Yumilnt — A Deep Web Integration System for
Local Search Engines for Geo-referenced Objects

Eduard Dragut#!, B. P. Beirne*?, A. Neyestani*®, B. Atassi**, Clement Yu*®, Bhaskar DasGupta*®, Meng Weiyi®"

#Cyber Center, Purdue University
ledragut@purdue.edu

*Computer Science Department, University of Illinois at Chicago

?bbeirn2@uic. edu, 3aneyesZ@uic .edu,

‘abaderl@uic. edu,

5yu@cs .uic.edu, 6dasqupta@cs .uic.edu

$Computer Science Department, Binghamton University
7meng@cs .binghamton.edu

Abstract— We present Yumilnt a deep Web integration system
for local search engines for Geo-referenced objects. Yumilnt
consists of two systems: YumiDev and YumiMeta. YamiDeyv is an
off-line integration system that builds the key components (e.g.,
query translation and entity resolution) of YumiMeta. YumiMeta
is the Web application to which users post queries. It translates
queries to multiple sources and gets back aggregated lists of
results. We present the two systems in this paper.

I. INTRODUCTION

In this paper, local search is the use of specialized search
engines that allow posting geographically constrained queries
against data bases of local business listings. It amounts to
20% of Google queries. Local search engines (LSE) contain
erroneous, outdated, contradictory and incomplete data. For
example, the restaurant The Black Sheep is listed among
“Top Chicago restaurants” on Metromix.com, whereas it is
listed as closed on Yelp.com. These issues can be alleviated
if we aggregate the information about the same entities from
multiple independent and uncooperative sources. We create
a system, Yumilnt, that connects to, gathers and integrates
data from multiple LSEs such as Yahoo, YellowPages, and
CitySearch.

Suppose the query @@ = (Cuisine = “Ethiopian”;
Neighborhood = “Uptown”) is posted to Zagat.com search
engine. Many relevant restaurants are not returned by Zagat,
such as Demera. This restaurant however is returned and
ranked 1'" by many other search engines for the same query.
Hence, by combining the results from multiple search engines,
we provide users with a more complete set of restaurants.
Furthermore, the address of the restaurant Sea Shell Fish
and Chicken is wrong in Yelp (i.e., 6124 S Ashland Ave.),
but we can nonetheless identify the correct address (i.e.,
6940 S Ashland Ave.) by considering the addresses of the
restaurant in other search engines. We propose Yumilnt,
an integration system for LSEs for geo-referenced objects,
which aims to provide more complete and correct data to
users. Yumilnt consists of two applications: YumiMeta and
YumiDev. YumiMeta is the web site application, which the
users interact with. YumiDeyv is the off-line application that
is used to develop YumMeta. When YumiMeta receives a

User query

% Ngesue

Mediator Form Result Ran_kmg &
Merging
Domain Mapping Record Linkage
lQuery Translation .
and Dispatch I Result Extraction
1

World Wide Web
WDB 1 WDB m

Fig. 1. The architecture of YumiMetaWeb.

query submitted by a user, it forwards the query to the LSEs,
which process the query and return the results to YumiMeta.
YumiMeta merges and re-ranks the results into a unified list.
A prototype version of YumiMeta is already deployed online
at www.yumi-meta.com. YumiMeta is developed using
ASPNET and Microsoft C#. YumiDev is developed in C#.

II. YUMIMETA

YumiMeta currently connects to 9 search engines:
ChicagoReader.com, CitySearch.com, DexKnows.com,
Menulsm.com, Yelp.com, MenuPages.com, Metromix.com,
local.Yahoo.com, YellowPages.com.

A. Architecture

YumiMeta requires the implementation of several key com-
ponents (Fig. 1). The first component is a mediator form [2],
which provides a uniform access to the data sources in a
given domain. A user formulates the desired query on it and
the query is automatically translated conforming to the query
interfaces of the underlying sources by the query translation
and dispatch component. The result extraction component
extracts the data returned by individual sources [6]. The record
linkage component identifies the records across lists referring
to the same entity [4]. This information is used to merge the

Query Interface

Tags
showing
which
search
engines
this
restaurant
was listed

Metromix(1)/
Yelp(1)y/
ChicagoReader(1)/
Menuism(3)/
Menupages(6)/
Yahoo(2)/
YellowPages(4)/
CitySearch(1)

~N v ~N

Yem

LT [dwmdno | [weiede | [Sl | [(TEAUIS T

Found 72 restanrants for All in Creektewn (8 minwies 17
reconds)

L Meli Cale

CGreaktown

Amencen Trabtonad and Clunc$

01 5 Hadsted 5t Ratong 4 81 bared on 470
Lot il

et e Yol Chae s B b M smasm M armaP ages Yo
e Do agerCitytansch

2. Parthentn——

realitown

ek}

Rating 4 T4 based om 209
e

345 Haisted 5t

Chazage, IL
(312) 72¢6-2407

To;

S ubmet

v v

results from

Tabbed
menu to
show
detailed

LSEs

Iwtnwraces| [esecot| (M=

- NUUTR

® @ =~

URL query
translation

— Arbitrator’s
list of
results

NDCG10: 0.63 AN%E“ 0: 049

Moo mmicn D Koncowns Yo Kb ago B sden bl e mssom Yo hiwa v s agattemiearth Dear Creek dwherel * Chicage. L&
aDowP agus CityGarch e ey e e
L Artepalis Bakery Cafe & Agors thideryleervicel-®
Crealtown
Greak}
) o] [1 Arsepetis
306 5. Hubted St Rutog: 4 ‘M:':': 306 5. Hasted St Rating 0based on 0 reviees
Chicagn, IL imon, R, Accuracy
(32) 5595000 T Adsama
Motromn Vel Choc age Ra nbesfTihoo Vs BowP ageasCitySesch 2125 Hadted St Rating Ohased on 0 svview| ~ITIEESUFES
4 Creek llands Chinage, IL,

Fig. 2. YumiMeta Front End, i.e., the query interface and the result page.

lists of results into a single merged list in descending order of
each result’s desirability to the user.

In this demo we focus on the mediator form, query trans-
lation, record linkage and result ranking components, with
particular emphasis on their use in the local services domain.

B. Front End

The two main components of the front-end of a search
engine are the query interface and the result page. The query
interface is used to post queries and the result page shows the
outcome of queries. The front-end of YumiMeta is developed
so that the reasoning behind a returned list of results for a
query is transparent to a user. Fig. 2 shows YumiMeta’s front-
end. The top part is the query interface. The query interface
has the fields Neighborhood, Cuisine, Price and Keyword. The
values of the field cuisine are often drawn from an ontology
of culinary arts (e.g., Italian, Middle Eastern). Many search
engines organize the values of the field neighborhoods in
a hierarchy. For example, Metromix.com specifies the Chicago
area as a composition of the following regions: Downtown,
North, Near North, etc. and within each region, there are
several neighborhoods. The attribute Prices is on a scale
from 1 to 5 (usually denoted by “$” sign). Once the desired
query keywords are filled in, a user presses the submit button.
The button Test will be explained shortly. YumiMeta returns
a ranked list of results. It is difficult for users to assess the
performance of a search engine for a query in general if all
they are presented with is a list of results. If the results have
obvious flaws they know some error has occurred, but they
would have a hard time to pinpoint the component of the
search engine the erroneous data came from. To help both
an ordinary user and a developer the result page is organized
in four areas: the LSEs area (top), the ranked list of results

area (left), the map area (right) and the arbitrator area (right
lower corner). We describe them in turn.

Local Search Engines Area: The results returned by an
LSE for a query can be accessed via a tabbed menu.

Ranked List of Results Area: This area displays the
aggregated list of results for a query. The records in the list
have information such as the name, address, cuisine, average
user rating and total number of reviews. For each record, we
display the set of LSEs that returned the record along with
the position of the record in the returned list of each of the
LSEs (Fig. 2, lower left corner). This is an important piece of
information because, in conjunction with the tabbed menu, it
helps to quickly locate records in the lists of results returned
by the LSEs. This eases the debugging process for ranking,
record matching and fusion. For instance, in ranking we can
browse the results and see why a record is ranked higher than
another. Errors in record matching and fusion can also be
easily investigated.

Map Area: Google map is included in the front-end, so
users can browse the result on the map. The map view can be
changed into an advanced view that shows how the location
specified in a query is translated to the LSEs by YumiMeta.
Fig. 3 illustrates the advanced view. This shows the estimated
bounded box for the neighborhood query and the set of
neighborhoods it intersects in the LSEs. We give additional
details about query translation in Section III-A.

Arbitrator Area: YumiMeta sends each query to 9 LSEs
and to a 10th LSE, called arbitrator. The arbitrator area shows
the query result of the arbitrator. The results of the arbitrator
are kept separate as gold standard for evaluation purposes. We
will explain how they are used in Section II-C.

Local Search Engine View: When the user selects one
of the tabs in the tabbed menu, the LSE view is displayed.

This view shows a table on the right hand side containing
the hyperlinked queries generated for the selected LSE along
with the raw results for the engine. The results are shown
on the left hand side after YumiMeta has filtered and sorted
them. A map is also included. It shows the location of the
top-20 restaurants. In the advanced view, the boundaries of
the neighborhoods used in the queries are drawn. They are
shown to assess how well the neighborhood query processing
component is matching neighborhoods across LSEs (Section
1I-C).

At the top of the result list from an LSE, we include
the URLs generated for a query. For example, in Fig. 2 we
show the URL generated to translate the query ‘“Neighbor-
hood=Greektown” to the search engine Zagat. This is a useful
piece of information because it shows (1) how YumiMeta
communicates with an LSE and (2) the way the query is
translated to the LSEs. A developer can thus easily notice
whether an error has occurred in the query translation.

C. Evaluation Component

We employ two methods to evaluate YumiMeta: user-based
and arbitrator-based. The latter ensures that our evaluation
is unbiased. We only discuss the latter because it can be
customized and automated. The former requires extensive
human effort. For each search engine under evaluation, the
top-k (k = 5, 10) retrieved results are considered.

The arbitrator-based evaluation method is motivated by
the lack of large scale gold standards. The arbitrator is a
third party, which is generally accepted as an authority in
the domain of discourse. For example, Zagat is regarded as
an authority in the restaurant rating industry in U.S. The
assumption is that a highly ranked restaurant by Zagat is
very likely to be a good restaurant. The arbitrator is used to
estimate the relevance of the records in a list returned by a
search algorithm. Let L, and L. be the top-k lists of results
returned by the arbitrator and by an LSE, respectively, for
query . We compare L. against L, using the normalized
discounted cumulative gain (NDCG) [5], a popular measure
for search performance evaluation. We compute the NDCG
for L. using L,. Hence, when comparing two lists of results
for a query, the one with the larger NDCGy, is considered to
perform better at rank k. If lists containing different objects
are returned, NDCG may not be adequate for evaluating search
results. Thus, we propose an alternative definition to NDCG,
called ANDCG (arbitrator NDCG). Its definition is omitted
due space constraints. Both measures are shown (see Figure
2). For this evaluation we use a batch of 1000 queries. Each
query is submitted to YumiMeta, the arbitrator and each of
the 9 search engines. We collect the results and compute the
average NDCG and ANDCG for YumiMeta and each of the
9 search engines.

III. YUMIDEV - UNDER THE HOOD

In this section we give a brief overview of the algorithmic
issues in the query processing, record matching and ranking
components. They all are formally laid out elsewhere [3].

A. Neighborhood Query Processing

Suppose that a user posts the query (Price = “$$$7;
Neighborhood = “Warehouse District”). YumiMeta needs
to forward the query to the search engines Zagat, Yelp and
Metromix. While Metromix understands Neighborhood =
“Warehouse District”, Zagat and Yelp do not, because their
Neighborhood fields do not have a value directly corre-
sponding to ‘“Warehouse District”. Thus, while we expect
neighborhood divisions of cities to follow some standards, this
is not true in the real world—different search engines have
different neighborhood hierarchies and sets of neighborhoods
for a (large) city.

The processing of a neighborhood query has the following
steps. First, from the set of all neighborhood hierarchies of
the LSEs we select the tallest one. This becomes the neigh-
borhood hierarchy used in YumiMeta, called target hierarchy,
and it is shown in the field Neighborhoods. Then, for each
neighborhood h in the target hierarchy we determine the set
of neighborhoods in the hierarchy of each LSE that “best”
matches h. This problem is NP-hard and we developed an
approximation algorithm. To compute the mapping, the area
of each neighborhood is approximated by a bounding box.
Since h is approximately translated (e.g., a neighborhood in
YumiMeta may correspond, but not exactly equivalent, to a
set of neighborhoods in an LSE), the LSEs may return results
that are not in h. Thus, the set of local services returned by
each LSE must be tested for inclusion in h. We compute a
variable lookup grid over the target hierarchy and use it to
quickly decide if a local service lies inside h.

B. Local Service Resolution (Record Linkage)

To accurately merge and rank the lists of results returned
by LSEs for a query, the records referring to the same
business need to be recognized across business listings. Our
local services matching algorithm is as follows. We adopt a
supervised learning solution. A business entity has several
attributes: name, address, zip code, phone, user rating, user
review, cuisine, etc. First, we determine the attributes that
impact the judgment that two records are linked (e.g., phone is
used; cuisine is not). Second, we define a similarity measure
per attribute (e.g., string edit distance for name). Third, we
obtain a training sample by posting a number of random
queries via YumiMeta to the LSEs. We manually label the
pairs of matching records and learn a decision tree. Finally,
IF-THEN rules are extracted from the decision tree.

C. Ranking

Ranking/merging is performed after record linkage is com-
pleted. We implemented four ranking algorithms: (1) a Borda-
based algorithm, (2) an algorithm that employs users’ ratings
and reviews in addition to Borda, called BordaR, (3) an
algorithm that uses Borda’s algorithm together with users’
ratings and users’ query criteria, called BordaUCR (UCR
- user criteria and rating) and (4) a weighted version of
the BordaUCR. The first is an adaptation of the Borda-fuse
method [1], while the other three are our proposed algorithms.

¥p,

W Lake St
W Randolph St &7

Near
M:
W.Madison St West Side "V M2

wight (FEReRRower EXp7 VL)

Tri Taylor

U
Near Southside’:
3 W Rooseveit Rd

e

onybuea s

o
S S

W Cermak RS~)

e

»

F3

H 8 a

3 st % 2 Central

¥ ’ va\°'w § ’o%" = guwwenson ExpY
o g] Sy, TS %

3 e L 8

3 - @ 4 Steams
Fig. 3. The set of neighborhoods in Yelp intersecting with South Loop.

Wi ciatn @M1 Gondie Sae

The Borda-fuse method is a voting based technique [1],
where LSEs act as voters and retrieved results are treated as
candidates in an election. We briefly describe the main ideas of
our ranking algorithms. They are detailed in [3]. The algorithm
BordaR first reorders the lists of the results of LSEs by user
ratings. If two restaurants happen to have the same ratings
then it uses the number of reviews to break the tie. Then
it merges the reordered lists using the Borda-fuse method.
The BordaUCR uses the query conditions to further refine
the ranking. Given a query @), the list of results of an LSE is
classified into three classes: (1) Qg is the set of objects that
satisty @, (2) Qpart is the set of objects that satisfy at least
one of the conditions of (), but not all of them, and (3) Q,.0¢
is the set of objects that do not satisfy any of the conditions of
Q. Then, the objects returned by an LSE are re-ranked such
that Q41 is ahead of ()pqr¢, Which is ahead of Q0. In each
of Qait, @part and Qno BordaR is used. In the weighted
BordaUCR, each search engine is associated with a weight
that reflects the overall quality or performance of the search
engine. We devise two methods to obtain the weights. In one
solution the weight of LSE is computed based on its average
ANDCG scores obtained from a batch of queries (see Section
II-C). In the other we use a supervised learning technique to
estimate the weights using the method of least squares.

IV. DEMO PLAN

Our demo plan is divided into two parts: one for illustrating
the construction of the key components of YumiMeta via
YumiDev and the other demonstrating YumiMeta online.

YumiDev Demo Plan: For those visitors who are interested
in grasping the methodology of building a functional deep
Web integration system, we provide the following scenario.
We walk the visitors through the following tasks: (1) the
creation of the neighborhood mapping, (2) the development
of the entity resolution function and (3) the estimation of
the weights for the weighted BordaUCR ranking algorithm.
We then illustrate the seamless inclusion of the outcomes of
these tasks in YumiMeta to be used online. In (1), we use the
neighborhood hierarchies of the 10 LSEs YumiMeta connects
to. We will use visual means to illustrate how neighborhoods
in the target hierarchy are mapped in the hierarchies of the
LSEs. For example, in Figure 3 the target neighborhood South
Loop intersects four neighborhoods in the search engine Yelp:
Near South Side, Loop, Printer’s Row and Central. But out

of these neighborhoods in Yelp, Loop and Central are the
desired matching for South Loop. The mapping is plugged
into YumiMeta. In (2), a number of queries are posted via
YumiMeta and the records from each of the LSEs are saved in
a local database. Then, a friendly user interface allows the user
to manually map the records from two LSEs. The manually
created gold standard is used to train the decision tree, which
is then automatically turned into IF-THEN rules used by
YumiMeta. In (3), we show how we obtain the weights for the
ranking algorithm, which are then plugged into YumiMeta’s
ranking algorithm.

YumiMeta Demo Plan: We envision two demo plans here
based on the audience’s interest. If the visitor has already
been introduced to YumiDev, then we can show her how
the components we developed with YumiDev are seamlessly
plugged into YumiMeta. We will also show how each com-
ponent affects the functionality of YumiMeta. If the visitor is
only interested in YumiMeta then will start with the default
settings and illustrate how YumiMeta runs online (Fig. 2). We
will present the steps YumiMeta undergoes to execute a query,
i.e., the query translation, local services resolution and the
merging/ranking. For instance, we will use the advanced map
view to illustrate how a neighborhood query is mapped from
the target hierarchy to an LSE. There are multiple other options
that the visitor could explore: e.g., changing the arbitrator or
the list of LSEs. In the former, for instance, we will show the
visitor the performance of the LSEs and YumiMeta according
to the selected arbitrator. We will prepare a set of queries
that will show the improvement of YumiMeta in data quality
over the component search engines. We will identify records
that are known to be wrong in some LSEs, but which are
corrected via the record linkage and fusion by YumiMeta. We
will also use another set of queries to do a comparison between
YumiMeta’s ranking and those of the LSEs. We will encourage
an interactive and inquisitive demo session for each visitor.

To the best of our knowledge, there is no other pub-
lished demo that shows the same capabilities as those of our
demo: e.g., metasearching over local search engines for geo-
referenced objects, searching by specific geographic areas such
as neighborhoods, integrating local services resolution (i.e.,
record linkage) and ranking. In addition, in this demonstration
we do not only show the end result (i.e., YumiMeta metasearch
engine), but also demonstrate how to build such a system in
practice (i.e., YumiDev).

REFERENCES

[1] J. A. Aslam and M. Montague. Models for metasearch. In SIGIR, pages
276-284, 2001.

[2] E. Dragut, W. Wu, P. Sistla, C. Yu, and W. Meng. Merging source query
interfaces on web databases. In ICDE, 2006.

[3] E.C. Dragut, B. P. Beirne, B. DasGupta, A. Neyestani, B. Atassi, C. Yu,
and W. Meng. Integrating web query results from local search engines
for geo-referenced objects. In under review, 2012.

[4] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record
detection: A survey. TKDE, 19(1), 2007.

[5] K. Jéarvelin and J. Kekildinen. Cumulated gain-based evaluation of ir
techniques. TOIS, 20:422-446, 2002.

[6] W. Liu, X. Meng, and W. Meng. ViDE: A Vision-Based Approach for
Deep Web Data Extraction. TKDE, 22, 2010.

