword) is inserted into AWP. Finally, the algorithm returns
AWP.

4.3.2 Mining Template Collocations and
Subcollocations

Let an n-collocation tc be a template collocation and a k-col-
location kc be its subcollocation (k < n). We observe that a
number of rules govern the expansion process of kc to tc.

Rule 1. If kc is a subcollocation of a (k+1)-collocation klc, and
the extra word in klc is a preposition (e.g., “in” and “on”)

or an article (e.g., “the”, “a”, and “an”), we can expand kc
to klec.

Consider kc = “proceedings of” and klc = “proceedings
of the”, k = 2. kc is a subcollocation of klc and “the” is a
preposition. Thus, “proceedings of” can be expanded to
“proceedings of the.” In another example, “conference on”
is the subcollocation of “international conference on” and
the distinct word “international” is neither a preposition
nor an article, so we cannot expand “conference on” to
“international conference on”. Not every venue has the
word “international,” which suggests that this expansion is
infeasible in practice.

Rule 2 (Transitivity). If a k-collocation kc can be expanded
to a (k + 1)-collocation klc and klc can be expanded to a
(k + 2)-collocation A2c, then kc can be expanded to A2c.

For example, “proceedings of” can be expanded to “in
proceedings of the” via “proceedings of the”. The transitive
property is an immediate consequence of Rule 1. Thus, we
can use it to expand kc to tc.

Rule 3 (Start). All one word collocations (i.e., k = 1) are
nouns.

We use POS tagger in NLTK [22] to get the part of
speeches of the words in the experimental studies.

Using the above analysis, we aim to find all template
collocations and their subcollocations. The template colloca-
tions become the candidates with which we can expand
(replace) the subcollocations. They will be used to generate
the normalized component values for a field. The algorithm
of finding template collocations and its subcollocations is
given in Algorithm 2.

The input of the algorithm CVal(f;) is the updated version
of Val(f;), the collection of all values of the field f;, where the
abbreviations are extended by Algorithm 1. The output is a
set of pairs TCSP. A pair (tc, Sy.) in TCSP denotes a template
collocation tc and its set of subcollocations S;.. We will use the
output to replace the occurrence of an element in Sy, in some
value of the field f; with tc when we build the normalized
record. We now describe the main steps of our mining algo-
rithm (Algorithm 2). We set TCSP to empty set and set m to
the largest word (term) count encountered in any of the values
in CVal(f;). m is the upper bound for the length of a template

NO. 4, APRIL2019

Algorithm 2. Mining TemplateCollocation-SubColloca-
tion Pairs (MTS)

Input: CVul(f;) — the updated version of Val(f;) with abbrevia-
tions extended by Algorithm 1.

Input: n;4;.
Output: TCSP: a set of pairs{(tc, Si)}, where tc is a template
collocation and 5. its subcollocations.

1: TCSP = 0; m = getMaxWordCount(CVal(f;));
2: 1-collocs = getOneWordCollocations(CVal(f;)); //Rule 3
3: if 1-collocs == () then
4: return ()
5: end if
6
7
8

: for each 1-colloc € 1-collocs do
add (1-colloc,) to TCSP;

: end for
9: ews = getCandidateExpand Words(CVal(f;)); //Rule 1
10: forn =2tom do
11: n-collocs = getNCollocations(CVal(f;), 1, n;ar);
12: if n-collocs == () then
13: break;
14: endif
15: Y = 0; //pairs to be ignored
16: for each n-colloc € n-collocs do
17: cspairs = getExpanded SubcollocationPairs

(n-colloc, ews, TCSP);

18: if cspairs # () then

19: for each cspair € cspairs do

20: {cspair is of the form (¢, S.), ¢ is a collocation and
S, its set of subcollocations; ¢ is a subcollocation of
n-colloc}

21: X={ctUS,;

22: insert (n-colloc, X) into TC'SP;

23: add cspair to Y; //not a template collocation

24: end for

25: end if

26: end for

27: TCSP =TCSP -Y;

28: end for

29: remove the pairs of the form (¢, §)) from TCSP;
30: return TCSP

collocation; any ¢c in the output set TCSP has at most m
words. (A collocation is a substring of some value of the field
f; in some record r € R, hence a collocation cannot exceed
the largest value length -measured in the number of words—
for the field f;.) The algorithm builds the set of one-word
collocations, according to Rule 3. If this set is empty, the algo-
rithm stops because there are no nouns and we cannot
construct any meaningful collocations. Otherwise, the set of
one-word collocations are used to seed TCSP. We also extract
the set of words (prepositions and articles) which help con-
struct collocations of larger lengths (according to Rule 1). The
main body of the algorithm is in the for loop (Lines 10-28). In
iteration n,2 < n < m, the algorithm performs the following
main computational steps:

e it constructs all collocations of n words, i.e., n-collo-
cations, according to Definitions 4.2 and 4.3, using
Rule 1 (Line 11).

e for each n-collocation n-colloc, it identifies all the
entries (¢, S.) € TCSP with the property that ¢ is a

DONG ET AL.: NORMALIZATION OF DUPLICATE RECORDS FROM MULTIPLE SOURCES 777

subcollocation of n-colloc. They are denoted cspairs
in the algorithm. The set union X of their S.'s (sub-
collocations) along with all ¢’s is attached to n-colloc
and inserted in TCSP, according to the transitivity
property in Rule 2 (Lines 20-23). The intuition is that
n-colloc is a candidate template collocation that can
replace all the collocations in X.

e it removes the entries (¢, S.) from TCSP from the
previous step because they cannot be template collo-
cations, based on Definition 4.4 (Lines 23 and 29).

e it may exit the for loop earlier if it cannot construct
collocations of length n, n < m (Lines 12-14).

Before termination, the algorithm removes all the pairs
(¢, 0) form TCSP. These are the pairs introduced in the inti-
alization step, but never expanded by the main body of the
algorithm.

4.3.3 Frequent Template Collocation Mining

In Section 4.3.2, we discussed how to obtain the template
collocations and their corresponding subcollocations. We
notice that some of the template collocations co-occur fre-
quently. For example, among the values of the field venue,
the template collocation “conference on” co-occurs most fre-
quently with “in proceedings of the.” We also observe that
template collocation co-occurrence is not always bidirec-
tional. For example, the template collocation “symposium
on” co-occurs most often with “in proceedings of the”, but
“in proceedings of the” co-occurs most frequently with
“conference on.” This justifies our choice of an asymmetric
co-occurrence measure in Definition 4.5. We give here an
algorithm (Algorithm 3) for finding most frequently co-
occurring template collocations (the a-twins).

Algorithm 3. Mining Most Frequently Co-Occurring
Template Collocation

Input: CVal(f;) = {ri[f;]|r; € R°}: the collection of all values of
field f]'
Input: ;..
Output: T the set of most frequently co-occurring pairs of
template collocations
1: Tatwin = @}
: CVal(f;) = updateValWithAWP (Val(f;));
1 Z =MTS(Val(f;)); //Z has pairs of the form (tc, Sy.)
TC; = getTemplateCollocations(Z); / / TC} is the set of t¢’s
TC; = getTCPCounts(TC;, CVal(f;));
: for each tc; € TC; do
(tca, p) = getMostFrequent TwinTC(tcy, TC;, CVal(f;));
0o = getCount(tey, TC));
9: ratio= %;
10: if ratio > n,,.,, then
11: insert (tcy, tea) into Ty, / /Definition 4.5 2)
12: endif
13: end for
14: return T,

NI T o

The input of the algorithm is the collection of all values of
the field f; and the outputis a set of pairs 7, in which each
pair is in the form (¢c;, tcy), where te; is an a-twin of te,
(Definition 4.5). We start by updating Val(f;) with the findings
about abbreviations: the function updateValWithAWP calls

Algorithm 1. We then compute all template collocations 7C;
for field f; (Lines 3-4); the function AT invokes Algorithm 2
to gather the template collocation. Next, we compute the fre-
quencies of occurrence of each template based on 7C; and
CVal(f;) (Line 5). The set TC; contains pairs of the form (tc;,
p1), where p; is the frequency of tc; in CVal(f;). The main
body of the algorithm is in the for loop (Lines 6-13), which
computes the a-twin of each template collocation in 7C);. For a
template collocation tc, € TC}, it first finds its most frequent
co-occurring template tc; (Definition 4.5, 1)). Then, it checks
the second condition in Definition 4.5 (Lines 8-12). If tc, meets
both conditions, the pair is appended to T;yin-

4.3.4 Complexity Analysis of Algorithms

In this section, we provide complexity analysis of the above
three algorithms. Let n denote the number of entities of a data-
set, ne denote the average number of matching records per
entity, nf denote the average number of fields per record, and
muw denote the largest number of words in a field.

Algorithms 1, 2, and 3 are for processing one field (f;) of
all records. In reality a record has multiple fields, so the
computational complexities of Algorithms 1, 2, and 3 all
need to be multiplied by n f.

In Algorithm 1, functions tokenize in line 2 and unique
in line 3 both need to go through all values of the field
fj, so their time complexity is O(n x ne x mw). In lines 4
to 8, for each wword in uwords, we judge if it is a candi-
date word with abbreviations. In the worst case, line 6 is
within time O(n X ne x mw). In lines 9 to 19, for each
cword in cwords, we find its possible abbreviation. As
function getWordsBySameContext needs to go through
every uword in wuwords and function getAbbreviation
needs to scan every words in pa_words, the worst case
of line 10 and line 12 are both within time O(n? x ne?x
mw?). The running time of line 16 depends on the size
of abbreviations, so the worst case of line 16 is also
within time O(n? x ne? x mw?). Thus the time complexity
of Algorithm 1 is at most O(n? x ne? x mw?).

The time complexity of Algorithm 2 depends on that of line
19 which is the innermost loop. The running time of line 19 is
mw X |n-collocs| x |espairs| where |n-collocs| and |cspairs|
denote the size of n-collocs and cspairs, respectively. In the
worst case, |n-collocs| and |cspairs| are both close to n x ne x
muw. Thus the time complexity of Algorithm 2 is at most
O(n? x ne? x mw?).

In Algorithm 3, as it invokes Algorithm 2 in line 3, so its
time complexity is at least as large as that of Algorithm 2.
Functions getTemplateCollocations and getTCPCounts both
need to go through CVal(f;), the time of each line is
O(n x ne x mw). In lines 6 to 13, for each tc; in TC;, we find
a-twin of each template collocation in 7C;. As functions
get Most FrequentTwinTC' and getCount both need to scan
CVal(f;), the worst case of lines 7 and 8 are both within
O(n? x ne* x mw?) which is smaller than the running time of
line 3. Thus the time complexity of Algorithm 3 is at most
O(n? x ne? x mw?).

4.4 Ranked List Merging
In Section 4.2, we introduced a set of single-strategy rankers
each of which ranks the units (records or field values) with

778 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31,

a different strategy. In general, a single-strategy approach
does not produce satisfactory results and may even cause
bias. We utilize a multi-strategy approach to combine the
outcomes of several single-strategy rankers to overcome the
limitations of the individual rankers. A multi-strategy
approach requires an effective rank merging algorithm [3].

Suppose that we have M single-strategy rankers. Denote
by L; the ranked list of units produced by the ith ranker on a
set of units U. The problem is that of creating a single ranked
list L of U using the ranking information supplied by the indi-
vidual rankers. This task is called result merging [3], [23], [24]
and merging based on local ranks is the class of merging algo-
rithms most frequently employed for this task. We employ
two merge algorithms from this class based on the Borda-fuse
method [25]. We describe them below.

4.4.1 Borda-Based Approach

Let |U| be the number of units U. In the classic Borda-fuse
approach, the first ranked unit in each L; gets the score |U],
the second ranked unit gets the score (U] —1 the second
ranked unit gets score (|U| — 1), and so on. The units in the
merged list are ranked in descending order of the sum of
their scores across all L;’s. The unit with the largest com-
bined score becomes the normalized unit (record or field
value). This approach utilizes the position information in
every ranked list, but one of its weaknesses is that it treats
uniformly the individual rankers. In general, some rankers
are better than others in suggesting normalized units.

4.4.2 Weighted-Borda-Based Approach

This approach attempts to differentiate the impact of each
ranker by assigning a weight to each ranker. The weight
represents our belief in the quality of the suggested normal-
ized unit by the ranker. We propose two methods to com-
pute the weights of the individual rankers. The first method
applies k-fold cross-validation on the training dataset for
each ranker, and takes the average precision of a ranker as
its weight. The second method uses a genetic algorithm to
train a weight vector with the number of rankers over the
training dataset to obtain the optimal weights. We tested
both methods and the second method yielded better perfor-
mance. In the rest of this paper, we use the weights obtained
with the second method. After we compute the weight of
each ranker, we compute the aggregated weighted score of
each unit over all lists L;. The unit with the largest aggre-
gated weighted score is selected as the normalized one.

5 EXPERIMENTS

5.1 Dataset

We use the dataset PVCD [26]. The dataset contains data
about publication venue canonicalization [27]. PVCD has
3,683 publication venue values for 100 distinct real-world
publication records. It is only concerned with the field venue,
which is arguably the most difficult field to normalize,
because of the presence of acronyms, abbreviations, and mis-
spellings. We use this dataset to compare our approaches
with those in [26]. The work in [26] is an instance of typical
normalization, because it selects one of the duplicate records
or one of the field values as the normalized record or field

NO. 4, APRIL2019

TABLE 2
Instances of Previously Used Gold Standard Venue Values [26]
and of Gold Standard Venue Values According to Our
Manual Annotation

id Old gold standard New gold standard

1 in international conference on in proceedings of the 3rd
database theory international conference on

database theory

2 in proceedings sixth interna- in proceedings of the 6th
tional conference on network international conference on
protocols network protocols

3 in proceedings of 1st int conf in proceedings of the 1st

international conference on
audio and video based bio-
metric person authentication

on audio and video based bio-
metric person authentication

value, respectively. It does not attempt to create new field val-
ues or new records as normalized records. Our analysis of the
dataset reveals that many normalized field values are labelled
unreasonably. We point out some of the problems in Table 2.
The column “old gold standard” shows the normalized
venue values as used in the experimental study of Culotta
et al. [26] and the column “new gold standard” shows them
after we curated the dataset.

As Table 2 illustrates, many of the “old” gold standard
field values are incomplete, missing key value components,
such as “proceedings of the [ordinal number]”. The second
row of the table shows that many other old gold standard val-
ues miss the value component “of the”. The third row in the
table points out instances that miss the value component
“the” and that acronyms are not expanded, e.g., “int” and
“conf” are not expanded to “international” and “conference”,
respectively. In this paper, we will perform value-compo-
nent-level normalization and compare against the new, cor-
rected gold standard. For ease of reference, we refer to the
dataset used in [26] as O-PVCD and to the one that we manu-
ally adjusted as N-PVCD in this section. The data is available
at https://github.com/tomdyq/RecordNormalization/tree/
master/data.

We perform 5-fold cross validation on the data; each split
contains 80 training samples and 20 testing examples. We
implement eight different normalization techniques corre-
sponding to the methods described in Section 4.

5.2 Performance Metrics

We measure accuracy by taking the proportion of correct
normalized units (records or field values) out of all predicted
normalized units. We have three accuracy measures: record-
level, field-level and value-component-level. As the dataset
only has one field, the accuracies of the first and second levels
are the same. Hence, we only report the field-level (FL) and
value-component-level (VCL) accuracies.

5.3 Experimental Results
We perform five experiments to evaluate the effectiveness
of our approach.

5.3.1 Main Experimental Results

Table 3 summarizes the outcome of our eight approaches
for the N-PVCD dataset. The first six rows in the table

https:/github.com/tomdyq/RecordNormalization/tree/master/data
https:/github.com/tomdyq/RecordNormalization/tree/master/data

DONG ET AL.: NORMALIZATION OF DUPLICATE RECORDS FROM MULTIPLE SOURCES 779
TABLE 3
The Accuracy of Our Normalization Methods on the Dataset N-PVCD

Category Approach FL Typical VCL Complete
Frequency Ranker(FR) 0.18 0.68
inele-strat Length Ranker(LR) 0.12 0.34
single-strategy Centroid Bigram Ranker(C_BR) 0.25 0.75
Centroid Winkler Ranker(C_WR) 0.24 0.76
Centroid Edit-distance Ranker(C_EDR) 0.28 0.81
Feature-based Ranker(FBR) 0.31 0.72
1t Borda 0.28 0.79
multi-strategy Weighted Borda(WBorda) 0.33 0.83

belong to the category of single-strategy approaches and the
last two rows belong to the multi-strategy approaches. We
will use the acronyms in parenthesis to refer to these
approaches for the rest of this section.

The main conclusion of this experimental study is that
WBorda consistently outperforms the other approaches on
both FL typical normalization and VCL complete normali-
zation. For single-strategy, Feature-based Ranker (FBR) has
the best accuracy on these two forms of normalization.
WBorda outperforms FBR by 6.5 percent on FL typical nor-
malization and by 15.3 percent on VCL complete normaliza-
tion. We find that the accuracy of Borda is lower than that
of FBR on FL typical normalization, but higher than that of
FBR on VCL complete normalization. Our explanation is
that Borda treats uniformly the rankers and some rankers
may have poor performance, which affects the final result.
When rankers are assigned weights according to their con-
tributions to the normalized record, WBorda significantly
improves the normalization accuracy.

We notice that FL typical normalization appears to give
very low accuracy. The reason is that many publication enti-
ties in N-PVCD have no record in their group of matching
records that contains the normalized field value. We have
computed the ratio of the publication entities without nor-
malized field values in our annotation in each fold of the
cross validation. The results are shown in Table 4. As shown
in the table, in each fold of the cross validation, more than
half of the publication entities lack a normalized field value.
The average ratio of entities without normalized field values
reaches 0.63. So the maximum possible average accuracy
that can be achieved is 0.37. Thus the accuracy of 0.33
achieved by WBorda is quite close to the theoretical maxi-
mum average accuracy (close to 90 percent).

5.3.2 Comparison with the Baseline

We compare our results with the approach in [26], which
serves as the baseline, on the datasets O-PVCD and N-PVCD.

TABLE 4
The Ratio without Normalized Field Value on N-PVCD

round of 5-fold cross
validation 1 2 3 4 5

06 075 065 055 0.6

ratio of the entities without
normalized field value
average ratio of the entities
without normalized field
value

0.63

The work in [26] performed only typical normalization, while
we perform both typical and complete normalizations. In this
experimental study, we use our best performing method,
which is WBorda. The source code of the approach in [26] is
not publicly available. We implemented the best method
reported by Callota et al. [26] to the best of our understanding.
The outcome of this experimental study is given in Table 5.

Our approach outperforms the baseline by a significant
margin: by 8.3 percent on O-PVCD and by 17.9 percent on
N-PVCD. The reason for the seemingly low accuracy on N-
PVCD of the two techniques was given in Section 5.3.1.

We additionally compare the baseline and our method on
the new gold standard N-PVCD, for the complete normaliza-
tion. Since the baseline cannot carry out a complete normali-
zation, we use our implementation of the baseline approach
to perform the FL typical normalization and use the same
mined knowledge to complete the field value. The result is
shown in Table 6. Our approach outperforms the baseline
again by a significant margin, 12.2 percent.

5.3.3 Impact of the Percent of Units in Ranked List of

Each Ranker in the Multi-Strategy Approach

In the multi-strategy approach, each strategy ranker respec-
tively generates a ranked list. As there are still some units
(records/field values) in each ranked list that have very small
probabilities of becoming a normalized unit, we perform
pruning operation before rank merging. In this experiment,
we evaluate the impact of the percent of units in ranked list of
each ranker.

We use the percent of ranked list of candidate units to
judge which units must be kept to compute the normalized
unit. We use p percent to keep the top p% and prune the

TABLE 5
Comparison with the Baseline Approach on
Typical Normalization

Dataset Baseline Accuracy ~ Our Accuracy

O-PVCD 0.6 0.65

N-PVCD 0.28 0.33
TABLE 6

Comparison with the Baseline Approach on
Complete Normalization

Dataset
N-PVCD

Baseline Accuracy Our Accuracy
0.74 0.83

780 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31,

0.55 R
0.50 —e— IR
0. 454 —4— C_EDR
—v— FBR
2 0.404 —<— WBorda
£ 0.35+
g P
2 0.30
= 0.25
g
‘2 0.20
>
= 0.15
= 0.10
0.05-
0.00 —

T T T T
10 20 30 40 50 60 70 80 90 100
Percent

(a)FL Typical Accuracy Comparison

0.85
0.80
o 0.75
8
£ 0.70
2 "
2 0.65
© 0.60
0,554
2 —= FR
Ugo.ao« —e— LR
4 0.45- —a— C_EDR
2,0 —v— FBR
0.40 —<— WBorda
0.35-
0.30 —

10 20 30 40 50 60 70 80 90 100

Percent

(b)VCL Complete Accuracy Comparison

Fig. 3. Performance comparison by different approaches on a different
percent of ranked results on N-PVCD.

remaining (100 — p)% of the ranked matched units. The per-
cent of the ranked result is varied from 10 to 100 percent in
increments of 10 percent in each step. The result is shown in
Fig. 3. We observe that WBorda, FBR and C_EDR all reach
the highest values respectively in FL typical normalization
and VCL normalization at 50 percent of the ranked results.
FR reaches the highest accuracy at about 40 percent. We
also observe that the accuracy of LR does not change,
because in this case in every percent of the ranked results,
the longest field value always lies in the first position. In all
our experiments, our approach is based on 50 percent of
ranked result.

5.3.4 Impact of Individual Rankers

Our two rank merging methods use all the rankers in all the
experiments reported above. We know that the rankers
have varied accuracies. In this experiment we study the
impact of the individual rankers on the overall accuracy.
We use only the WBorda method because it is our best per-
forming method. We order the rankers by their perfor-
mance: FBR, C_EDR, C_BR, C_WR, FR, and LR. We analyze
WBorda with the first k (k =2, 3, ..., 6) of them and report
the accuracy for each k. For example, WBorda uses FBR,
C_EDR and C_BR for k = 3. We use the dataset N-PVCD.
Fig. 4 shows the outcome of this experimental study.

We observe that WBorda with FBR and C_EDR achieves
an accuracy of 0.29 on field typical normalization. C_BR
and C_WR only slightly increase their performance. How-
ever, WBorda’s performance increases by 0.05 if FR and
LR are used. A similar pattern is observed for value com-
ponent normalization. WBorda with the first three rankers
achieves an accuracy of 0.78. Its accuracy increases by 0.05
with the addition of the rest of the rankers. Hence, the

NO. 4, APRIL2019

0.34 4

| L
0.324
>
o
o
3 030+
<
g [n o
=
2 0.28
-
w
0.26 4
T T T T T
2 3 4 5 6
num of strategy rankers
(a)FL Typical Accuracy Change
0. 847
| 3 L
o 0.82
Q
©
~
=]
o
o
<< (.80
[}
o
o
2
g 0.78 . . w
o
—
o
=
0.76
T T T T T
2 3 4 5 6

num of strategy rankers

(b)VCL Complete Accuracy Change

Fig. 4. Performance change of partially merging strategy rankers on
N-PVCD.

top-2 performing individual rankers, if combined, give the
highest accuracy increase over the individual rankers.
Therefore, at least for the domain of scientific publications,
the rankers C_BR, C_WR and LR bring limited accuracy
increase and may be dropped. They should not be dis-
carded in general without a thorough empirical study on
the domain at hand.

5.3.5 Impact of Features on FBR and WBorda

Feature-based Ranker employs two types of features, strategy
features and text features (described in Section 4.2.4), in this
section we report their effect on FBR. At the same time,
WBorda has the best performance in our experiment, which
fuses FBR, so we also test the effect of these two types of
features on WBorda. Fig. 5 shows the performance of the
two approaches with and without the strategy features. We
observe that using only text features in FL typical normaliza-
tion, FBR and WBorda reach accuracies of .18 and .19, respec-
tively, while in VCL normalization, they reach accuracies of
.58 and .66, respectively. Adding strategy features improves
the accuracies of FBR and WBorda by .13 (or 72 percent) and
.14 (or 74 percent), respectively, in FL typical normalization
and by .14 (or 24 percent) and .17 (or 26 percent) in VCL
normalization, respectively.

6 RELATED WORK

In this section, we review the literature on record normali-
zation. We give a few pointers on the related problems of
schema integration and ontology merging.

DONG ET AL.: NORMALIZATION OF DUPLICATE RECORDS FROM MULTIPLE SOURCES 781

[Jtext

0.4+ text+strategy
> 0.3
o
Y
3
Qo
o
<
© 0.2
o
a
>
i
-
[

0.1+

0.0

FBR WBorda

Different Approaches
(a)FL Typical Normalization Accuracy Comparison

[text
text+strategy

VCL Complete Accuracy

FBR WBorda
Different Approaches
(b)VCL Normalization Accuracy Comparison

Fig. 5. Performance comparison of FBR and WBorda with and without
strategy features on N-PVCD.

The problem of normalization of database records was
first described by Culotta et al. [26]. They provided the first
attempt to formalize the record normalization problem and
proposed three solutions. The first solution uses string edit
distance to determine the most central record. The second
solution optimizes the edit distance parameters, and the
third one describes a feature-based solution to improve per-
formance by means of a knowledge base. Their approach is
an instance of typical field value normalization. They did
not consider value-component-level normalization. In addi-
tion, their gold standard dataset has many instances of
unreasonable normalized records.

Swoosh [28] describes a record Merge operator, however,
the purpose of the operator is not for producing normalized
records, but rather for improving the ability to establish dif-
ficult record matchings.

Wick et al. [29] propose a discriminatively-trained model
to implement schema matching, reference, and normaliza-
tion jointly. But the complexity of the model is greatly
increased. This paper also contains no discussion on com-
plete normalization at the value-component level.

Besides the above works that explicitly address record nor-
malization, a few others include (or refer to) the general idea
of record normalization in some form. Tejada et al. [11] devise
a system to automatically extract and consolidate information
from multiple sources into a unified database. Although
object deduplication is the primary goal of their research,
record normalization arises when the system presents results

to the user. They propose ranking the strings for each attribute
based on the user’s confidence in the data source from which
the string was extracted. Wang et al. [30] propose a hybrid
framework for product normalization in online shopping by
schema integration and data cleaning. Although their work
mainly focuses on record matching, they consider the prob-
lem of filling missing data and repairing incorrect data, which
is relevant to record normalization. Chaturvedi et al. [31] pro-
pose an automatic pattern discovery method for rule-based
data standardization systems. Their goal is to help domain
experts find the important and prevalent patterns for rule
writing. Although they do not directly explore the problem of
record normalization, their pattern discovery approach could
be used for complete normalization.

Label normalization in schema integration is related to
record normalization. Dragut et al. [32] propose a naming
framework to assign meaningful labels to the elements of an
integrated query interface. Their approach can capture the
consistency among the labels assigned to various attributes
within a global interface.

Ontology merging is another area related to record nor-
malization [33]. A domain expert is usually deeply involved
during the merging process, whereas our approach strives
to reduce human involvement as much as possible.

7 CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of record normalization
over a set of matching records that refer to the same real-
world entity. We presented three levels of normalization
granularities (record-level, field-level and value-component
level) and two forms of normalization (typical normalization
and complete normalization). For each form of normalization,
we proposed a computational framework that includes both
single-strategy and multi-strategy approaches. We proposed
four single-strategy approaches: frequency, length, centroid,
and feature-based to select the normalized record or the nor-
malized field value. For multi-strategy approach, we used
result merging models inspired from metasearching to com-
bine the results from a number of single strategies. We ana-
lyzed the record and field level normalization in the typical
normalization. In the complete normalization, we focused on
field values and proposed algorithms for acronym expansion
and value component mining to produce much improved
normalized field values. We implemented a prototype and
tested it on a real-world dataset. The experimental results
demonstrate the feasibility and effectiveness of our approach.
Our method outperforms the state-of-the-art by a significant
margin.

In the future, we plan to extend our research as follows.
First, conduct additional experiments using more diverse and
larger datasets. The lack of appropriate datasets currently has
made this difficult. Second, investigate how to add an effec-
tive human-in-the-loop component into the current solution
as automated solutions alone will not be able to achieve per-
fect accuracy. Third, develop solutions that handle numeric
or more complex values.

ACKNOWLEDGMENTS

This work was supported in part by the following grants: the
National Natural Science Foundation of China (No. 61100167),

782

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31,

Natural Science Foundation of Jiangsu Province, China
(No. BK2011204), and Qing Lan Project; and by the U.S.
National Science Foundation BIGDATA 1546480 and 1546441,
and the National Institute of Health 5R01LM010817-06.

REFERENCES

(1]

[2]

(3]
[4]

[5]

(6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

K. C.-C. Chang and J. Cho, “Accessing the web: From search to
integration,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2006,
pp- 804-805.

M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang,
“WebTables: Exploring the power of tables on the web,” Proc.
VLDB Endowment, vol. 1, no. 1, pp. 538-549, 2008.

W. Meng and C. Yu, Advanced Metasearch Engine Technology.
San Rafael, CA, USA: Morgan & Claypool, 2010.

A. Gruenheid, X. L. Dong, and D. Srivastava,“Incremental record
linkage,” Proc. VLDB Endowment, vol. 7, no. 9, pp. 697-708,
May 2014.

E. K. Rezig, E. C. Dragut, M. Ouzzani, and A. K. Elmagarmid,
“Query-time record linkage and fusion over web databases,” in
Proc. IEEE Int. Conf. Data Eng., 2015, pp. 42-53.

W. Su, J. Wang, and F. Lochovsky, “Record matching over query
results from multiple web databases,” IEEE Trans. Knowl. Data
Eng., vol. 22, no. 4, pp. 578-589, Apr. 2010.

H. Kopcke and E. Rahm, “Frameworks for entity matching: A
comparison,” Data Knowl. Eng., vol. 69, no. 2, pp. 197-210, 2010.

X. Yin, J. Han, and S. Y. Philip, “Truth discovery with multiple
conflicting information providers on the web,” IEEE Trans. Knowl.
Data Eng., vol. 20, no. 6, pp. 796-808, Jun. 2008.

A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate
record detection: A survey,” IEEE Trans. Knowl. Data Eng., vol. 19,
no. 1, pp. 1-16, Jan. 2007.

P. Christen, “A survey of indexing techniques for scalable record
linkage and deduplication,” IEEE Trans. Knowl. Data Eng., vol. 24,
no. 9, pp. 1537-1555, Sep. 2012.

S. Tejada, C. A. Knoblock, and S. Minton, “Learning object identi-
fication rules for information integration,” Inf. Syst., vol. 26, no. §,
pp- 607-633, 2001.

L. Shu, A. Chen, M. Xiong, and W. Meng, “Efficient spectral
neighborhood blocking for entity resolution,” in Proc. IEEE Int.
Conf. Data Eng., 2011, pp. 1067-1078.

Y. Jiang, C. Lin, W. Meng, C. Yu, A. M. Cohen, and N. R. Smalheiser,
“Rule-based deduplication of article records from bibliographic
databases,” Database, vol. 2014,2014, Art. no. bat086.

X. Li, X. L. Dong, K. Lyons, W. Meng, and D. Srivastava,, “Truth
finding on the deep web: Is the problem solved?” Proc. VLDB
Endowment, vol. 6, no. 2, pp. 97-108, 2012.

J. Pasternack and D. Roth, “Making better informed trust deci-
sions with generalized fact-finding,” in Proc. Int. Joint Conf. Artif.
Intell., 2011, pp. 2324-2329.

X. L. Dong and F. Naumann, “Data fusion: Resolving data
conflicts for integration,” Proc. VLDB Endowment, vol. 2, no. 2,
pp. 1654-1655, 2009.

E. K. Rezig, E. C. Dragut, M. Ouzzani, A. K. Elmagarmid, and
W. G. Aref, “ORLEF: A flexible framework for online record linkage
and fusion,” in Proc. IEEE Int. Conf. Data Eng., 2016, pp. 1378-1381.
X. Wang, X. L. Dong, and A. Meliou, “Data X-ray: A diagnostic
tool for data errors,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2015, pp. 1231-1245.

G. R. Dowling and P. A. V. Hall, “Approximate string matching,”
ACM Comput. Surveys, vol. 12, no. 4, pp. 381-402, 1980.

W. W. Cohen, P. Ravikumar, and S. E. Fienberg, “A comparison of
string metrics for matching names and records,” in Proc. KDD
Workshop Data Cleaning Object Consolidation, 2003, pp. 73-78.

D. C. Liu and J. Nocedal, “On the limited memory BFGS method
for large scale optimization,” Math. Program., vol. 45, no. 3,
pp- 503-528, 1989.

Natural language toolkit. [Online]. Available: http://www.nltk.
org, Accessed on: Jan. 03,2017.

E. Dragut, B. DasGupta, B. P. Beirne, A. Neyestani, B. Atassi,
C. Yu, and W. Meng, “Merging query results from local search
engines for georeferenced objects,” ACM Trans. Web, vol. 8, no. 4,
2014, Art. no. 20.

J. Yuan, L. He, E. C. Dragut, W. Meng, and C. Yu, “Result merging
for structured queries on the deep web with active relevance
weight estimation,” Inf. Syst., vol. 64, pp. 93-103, 2017.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

NO. 4, APRIL2019

J. A. Aslam and M. Montague, “Models for metasearch,” in Proc.
Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2001, pp. 276-284.
A. Culotta, M. Wick, R. Hall, M. Marzilli, and A. McCallum,
“Canonicalization of database records using adaptive similarity
measures,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2007, pp. 201-209.

canonicalization data. [Online]. Available: http://cs.iit.edu/~
culotta/data/canonicalization.html, Accessed on: Jan. 03, 2017.

O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang,
and J. Widom, “Swoosh: A generic approach to entity resolution,”
VLDB].,vol. 18, no. 1, pp. 255-276, 2009.

M. L. Wick, K. Rohanimanesh, K. Schultz, and A. McCallum,
“A unified approach for schema matching, coreference and can-
onicalization,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2008, pp. 722-730.

L. Wang, R. Zhang, C. Sha, X. He, and A. Zhou, “A hybrid frame-
work for product normalization in online shopping,” in Proc. Int.
Conf. Database Syst. Adv. Appl., 2013, pp. 370-384.

S. Chaturvedi et al., “Automating pattern discovery for rule based
data standardization systems,” in Proc. IEEE Int. Conf. Data Eng.,
2013, pp. 1231-1241.

E. C. Dragut, C. Yu, and W. Meng, “Meaningful labeling of inte-
grated query interfaces,” in Proc. Int. Conf. Very Large Data Bases,
2006, pp. 679-690.

S. Raunich and E. Rahm, “ATOM: Automatic target-driven ontology
merging,” in Proc. IEEE Int. Conf. Data Eng., 2011, pp. 1276-1279.

Yongquan Dong received the BS and PhD
degrees in computer science from Shandong
University. He is currently an associate professor
in the School of Computer Science and Technol-
ogy, Jiangsu Normal University, China. His rese-
arch interests include web information integration
and web data management.

Eduard C. Dragut received the PhD degree in
computer science from the University of lllinois at
Chicago, in 2010. He is currently an assistant pro-
fessor in the Department of Computer and Infor-
mation Sciences, Temple University. His research
interests lie in the broad area of web data manage-
ment. He is a coauthor of the book Deep Web
Query Interface Understanding and Integration.
He co-chaired the VLDB QDB 2012, and the PhD
Symposiums at ICDE 2014 and SIGMOD/PODS
2016. He is a member of the IEEE.

Weiyi Meng received the BS degree in mathe-
matics from Sichuan University, China, in 1982,
and the MS and PhD degrees in computer sci-
ence from the University of lllinois at Chicago, in
1988 and 1992, respectively. He is currently a
professor in the Department of Computer Sci-
ence, State University of New York at Bingham-
ton. His research interests include web-based
information retrieval, metasearch engines, and
web database integration. He is a coauthor of
three books: Principles of Database Query Proc-

essing for Advanced Applications, Advanced Metasearch Engine Tech-
nology, and Deep Web Query Interface Understanding and Integration.
He has published more than 150 technical papers. He is a senior mem-
ber of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

http://www.nltk.org
http://www.nltk.org
http://cs.iit.edu/~ culotta/data/canonicalization.html
http://cs.iit.edu/~ culotta/data/canonicalization.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

