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Abstract—For processing top-K queries with monotone 
aggregation functions, the threshold algorithm (TA) and its 
family are important methods in many scenarios. From 1996 to 
2003, Fagin et al. proposed a variety of TA-like algorithms such 
as the FA, TA, TAz, NRA and CA algorithms for different access 
methods as well as various data resources, but they did not 
report the experimental results of the TA-like algorithms in their 
seminal papers. Since then, some of the original TA-like 
algorithms have been implemented, improved or adapted in 
different situations and/or applications; however, the original 
algorithms have not been thoroughly compared and analyzed 
under the same experimental framework. To address this 
problem, in this paper, we carry out extensive experiments to 
measure the performance of the original aggregation algorithms 
and the slight adaptations of TA, TAz and NRA, and then we 
provide comprehensive surveys on the natures of the TA-like 
algorithms based on our experimental results. 

I. INTRODUCTION 

From 1996 to 2003, Fagin et al. proposed the aggregation 
algorithms FA, TA, TA�, TAz, NRA and CA in [5-8] in order 
to deal with top-K queries (also ranked, ranking, top-k, or top-
N queries), where the TA� is an approximation algorithm while 
the others are exact algorithms. Those algorithms that can be 
used in various scenarios are remarkably simple, database-
friendly and powerful, which are called TA-like algorithms in 
this paper. In the seminal papers [5-8], Fagin et al. defined the 
TA-like algorithms, proved their correctness, presented the size 
of the buffer used by each algorithm, and discussed the 
optimality for each of the algorithms under certain assumptions; 
however, the experimental results of the algorithms are not 
reported in [5-8]. Notice that we address exact algorithms 
without discussing TA� in this paper. 

There are many variations and improvements of some of 
the original TA-like algorithms for various situations and/or 
applications [13]. For example, Nepal and Ramakrishna [17] 
and Güntzer et al. [9] presented their own algorithms 
independently that are equivalent to TA for processing queries 
over multimedia databases. Using index structures, [10] 
presented the MPro algorithm that ensures every probe 
performed is necessary for evaluating the top-K tuples. 
Tracking the “best positions” in each sorted list and reducing 

the number of accesses, [1] proposed techniques BPA and 
BPA2 to optimize the TA algorithm in [8]. [15] proposed the 
algorithm LARA to optimize the algorithm NRA by employing 
a lattice to reduce the computational cost of NRA. Building a 
table R� to maintain the sorted access order in the lists such that 
the grade computation of an object using sorted lists can be 
reduced by R�, the STA method in [14] is an improvement of 
the TA algorithm. The previous research works focused on 
performance evaluations and comparisons of a small number of 
the TA-like algorithm(s) related to the proposal(s). However, 
the original TA-like algorithms have not been thoroughly 
compared under the same experimental framework. We 
address this problem and make the following contributions in 
this paper: (1) Using the same experimental framework, we 
provide a performance evaluation of the aggregation TA-like 
algorithms FA, TA, TAz, NRA, CA, TA1, TAz1, and NRA1. 
(2) Based on a variety of real-world and synthetic datasets with 
low, moderate and high dimensions, we analyze the eight TA-
like algorithms and compare them with the baseline Naïve 
Algorithm (NA) [8] through extensive experiments. (3) We 
report comprehensive surveys on the natures of the TA-like 
algorithms based on our experimental results. 

This paper is organized as follows. Section II introduces 
some notations and concepts. Section III presents the 
algorithms TA1, TAz1, and NRA1. Section IV provides the 
experimental results. Finally, Section V concludes the paper. 

II. PROBLEM DEFINITION

Let � be the set of all real numbers, R � �n be a finite 
relation. In general, the schema of R is R(tid, A1, ���, An) with n
attributes (A1, ���, An) corresponding to �n = �1� ��� � �n where 
the ith axis �i = � for every i, each tuple in R is associated 
with a tid (tuple identifier), and R is stored as a base relation in 
a database system. We do not distinguish between R(tid, A1, ���,
An) and R(A1, ���, An) if there is no need to refer to tid.

Denoting x = (x1, x2, ���, xn) and y = (y1, y2, ���, yn) in �n, an 
aggregation function f(�): �n � � is monotone if f(x) 	 f(y)
whenever xi 	 yi for every i; f(�) is strictly monotone if f(x) < f(y)
whenever xi < yi for every i; f(�) is strictly monotone in each 
argument if whenever one argument is strictly increased and 
the remaining arguments are held fixed, then the value of the 
aggregation function f(�) is strictly increased, that is, f(�) is 
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strictly monotone in each argument if xi < x�i implies that f(x1,
���, xi
1, xi, xi+1, ���, xn) < f(x1, ���, xi
1, x�i, xi+1, ���, xn) [8]. In this 
paper, aggregation functions will be monotone or strictly 
monotone in each argument.

Let a tuple t = (t1, t2, ���, tn) � R. For simplicity, ti is called 
the individual grade of t for each attribute Ai (1 	 i 	 n), and f(t)
= f(t1, t2, ���, tn) is the (overall) grade of t. A top-K query against 
R is to find a sorted set of K tuples �t1, t2, ���, tK
 in R that have 
the highest grades of f(t) for all t � R. The results of a top-K
query are called top-K tuples.  For each attribute/column Ai of 
R(tid, A1, ���, An), its values are sorted in descending order from 
max(Ai) to min(Ai), 1	 i 	 n, then we obtain n sorted lists L1, ���,
Ln. Each entry of Li is of the form (tid, a), where a = t[Ai] is the 
value of t with tid under attribute Ai, i.e., the individual grade
of t with respect to the ith attribute Ai.

Two modes of access to data, sorted access and random 
access, will be used in aggregation algorithms. Sorted (or 
sequential) access is to obtain the individual grade of a tuple’s 
attribute in some sorted list by going through the list 
sequentially from the top. Random access is to request the 
individual grade of a tuple’s attribute in a list and to obtain it in 
one step. Aggregation algorithms answer the top-K queries 
with the following three cases of data access methods [8, 13]. 
(1) Both sorted and random accesses: assume the availability of 
both sorted and random accesses in all the underlying data 
sources. The algorithms FA, TA, TA1 and CA belong to this 
case. (2) Restricting sorted access: assume the availability of at 
least one sorted access source. Random accesses are used in a 
controlled manner to reveal the overall grades of candidate 
answers. The TAz and TAz1 belong to this category.  (3) No 
random access: assume the underlying sources provide only 
sorted access to tuples based on their grades. The NRA and 
NRA1 belong to this situation. Furthermore, aggregation 
algorithms are defined in the context of “no wild guesses” [8], 
that is, a tuple must be encountered under sorted access before 
it can be discovered by random access. 

The middleware cost [8]: Let cs be the cost of a sorted 
access, and cr be the cost of a random access. If an algorithm A
does s sorted accesses and r random accesses to find the top-K
tuples, then its middleware cost is cost(A) = s�cs + r�cr, for 
some positive constants cs and cr. Usually, a single sorted 
access is probably much more expensive than a single random 
access as described in [5], therefore, we assume that cs � cr.
Additionally, Fagin defined the database access cost in [5] 
(called unweighted middleware cost in [6]) is dacost(A) = s + r.

Instance optimality [8]: Let D be a class of relations, let� A
be a class of algorithms, and let cost(A; D) be the middleware 
cost incurred by running algorithm A over relation D for A�A 
and D�D. An algorithm� B�A is instance optimal over A and 
D if there are constants c and c� such that for every A�A and 
every D�D we have cost(B, D) 	�c�cost(A, D) + c��� The
constant c is called the optimality ratio.

Fagin et al. [8] proved that TA, TAz, NRA, and CA are 
instance optimal, under natural assumptions. For the instance 
optimality of the four algorithms TA, TAz, NRA, and CA, the 
middleware costs (i.e., the access costs) are only considered; 
however, internal computation costs are ignored, which might 
well be expensive in practice in some cases, especially, for the 

algorithm NRA. The FA finds the top-K tuples with 
middleware cost O(|R|(n-1)/nK1/n) over a relation R with |R|
tuples if the orderings in the sorted lists are probabilistically 
independent [5, 6, 8], where |R| indicates the cardinality of R.
Moreover, TA will never access more distinct tuples than FA, 
but TA may perform more random accesses than FA [8, 9]. 

III. ALGORITHMS

Obviously, there is a Naïve Algorithm (NA) for obtaining 
the top-K tuples [8]: Under sorted access, NA probes every 
entry in each of the n sorted lists, computes the overall grade of 
every tuple by the aggregation function f(�), ranks all overall 
grades, and then returns the top-K tuples with their overall 
grades. In this paper, we will use the performance of NA as a 
baseline to compare with the other algorithms. 

The algorithms TA and TAz obtain the top-K tuples with 
their overall grades and require only a small constant-size 
buffer to remember the top-K tuples and their overall grades, 
which needn’t cache other seen tuples. However, the result set 
of the algorithm NRA consists of the top-K tuples without their 
overall grades, meanwhile it no longer suffices to have 
bounded buffers, because it has to use a buffer to cache all seen 
tuples, and the buffer size may be linear in the relation size. 

In order to evaluate top-K queries over Web-accessible 
databases, TA and TAz need to, like NRA, cache all seen 
tuples [3, 16]. Moreover, NRA requires, like TA, that the top-K
tuples be obtained with their overall grades in order to 
implement pipelined execution plans [11, 12]. Based on the 
main ideas of the algorithms, e.g., TA-Adapt in [3] and NRA-
RJ in [11, 12], we present three algorithms TA1, TAz1, and 
NRA1 in this section, which are slightly modified from TA, 
TAz, and NRA, respectively. The algorithms TA1, TAz1, and 
NRA1 obtain the top-K tuples with their overall grades and 
cache all seen tuples in a buffer, whose size is linear in the 
number of seen tuples. We only present TA1, TAz1, and 
NRA1 and the respective differences between them and TA, 
TAz, and NRA in this paper, while the details of FA, TA, TAz, 
NRA and CA can be found in [8].  

For both sorted and random accesses, we present the 
algorithm TA1 below in a style similar to that in [8]. 

=================================================== 
Algorithm TA1     
--------------------------------------------------------------------------------------- 
(1) For each Li, i=1 to n 

Do sorted access in parallel to Li. As a tuple t is 
seen under sorted access in list Li,
/* check whether t has already been in the buffer 
tSEEN */ 
If t has been seen           /* i.e., t � tSEEN */
    Continue;                   
Else   /*t has not been seen, i.e., t � tSEEN*/
    Store this new seen t in the buffer tSEEN. Do 

random access to the other lists to find the 
attribute value ti of tuple t in every list. Then 
compute the overall grade f(t) of the tuple t. If 
this grade is one of the K highest we have seen, 
then remember tuple t and its grade f(t) (ties are 
broken arbitrarily); 

                 End If 
End For
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(2) For each list Li, let pi be the grade of the last tuple seen 
under sorted access. Define the threshold point p = (p1,
p2, ���, pn), compute the threshold value � = f(p);  
If there are a least K tuples that have been seen with 

f(t) � � , then halt;  
t

Else goto (1). �
(3) Let Y be a set containing the K tuples that have been 

seen with the highest grades f(t)’s. The output is then 
the sorted set {(t, f(t)) | t�Y} according  to the grades 
f(t)’s.

=================================================== 

The main differences between TA1 and TA are that TA1 
uses the buffer tSEEN to contain all seen tuples, and employs 
the if-else structure “If t has been seen…Else…” in Step(1) to 
determine whether a tuple t has already been seen, before it is 
seen under the current sorted access in list Li. In general, TA1 
will never do more random accesses than TA; however, TA1 
need maintain the buffer tSEEN, and then may perform more 
maintenance than TA. Thus, TA is usually more efficient than 
TA1, whereas TA1 may be more efficient than TA in some 
special cases.  

Let Z = {i1, i2, ���, im}, 1 	 m = |Z| < n, be a nonempty 
proper subset of {1, 2, ���, n}, i.e., the set of indices i of those 
lists Li that can be accessed under sorted access. Without loss 
of generality, we assume that Z = {1, 2, ���, m}, 1	 m < n. The 
algorithm TAz1 is shown as follows, which is a natural 
modification of TA1. 

=================================================== 
Algorithm TAz1     

--------------------------------------------------------------------------------------- 
(1) For each Li, i=1 to m 

Do sorted access in parallel to Li. As a tuple t is 
seen under sorted access in list Li,
/* check whether t has already been in the buffer 
tSEEN */ 
If t has been seen   /* i.e., t � tSEEN */
    Continue; 
Else   /*t has not been seen, i.e., t � tSEEN*/
    Store this new seen t in the buffer tSEEN. Do 

random access to the other lists to find the 
attribute value ti of tuple t in every list. Then 
compute the overall grade f(t) of the tuple t. If 
this grade is one of the K highest we have seen, 
then remember tuple t and its grade f(t) (ties are 
broken arbitrarily); 

End If 
End For

(2) For each list Li, let pi be the grade of the last tuple seen 
under sorted access. Define the threshold point p = (p1,
���, pm, max(Am+1), ���, max(An)), compute the threshold 
value � = f(p);
If there are at least K tuples that have been seen with 

f(t) � � , th alt;  en h
Else goto (1). �

(3) Let Y be a set containing the K tuples that have been 
seen with the highest grades f(t)’s. The output is then 
the sorted set {(t, f(t)) | t�Y} according to the grades 
f(t)’s.

=================================================== 

TAz1 need employ the buffer tSEEN to cache all seen 
tuples, and to check whether a tuple t has already been seen as 

it is seen under the current sorted access in list Li. Thus, TAz1 
may perform more maintenance than TAz, and then TAz is 
usually more efficient than TAz1. 

The TA and TA1 do both sorted and random accesses; in 
this situation, obviously, TAz and TAz1 can also be utilized to 
handle top-K query. Intuitively, TAz and TAz1 may do less 
sorted accesses than TA and TA1 because Z = {i1, i2, ���, im} is 
a nonempty proper subset of {1, 2, ���, n}; hence TAz and TAz1 
may be more efficient than TA and TA1, respectively. In order 
to obtain better performance of TAz or TAz1, it is critical to 
choose the “optimal” subset Zo of {1, 2, ���, n}, which is 
difficult since there are 2n 
 2 nonempty proper subsets in 
terms of the set {1, 2, ���, n}. It is important to consider the case 
where |Z| = 1 as described in [3]; thus, we will report the best 
performance of TAz or TAz1 for Z ={i}, i = 1, 2, ���, n, in our 
experiments, which is indeed better than that of TA or TA1 for 
several datasets. 

In order to obtain the best performances of TAz and TAz1 
when Z ={i}, i = 1, 2, ���, n, we try to find a way to determine 
the “optimal list” of TAz and TAz1. Unfortunately, we have 
not yet come up with a general method that is suitable for 
every dataset and every aggregation function (at least three) in 
our experiments. The issue requires further investigation. 

For the situations where random accesses are impossible, 
the algorithm NRA1 is shown below. 

=================================================== 
Algorithm NRA1     

--------------------------------------------------------------------------------------- 
(1) Let pL

1 , ���, pL
n be the smallest possible values in lists 

L1, ���, Ln.
(2) Do sorted access in parallel to lists L1, ���, Ln, and at 

each step do the following: 
(2.1) Maintain the last seen values pU

1, ���, pU
n in the n

lists.
(2.2) For every tuple t = (t1, ���, tn) with some 

unknown attribute values, compute a lower 
bound for f(t), denoted fL(t), by substituting 
each unknown attribute value ti with pL

i, and 
compute an upper bound for f(t) denoted fU(t),
by substituting each unknown attribute value ti
with pU

i. For tuple t that has not been seen at all, 
fL(t) = f(pL

1, ���, pL
n), and fU(t) = f(pU

1, ���, pU
n). 

(2.3) Let Y be the set of K tuples with the largest 
lower bound values fL(t) seen so far. If two 
tuples have the same lower bound, then ties are 
broken using their upper bounds fU(t), and 
arbitrarily among tuples that additionally tie in
fU(t). Let MK be the Kth largest fL(t) value in Y
(i.e., MK 	 fL(t) for every t in Y ).

(3) Call a tuple t viable if fU(t) > MK. Halt when (a) at 
least K distinct tuples have been seen, and (b) there 
are no viable tuples outside Y. That is, if fU(t) 	 MK
for t�Y. Else goto step (2). 

(4) For every tuple t = (t1, ���, tn) in Y with some unknown 
attribute values, do sorted access to obtain the 
attribute values from the corresponding lists.  

(5) Return the graded set {(t, f(t)) | t�Y }. 
=================================================== 

The NRA in [8] has only steps (1), (2), (3) and (5) in the 
above NRA1. In contrast, NRA1 can get the top-K tuples with 
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their overall grades by Step-(4), while NRA1 never does less 
sorted accesses than NRA. 

IV. EXPERIMENTS

We report our experimental results of the nine algorithms 
NA, FA, TA, TA1, TAz, TAz1, NRA, NRA1 and CA with 
eleven datasets. The experiments are carried out using Visual 
C++ on a PC with Windows XP, Intel(R) Core(TM) i5-2400 
CPU @ 3.10 GHz 3.09GHz, and 2.98GB memory.  

A. Datasets and Preparations 
The low-dimensional datasets coming from [2] involve 

both synthetic and real datasets. The real datasets include 
Census2D and Census3D (both with 210,138 tuples), and 
Cover4D (581,010 tuples); the synthetic datasets are Gauss3D 
(500,000 tuples) with Gaussian distribution, and Array3D 
(507,701 tuples) with Zipfian distribution. The attribute values 
in low-dimensional datasets are all integers. The moderate- and 
high-dimensional real datasets are the same as in [4]. Their 
attribute values are double precision floating point numbers. 
The moderate datasets House8D, House16D and House20D are 
derived from the U.S. Household Census dataset with 22,784 
tuples,  and their attribute values are normalized in the interval 
[0,1]. High-dimensional datasets Lsi25D, Lsi50D and Lsi104D 
are derived from Telcordia LSI Engine with 20,000 tuples, and 
their attribute values are in the domain [–3.3991�1038,–
8.01543�10–43]�[1.03108�10–41, 3.40237�1038].  

In the following discussion, the names of datasets 
Census2D, Census3D, Gauss3D, Array3D, Cover4D, House8D, 
House16D, House20D, Lsi25D, Lsi50D, and Lsi104D are 
abbreviated to C2D, C3D, G3D, A3D, C4D, H8D, H16D, 
H20D, L25D, L50D, and L104D, respectively. In the name of 
a dataset, suffix “nD” indicates that the dataset has n
dimensions.  

We use the following default settings: (1) the aggregation 
function is Sum-Function  f(t) = sum(t) = t1 + t2 + ��� + tn; (2) the 
program will be executed 10 times individually for each query, 
and its measures is the averages of the results of the 10 
executions; (3) K = 100 for all eleven datasets; (4) all sorted 
lists are in main memory. When a different setting is used, it 
will be explicitly specified.  

The following measures are used in our experiments. 

� The elapsed time (millisecond, ms) used to obtain the 
top-K tuples: The time needed to find the top-K tuples 
from the respective dataset. 

� The number of sorted accesses (denoted by #SA): The 
number of sorted accesses for a query to find the top-K
tuples from the respective dataset. 

� The number of random accesses (#RA): The number of 
random accesses for a query to find the top-K tuples 
from the respective dataset. 

� The number of seen tuples (#SeT): The number of seen 
tuples for a query to find the top-K tuples from the 
respective dataset.  

For a top-K query over an n-dimensional dataset R, the TA 
or TAz needs only a small bounded buffer to remember the 
top-K tuples and their grades, and then the buffer size O(nK) is 
independent of the size of the dataset. For the other algorithm 
A, however, A may need a large buffer to store its seen tuples 
with their related information, and the buffer size depends on 
#SeT(A) = |tSEEN| the number of seen tuples by A over R, i.e., 
BufferSize(A, R) = O(#SeT(A)�n) = O(n|tSEEN|). Thus, we 
will report #SeT rather than the memory overhead. 

B. Experiments with Default Setting 

1) Elapsed Time 
We use the two API functions QueryPerformanceCounter()

and QueryPerformanceFrequency() to measure the elapsed 
time of each algorithm. Table I lists the elapsed times of nine 
algorithms for eleven datasets. If a value v is at least 1ms in 
Table I, it will be converted to an integer by ROUND(v, 0). 
Note that, as Z = {i}, i = 1, 2, ���, n, the elapsed times of TAz 
and TAz1 are the minimum values minZ{time(TAz)} and 
minZ{time(TAz1)} respectively in Table I for each dataset. 

Firstly, from Tables I, FA, TA, TA1, TAz, TAz1, and CA 
outperform NA  (the Naïve Algorithm) for all eleven datasets; 
furthermore, we can see that the performances of the TA, TA1, 
TAz, TAz1 and CA are stable since they are instance optimal,
and their internal computation costs are low. NRA and NRA1 
are better than NA when the dimensionality of a dataset is at 
most 3; however, they underperform NA if dimensionality is at 
least 4.

TABLE I. THE ELAPSED TIMES OF THE NINE ALGORITHMS FOR THE ELEVEN DATASETS

time (ms) C2D C3D G3D A3D C4D H8D H16D H20D L25D L50D L104D
NA 167 231 628 628 873 32 67 90 94 281 940
FA 30 77 206 133 389 29 45 55 59 105 223
TA 5 5 63 30 5 4 13 33 2 14 45
TA1 26 31 101 82 101 7 16 22 14 30 69
TAz 0.24  0.24  47 10 5 11 14 13 14 21 37
TAz1 25 31 62 60 102 11 17 23 24 44 71
NRA 116 201 541 469 963 73 234 312 415 1359 5218

NRA1 119 204 547 469 982 74 234 316 415 1366 5182
CA 25 30 112 84 123 8 29 60 14 34 95

Next, we compare the performances among the TA-like 
algorithms. Recall that CA is the Combined Algorithm by 
combining TA and NRA.  Based on �time(NRA1)/time(TA1)�
in Table I, we assume that h = 4, 6, 5, 5, 10, 7, 14, 14, 29 45, 
and 75 for C2D, C3D, G3D, A3D, C4D, H8D, H16D, H20D, 
L25D, L50D, and L104D, respectively. Obviously, TA and 

TAz are better than CA from Table I since CA has to maintain 
all seen tuples, i.e., CA is not suitable for the case cs � cr .

TA, TA1, TAz, TAz1 and CA outperform FA except for 
CA over the dataset H20D, where time(CA, H20D) = 60ms > 
time(FA, H20D) = 55ms. There are two reasons for the 
exception: (1) as shown in [8, 9], TA will never access more 
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distinct tuples than FA, but TA may perform more random 
accesses than FA. From Table III, the #RA with TA is 1124800 
for the dataset H20D, while the #RA is only 137660 by FA; (2) 
the elapsed time of NRA is much larger than that of FA (312ms
versus 55ms) over the dataset H20D. Notice that the number of 
seen tuples in Table IV for TA includes the count of repeating 
seen tuples; in fact, the number of distinct seen tuples by TA is 
the same as that by TA1 in Table IV. 

In Table I, the elapsed time TAz (or TAz1) is the minimum 
value with the optimal list for each dataset. Thus, TAz is highly 
competitive with TA, and the performance difference between 
TAz and TA is small for every dataset. Comparing TAz with 
TA, time(TAz) is longer than time(TA) for datasets H8D, 
H16D, L25D and L50D, while time(TAz) is at most time(TA) 
for other datasets. Similarly, TAz1 is highly competitive with 
TA1. Comparing TAz1 with TA1, time(TAz1) is longer than 
time(TA1) when the dimensionality of a dataset is at least 4,  
but time(TAz1) is at most time(TA1) if the dimensionality of a 

dataset is at most 3. Generally, TAz and TAz1 have the same 
numbers of sorted and random accesses as shown in Tables II 
and III respectively, while TAz1 will incur more costs than 
TAz to maintain the all seen tuples. Therefore, the elapsed time 
of TAz is at most that of TAz1 as shown in Table I.  

From the definition of TA and TA1, we know that TA1 
never does more random accesses than TA, while TA1 incurs 
additional costs to maintain all of its seen tuples. In general, 
TA is slightly better than TA1; however, there is one dataset 
H20D in which TA1 is better than TA in Table I. This is 
because the number of random accesses (#RA) for TA is much 
larger than TA1 (see the following Table III).  

2) Numbers of Sorted and Random Accesses 
In this subsection, we report the number of sorted accesses 

(#SA) in Table II and the number of random accesses (#RA) in 
Table III. Note that no random access is performed for the 
algorithms NA, NRA and NRA1.   

TABLE II. THE NUMBER OF SORTED ACCESSES OF THE NINE ALGORITHMS FOR THE ELEVEN DATASETS

#SA C2D C3D G3D A3D C4D H8D H16D H20D L25D L50D L104D
NA 420276 630414 1500000 1523103 2324040 182272 364544 455680 500000 1000000 2080000
FA 17080 75309 177699 86682 360216 90872 238000 318020 402425 893250 1975792
TA 202 303 124857 45357 10812 5440 34480 59200 4625 10350 24128 
TA1 202 303 124857 45357 10812 5440 34480 59200 4625 10350 24128 
TAz 101 101 116956 24284 11768 22784 22784 22784 20000 20000 20000 
TAz1 101 101 147629 28943 11768 22784 22784 22784 20000 20000 20000 
NRA 417958 626844 1499997 1522320 2303232 180760 364416 455520 499575 999350 2079896

NRA1 417958 626844 1499997 1522320 2303348 180760 364431 455534 499575 999350 2079896
CA 202 296 161870 40371 125644 4411 38024 79326 9975 10461 24456 

TABLE III. THE NUMBER OF RANDOM ACCESSES OF THE NINE ALGORITHMS FOR THE ELEVEN DATASETS

      #RA C2D C3D G3D A3D C4D H8D H16D H20D L25D L50D L104D
NA 0 0 0 0 0 0 0 0 0 0 0
FA 16880 134292 305556 159480 808308 90688 126544 137660 97575 106750 104208
TA 202 606 249714 90714 32430 38080 507165 1124800 108576 499163 2454181
TA1 202 604 235348 87618 32307 23758 214515 357105 99432 396851 1449107
TAz 101 202 233912 48568 35304 159488 341760 432896 480000 980000 2060000
TAz1 101 202 295258 57886 35304 159488 341760 432896 480000 980000 2060000
NRA 0 0 0 0 0 0 0 0 0 0 0

NRA1 0 0 0 0 0 0 0 0 0 0 0
CA 150 333 203 205 507 716 1446 1826 2178 4792 10083 

Generally, more middleware cost or database access cost 
(dacost(A) = s + r = #SA + #RA) will lead to more elapsed time 
in terms of an algorithm. From Table II, the numbers of sorted 
accesses (#SA’s) of NA, NRA and NRA1 are large; moreover, 
NA has to compute the overall grade of every tuple by the 
aggregation function and rank the overall grades of all tuples in 
the dataset; while NRA and NRA1 need to maintain and update 
the information of all their seen tuples. Therefore, NA, NRA 
and NRA1 have long elapsed times in Table I. 

As described in Section III, NRA1 will obtain the overall 
grade for each top-K tuple, and then its number of sorted 
accesses is at least that of NRA. Usually, NRA and NRA1 
have the same number of sorted accesses as shown in Table II. 
Indeed, there are datasets (e.g., C4D, H16D and H20D) with 
#SA(NRA1) > #SA(NRA). Therefore, NRA can obtain some 
top-K tuple(s) with unknown individual grade(s). Furthermore, 
the difference between #SA(NRA1) and #SA(NRA) is little. In 
fact, the maximum difference is 116 for C4D. Hence, NRA and 
NRA1 have almost the same elapsed times in Table I. 

From Table II, the #SA of FA is much more than that of TA, 
TA1, TAz, TAz1, or CA for all datasets. We know that cs � cr
[5] (see Section II) and FA needs to maintain all of its seen 
tuples. Thus FA has large elapsed times in Table I and 
underperforms TA, TA1, TAz, TAz1 and CA (except CA over 
H20D), though the number of random accesses (#RA) of FA is 
smaller than that of TA, TA1, TAz, or TAz1 when the 
dimensionality is at least 16 (see Table III). 

Table II shows that TA and TA1 do the same sorted 
accesses, but they often make different random accesses as 
illustrated in Table III since TA1 remembers all its seen tuples. 
Thus, the #RA of TA1 is at most that of TA. If the #RA of TA1 
is much less than that of TA, the elapsed time of TA1 may be 
less than that of TA (e.g., for dataset H20D in Table I). 

From Tables II and III, the #SA and #RA of TAz are equal 
to those of TAz1 respectively for each dataset except for two 
synthetic datasets G3D and A3D. The reason for the exception 
is that the optimal list of TAz differs from that of TAz1 for the 
dataset G3D or A3D. Each of G3D and A3D has lots of 
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duplicate tuples. TAz needn’t insert a duplicate tuple into the 
buffer containing top-K tuples, while TAz1 has to remember 
all its seen tuples; thus, they have different optimal lists.  

For the datasets C2D and C3D, the #SA and #RA of TA, 
TA1, TAz, TAz1 and CA are much less than those of other 
algorithms (Notice that no random access is performed for NA, 
NRA and NRA1). Since 1 	 Age 	 99, –25897 	 Income 	

347998 and 0 	 WeeksWorkedPerYear 	 52 in C2D and/or 
C3D, the top- K values of the attribute Income are much larger 
than those of the other attribute(s), and Income is the 
dominative factor of the function f(t) = t1 + ��� + tn. In fact, the 
tuples with top-K values of Income may be the top-K tuples. 

TABLE IV. THE NUMBER OF SEEN TUPLES OF THE NINE ALGORITHMS FOR THE ELEVEN DATASETS

#SeT C2D C3D G3D A3D C4D H8D H16D H20D L25D L50D L104D
NA 210138 210138 500000 507701 581010 22784 22784 22784 20000 20000 20000 
FA 16980 69867 161085 82054 292131 22695 22784 22784 20000 20000 20000 
TA 202 303 124857 45357 10810 5440 33811 59200 4524 10187 23827 
TA1 202 302 117674 43809 10769 3394 14301 18795 4143 8099 14069 
TAz 101 101 116956 24284 11768 22784 22784 22784 20000 20000 20000 
TAz1 101 101 147629 28943 11768 22784 22784 22784 20000 20000 20000 
NRA 210132 210138 500000 507700 581010 22784 22784 22784 20000 20000 20000 

NRA1 210132 210138 500000 507700 581010 22784 22784 22784 20000 20000 20000 
CA 202 296 147906 39136 119649 2876 15274 20954 7935 8200 14476 

3) Number of Seen Tuples 
NA accesses all tuples in each dataset R, therefore, its #SeT

is equal to |R| in Table IV. The #SeT of FA is large, and FA 
will see all tuples when the dimensionality is at least 16 in 
Table IV. Regarding the TA, we count #SeT(TA, R) repeatedly 
for duplicate seen tuples; thus, there is some R in Table IV 
such that #SeT(TA, R) > |R| (e.g., the dataset H20D). In fact, 
the number of distinct seen tuples by TA is identical with that 
by TA1, satisfying #SeT(TA1, R) < |R| in Table IV. 

TAz and TAz1 define the threshold point p = (p1, ���, pm,
max(Am+1), ���, max(An)), and compute the threshold value � =
f(p); thus, the final � may be too large such that f(t) < � for all t
� R. In this situation, TAz or TAz1 will not halt until it has 
seen the grade of every tuple in every list. However, this 
situation cannot happen with TA generally [8]. The results in 
Table IV confirm this. From Table IV, TAz and TAz1 will see 
a small number of tuples for low-dimensional datasets, but they 
will see all tuples for moderate- and high-dimensional datasets. 

Consequently, except for TA and TAz with small bounded 
buffers, a larger number of seen tuples for the other algorithms 
means larger buffers as well as larger elapsed times generally. 

C. Experiments with Different Setting 
In this section, we repeat the same experiments as in 

Section IV.B for various settings, but we report only parts of 
the results of each experiment due to space limitation. 

1) Effect of Different Result Size K 
Let K = 5, 10, 20, 40, 100, and 200, respectively. We 

discuss the effect of K on the performance of the algorithms in 
this subsection. For f(t) = t1 + ��� + tn, we report the elapsed 
times in Figure 1 for the three original algorithms TA, TAz and 
NRA in [8] with three datasets C4D, H20D and L104D. In 
Figure 1, TA4D, TA20D and TA104D are used to indicate the 
values of TA for the datasets C4D, H20D and L104D, 
respectively. The other signs of TAz and NRA are alike. the 
three curves for TA grow slowly as K grows. The changes of 
TAz are similar to those of TA. Moreover, time(TAz4D, top-
100) < time(TAz4D, top-200). The reason is that 

BufferSize(TAz4D, top-100) < BufferSize(TAz4D, top-200), 
and TAz incurs more costs to handle the Buffer for a top-200 
query than that for a top-100 query. From Figure 1, the TA-like 
algorithms are stable when K changes. The reason is as follows: 
when TA or TAz obtains the top-K tuples, there is a high 
probability that the top-(K+1)th tuple has already been 
obtained, but it is not inserted into the buffer that stores only 
top-K tuples and their grades.  
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2) Dataset with Normalization  
For each R of low- and high-dimensional datasets, we 

normalize it such that R � [0, 1]n, the Cartesian product of n
closed intervals [0, 1]. For a tuple t = (t1, ���, tn)�R, we also use 
the Sum-Function f(t) = sum(t) = t1 + ��� + tn. Notice that we 
only discuss low- and high-dimensional datasets in this 
subsection, as the moderate-ones are already normalized [4] as 
described in Section IV.A. We report the elapsed time in 
Figure 2. 

Comparing Table I in Section IV.B.1 with Figure 2, the 
trends of elapsed times of all algorithms over the normalized
datasets are similar to those over the original datasets except 
for the TA and CA for the high-dimensional datasets. TA and 
CA are much better than NA for the high-dimensional original
datasets; however, they underperform NA significantly for the 
high-dimensional normalized datasets. From Figure 2, we can 
also see that: time(TAz) < time(TAz1) < time(TA1) < time(FA) 
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< time(NA) < time(TA) < time(CA) < time(NRA) �
time(NRA1) for the three high-dimensional normalized ones. 

To our surprise, “TA underperforms NA significantly”, as 
we know that TA is an elegant algorithm with instance 
optimality [8].  

TA stores only the K tuples with the highest overall grades. 
It may perform many sorted and random accesses to the tuples, 
many of which probed again and again. Therefore, the #SeT of 
TA is much more than that of NA for the three high-
dimensional normalized datasets; meanwhile, TA does much 
more sorted and random accesses than NA, i.e., dacost(TA) is 
much more than n|R| when R�{L25D, L50D, L104D}. These 
factors are the reasons behind “TA underperforms NA 
significantly”.
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3) Effect of Different Aggregation Functions 
The performance of TA-like algorithms may change 

depending on the aggregation function used. In this subsection, 
we conduct the experiments for the other two widely used 
functions Min and Weighted-Sum: f1(t) = min(t) = min(t1, ���, tn)

and f2(t) = wsum(t) = �1t1 + ��� + �ntn, for t = (t1, ���, tn)�R(A1,
���, An), where �i = 1/max(|max(Ai)|,|min(Ai)|), i = 1, 2, ���, n.

Figure 3 shows the results of min(t). Figure 4 demonstrates 
the results with wsum(t) for low- and high-dimensional original 
datasets. Notice that wsum(t) become sum(t) since all �i = 1 (i
= 1, ���, n) for moderate-ones.  

From Table I in Section IV.B.1, and Figures 3 and 4, it can 
be seen that the elapsed times of the nine algorithms are 
sensitive to the aggregation functions. Regarding high-
dimensional datasets, for example, the algorithm TA 
underperforms NA significantly when min(t) is used in Figure 
3; the reasons are similar to those of the normalized datasets in 
Section IV.C.2. However, TA will be the best among all nine 
algorithms if sum(t) and wsum(t) are applied to the original 
high-dimensional datasets. Also considering high-dimensional 
datasets, FA is better than NA for sum(t) from Table I, but  NA 
is slightly better than FA for wsum(t) from Figure 4. 

4) Min and Max Elapsed Times of TAz and TAz1 
The elapsed time of the TAz or TAz1 in the subsections 

above is the minimum value with the “optimal list” for each 
dataset. In this case, TAz and TAz1 are highly competitive 
with TA and TA1, respectively. Because we have not found a 
way to obtain the “optimal list”, we use the minimum and the 
maximum of elapsed times to estimate TAz and TAz1. 

Over each original dataset with the three aggregation 
functions, Figure 5 depicts the elapsed times of NA, TA, TAzB, 
TAzW, TAz1B and TAz1W, where TAzB indicates the Best
(or minimum) value and TAzW means the Worst (or maximum) 
value for TAz, so do TAz1B and TAz1W for TAz1. 

For sum(t), Figure 5(a) shows that the NA underperforms 
all the others. The TAz and TAz1 are stable for moderate- and 
high-dimensional datasets. TAz1 is also stable for low-
dimensional datasets since the difference between TAz1W and 
TAz1B is at most 37ms for all low-dimensional datasets except 
for the dataset C4D with 148ms. The changes of the curves 
with TAz are large for low-dimensional datasets since the 
difference (TAzW 
 TAzB) is from 62ms to 195ms for all low-
dimensional datasets except for the dataset A3D with 12ms.
Comparing the worst values, TAz runs slower than TAz1 for 
the datasets C2D, C3D, and G3D since TAzW
TAz1W > 0. 
The values of TAzW, TAzB, TAz1W, and TAz1B are all 
smaller than that of TA for dataset H20D, while their five 
values are almost the same for dataset H16D. 

For min(t), Figure 5(b) shows that: (1) the elapsed times of 
TAzB are smaller than the others over the eleven original 
datasets, (2) NA underperforms all the others for low- and 
moderate-dimensional datasets, (3) TA underperforms the 
others significantly for high-dimensional datasets, and (4) the 
values of TA are between the minimum and the maximum 
elapsed times of TAz or TAz1 for low- and moderate-
dimensional datasets. When min(t) is used, TAz, TA, and 
TAz1 are suitable for low- and moderate-dimensional datasets, 
while TAz and TAz1 are good choices for high-dimensional 
datasets since TA halts only if it performs a lot of sorted and 
random accesses in order to satisfy the termination condition 
f1(tK) = min(tK) � �.

Figure 5(c) shows the results for only low- and high-
dimensional original datasets with f2(t) = wsum(t), since wsum(t)
becomes sum(t) for moderate-ones over which the results are 
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shown in Figure 5(a). From Figure 5(c), we can see that NA 
has significantly longer elapsed time than the others. The 
difference between TAz1W and TAz1B is not large, which is 
from 4ms to 30 ms for all datasets except for C4D with 110ms.
The difference between TAzW and TAzB is small, which is 

from 3ms to 16ms for all datasets except for C2D with 76 ms.
Furthermore, TA works well with wsum(t), since its elapsed 
times are smaller than the others for almost all datasets except 
for C2D, G3D and A3D in Figure 5(c).  
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V. CONCLUSION

For processing top-K queries with monotone aggregation 
functions, this paper provides an experimental evaluation of 
nine algorithms NA, FA, TA, TA1, TAz, TAz1, NRA, NRA1 
and CA, where NA is the Naïve Algorithm as a baseline and 
the others are TA-like algorithms. We conduct extensive 
experiments with three aggregation functions based on eleven 
datasets with different characteristics. From our experimental 
results, we summarize the following observations. (1) There is 
no single winner for all experiments. TAz with the “optimal 
list” outperforms all the other algorithms when the aggregation 
function is min(t) over all eleven datasets; however, TAz with 
the “worst list” cannot beat for instance TA for all datasets. (2) 
To our surprise, for the three original high-dimensional 
datasets, TA underperforms NA significantly when the 
aggregation function is min(t), in this case, TAz, TAz1 and 
TA1 are the most suitable algorithms, while TAz, TA, TAz1 
and TA1 are preferable for low- and moderate-dimensional 
datasets with the function min(t). (3) The performances of TA-
like algorithms are sensitive to the attribute values of tuples in 
a dataset. In reference to high-dimensional datasets, for 
example, TA is the best algorithm for original datasets, but it is 
not attractive for normalized datasets since TA runs 
considerably slower than NA in these cases. With respect to 
normalized datasets, TAz and TA are good choices if a dataset 
has at most 8 dimensions; otherwise, TAz, TAz1 and TA1 may 
be the suitable algorithms. (4) In general, if aggregation 
function is sum(t) or wsum(t) over original datasets, TAz and 
TA are the best algorithms. There are two exceptions: (a) sum(t)
with H20D, TA1 and TAz1 are better than TA in this case, and 
(b) wsum(t) with C4D, all algorithms excluding NRA, NRA1 
and NA are better than TAz. 

In the future, we plan to evaluate the performances of 
existing state-of-the-art variations and improvements of the 
original TA-like algorithms under the same experimental 
framework. Another interesting issue is to devise a (heuristic) 
strategy to find an optimal subset Zo �{1, 2, …, n}, such that 

the elapsed time of TAz or TAz1 with Zo is the minimum 
among all subsets Z’s of {1, 2, …, n}.
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