2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications;
Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing

An Experimental Evaluation of Aggregation
Algorithms for Processing Top-K Queries™

Liang Zhu', Qin Ma* ", Weiyi Meng®, Minggian Yang*, Fang Yuan®

'School of Computer Science and Technology, Hebei University, Baoding, Hebei 071002, China
’Department of Foreign Language Teaching and Research, Hebei University, Baoding, Hebei 071002, China
*Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA
4School of Mathematics and Information Science, Hebei University, Baoding, Hebei 071002, China
{zhu, magqin, yuanfang}@hbu.edu.cn; ymq655@163.com; meng@cs.binghamton.edu

Abstract—For processing top-K queries with monotone
aggregation functions, the threshold algorithm (TA) and its
family are important methods in many scenarios. From 1996 to
2003, Fagin et al. proposed a variety of TA-like algorithms such
as the FA, TA, TAz, NRA and CA algorithms for different access
methods as well as various data resources, but they did not
report the experimental results of the TA-like algorithms in their
seminal papers. Since then, some of the original TA-like
algorithms have been implemented, improved or adapted in
different situations and/or applications; however, the original
algorithms have not been thoroughly compared and analyzed
under the same experimental framework. To address this
problem, in this paper, we carry out extensive experiments to
measure the performance of the original aggregation algorithms
and the slight adaptations of TA, TAz and NRA, and then we
provide comprehensive surveys on the natures of the TA-like
algorithms based on our experimental results.

L

From 1996 to 2003, Fagin et al. proposed the aggregation
algorithms FA, TA, TAO, TAz, NRA and CA in [5-8] in order
to deal with top-K queries (also ranked, ranking, top-£, or top-
N queries), where the TAO is an approximation algorithm while
the others are exact algorithms. Those algorithms that can be
used in various scenarios are remarkably simple, database-
friendly and powerful, which are called TA-like algorithms in
this paper. In the seminal papers [5-8], Fagin et al. defined the
TA-like algorithms, proved their correctness, presented the size
of the buffer used by each algorithm, and discussed the
optimality for each of the algorithms under certain assumptions;
however, the experimental results of the algorithms are not
reported in [5-8]. Notice that we address exact algorithms
without discussing TAO in this paper.

There are many variations and improvements of some of
the original TA-like algorithms for various situations and/or
applications [13]. For example, Nepal and Ramakrishna [17]
and Giuntzer et al. [9] presented their own algorithms
independently that are equivalent to TA for processing queries
over multimedia databases. Using index structures, [10]
presented the MPro algorithm that ensures every probe
performed is necessary for evaluating the top-K tuples.
Tracking the “best positions” in each sorted list and reducing

INTRODUCTION

*This work is supported in part by NSFC (61170039) and the NSF of
Hebei Province (F2012201006).
Corresponding author.

978-1-5090-0154-5/15 $31.00 © 2015 IEEE
DOI 10.1109/CIT/ITUCC/DASC/PICOM.2015.47

326

the number of accesses, [1] proposed techniques BPA and
BPA2 to optimize the TA algorithm in [8]. [15] proposed the
algorithm LARA to optimize the algorithm NRA by employing
a lattice to reduce the computational cost of NRA. Building a
table R’ to maintain the sorted access order in the lists such that
the grade computation of an object using sorted lists can be
reduced by R', the STA method in [14] is an improvement of
the TA algorithm. The previous research works focused on
performance evaluations and comparisons of a small number of
the TA-like algorithm(s) related to the proposal(s). However,
the original TA-like algorithms have not been thoroughly
compared under the same experimental framework. We
address this problem and make the following contributions in
this paper: (1) Using the same experimental framework, we
provide a performance evaluation of the aggregation TA-like
algorithms FA, TA, TAz, NRA, CA, TAl, TAzl, and NRAI.
(2) Based on a variety of real-world and synthetic datasets with
low, moderate and high dimensions, we analyze the eight TA-
like algorithms and compare them with the baseline Naive
Algorithm (NA) [8] through extensive experiments. (3) We
report comprehensive surveys on the natures of the TA-like
algorithms based on our experimental results.

This paper is organized as follows. Section II introduces
some notations and concepts. Section III presents the
algorithms TA1, TAzl, and NRA1. Section IV provides the
experimental results. Finally, Section V concludes the paper.

II. PROBLEM DEFINITION

Let R be the set of all real numbers, R < R” be a finite
relation. In general, the schema of R is R(¢id, A, -+, A,) with n
attributes (44, -+, 4,,) corresponding to R” = R x - x R, where
the ith axis R;= ‘R for every i, each tuple in R is associated
with a #id (tuple identifier), and R is stored as a base relation in
a database system. We do not distinguish between R(tid, A, -,
A,) and R(A4,, -, 4,) if there is no need to refer to tid.

Denoting x = (x1, x,, -, X,) and y = (yy, ¥a, =+, V) in R”, an
aggregation function f{-): R" — R is monotone if fix) < fy)
whenever x; < y; for every i; f{-) is strictly monotone if fix) <Ay)
whenever x; < y; for every i; f{-) is strictly monotone in each
argument if whenever one argument is strictly increased and
the remaining arguments are held fixed, then the value of the
aggregation function f{-) is strictly increased, that is, f{:) is

IEEE
computer
® psouety

strictly monotone in each argument if x; < x }implies that fx,,
oy Xicly Xiy Xitls - Xn) <AX1, 5 Xiots X Xis1, - %) [8]. In this
paper, aggregation functions will be monotone or strictly
monotone in each argument.

Let a tuple # = (#, #,, -+, t,) € R. For simplicity, #; is called
the individual grade of t for each attribute 4; (1 < i < n), and f{¢)
=ft, t, -+, t,,) is the (overall) grade of t. A top-K query against
R is to find a sorted set of K tuples (#, t,, ---, tx) in R that have
the highest grades of f{¢) for all # € R. The results of a top-K
query are called top-K tuples. For each attribute/column 4; of
R(tid, Ay, -+, A,), its values are sorted in descending order from
max(4;) to min(4;), 1< i < n, then we obtain » sorted lists L, -,
L,. Each entry of L; is of the form (#id, a), where a = #[4;] is the
value of # with #id under attribute 4,, i.e., the individual grade
of ¢ with respect to the ith attribute 4;.

Two modes of access to data, sorted access and random
access, will be used in aggregation algorithms. Sorted (or
sequential) access is to obtain the individual grade of a tuple’s
attribute in some sorted list by going through the list
sequentially from the top. Random access is to request the
individual grade of a tuple’s attribute in a list and to obtain it in
one step. Aggregation algorithms answer the top-K queries
with the following three cases of data access methods [8, 13].
(1) Both sorted and random accesses: assume the availability of
both sorted and random accesses in all the underlying data
sources. The algorithms FA, TA, TAI and CA belong to this
case. (2) Restricting sorted access: assume the availability of at
least one sorted access source. Random accesses are used in a
controlled manner to reveal the overall grades of candidate
answers. The TAz and TAzl belong to this category. (3) No
random access: assume the underlying sources provide only
sorted access to tuples based on their grades. The NRA and
NRAI1 belong to this situation. Furthermore, aggregation
algorithms are defined in the context of “no wild guesses” 8],
that is, a tuple must be encountered under sorted access before
it can be discovered by random access.

The middleware cost [8]: Let ¢, be the cost of a sorted
access, and ¢, be the cost of a random access. If an algorithm 4
does s sorted accesses and » random accesses to find the top-K
tuples, then its middleware cost is cost(4) = s-c; + r-c,, for
some positive constants ¢; and c¢,. Usually, a single sorted
access is probably much more expensive than a single random
access as described in [5], therefore, we assume that ¢, > c,.
Additionally, Fagin defined the database access cost in [5]
(called unweighted middleware cost in [6]) is dacost(A) = s + r.

Instance optimality [8]: Let D be a class of relations, let A
be a class of algorithms, and let cost(4; D) be the middleware
cost incurred by running algorithm 4 over relation D for A€ A
and DeD. An algorithm ®eA is instance optimal over A and
D if there are constants ¢ and ¢’ such that for every 4€A and
every DeD we have cost(8, D) <c-cost(4, D) + ¢. The
constant c is called the optimality ratio.

Fagin et al. [8] proved that TA, TAz, NRA, and CA are
instance optimal, under natural assumptions. For the instance
optimality of the four algorithms TA, TAz, NRA, and CA, the
middleware costs (i.e., the access costs) are only considered;
however, internal computation costs are ignored, which might
well be expensive in practice in some cases, especially, for the

327

algorithm NRA. The FA finds the top-K tuples with
middleware cost O(R|"""K"™) over a relation R with |R|
tuples if the orderings in the sorted lists are probabilistically
independent [5, 6, 8], where |R| indicates the cardinality of R.
Moreover, TA will never access more distinct tuples than FA,
but TA may perform more random accesses than FA [8, 9].

III. ALGORITHMS

Obviously, there is a Naive Algorithm (NA) for obtaining
the top-K tuples [8]: Under sorted access, NA probes every
entry in each of the » sorted lists, computes the overall grade of
every tuple by the aggregation function f{-), ranks all overall
grades, and then returns the top-K tuples with their overall
grades. In this paper, we will use the performance of NA as a
baseline to compare with the other algorithms.

The algorithms TA and TAz obtain the top-K tuples with
their overall grades and require only a small constant-size
buffer to remember the top-K tuples and their overall grades,
which needn’t cache other seen tuples. However, the result set
of the algorithm NRA consists of the top-K tuples without their
overall grades, meanwhile it no longer suffices to have
bounded buffers, because it has to use a buffer to cache all seen
tuples, and the buffer size may be linear in the relation size.

In order to evaluate top-K queries over Web-accessible
databases, TA and TAz need to, like NRA, cache all seen
tuples [3, 16]. Moreover, NRA requires, like TA, that the top-K
tuples be obtained with their overall grades in order to
implement pipelined execution plans [11, 12]. Based on the
main ideas of the algorithms, e.g., TA-Adapt in [3] and NRA-
RJ in [11, 12], we present three algorithms TA1, TAzl, and
NRALI in this section, which are slightly modified from TA,
TAz, and NRA, respectively. The algorithms TA1, TAzl, and
NRALI obtain the top-K tuples with their overall grades and
cache all seen tuples in a buffer, whose size is linear in the
number of seen tuples. We only present TAl, TAzl, and
NRALI and the respective differences between them and TA,
TAz, and NRA in this paper, while the details of FA, TA, TAz,
NRA and CA can be found in [8].

For both sorted and random accesses, we present the
algorithm TA1 below in a style similar to that in [8].

Algorithm TA1

(1) Foreach L;, i=1ton

Do sorted access in parallel to L;. As a tuple 7 is

seen under sorted access in list Z;,

/* check whether ¢ has already been in the buffer

tSEEN */

If # has been seen
Continue;

Else /*thas not been seen, i.e., t ¢ tSEEN*/
Store this new seen # in the buffer £SEEN. Do
random access to the other lists to find the
attribute value #; of tuple # in every list. Then
compute the overall grade f{#) of the tuple ¢ If
this grade is one of the K highest we have seen,
then remember tuple # and its grade f{7) (ties are
broken arbitrarily);

End If

End For

/*1ie.,t € tSEEN */

(2) For each list L, let p; be the grade of the last tuple seen
under sorted access. Define the threshold point p = (p,
D2 > Pn), compute the threshold value = f(p);

If there are at least K tuples that have been seen with
A#) > 7, then halt;
Else goto (1).

(3) Let Y be a set containing the K tuples that have been
seen with the highest grades f{£)’s. The output is then
the sorted set {(z, f(¢)) | t€ Y} according to the grades
A)’s.

The main differences between TA1 and TA are that TAl
uses the buffer £SEEN to contain all seen tuples, and employs
the if-else structure “If ¢ has been seen...Else...” in Step(1) to
determine whether a tuple ¢ has already been seen, before it is
seen under the current sorted access in list L;. In general, TA1
will never do more random accesses than TA; however, TA1
need maintain the buffer 2SEEN, and then may perform more
maintenance than TA. Thus, TA is usually more efficient than
TA1, whereas TAl may be more efficient than TA in some
special cases.

Let Z = {iy, iy, =, im}, | < m = |Z] < n, be a nonempty
proper subset of {1, 2, -, n}, i.e., the set of indices i of those
lists L; that can be accessed under sorted access. Without loss
of generality, we assume that Z = {1, 2, ---, m}, 1< m < n. The
algorithm TAzl is shown as follows, which is a natural
modification of TA1.

Algorithm TAz1

(1) Foreach L;, i=1 tom

Do sorted access in parallel to L;. As a tuple 7 is

seen under sorted access in list Z;,

/* check whether ¢ has already been in the buffer

tSEEN */

If t has been seen /* i.e., t € tSEEN */
Continue;

Else /*thas not been seen, i.e., t ¢ tSEEN*/
Store this new seen # in the buffer £SEEN. Do
random access to the other lists to find the
attribute value #; of tuple ¢ in every list. Then
compute the overall grade f{f) of the tuple ¢ If
this grade is one of the K highest we have seen,
then remember tuple # and its grade f{7) (ties are
broken arbitrarily);

End If

End For

(2) For each list L, let p; be the grade of the last tuple seen
under sorted access. Define the threshold point p = (py,
-y Pmy MaxX(A4,,41), -+, max(4,)), compute the threshold
value = f(p);

If there are at least K tuples that have been seen with
A£) > 7, then halt;
Else goto (1).

(3) Let Y be a set containing the K tuples that have been
seen with the highest grades f{(£)’s. The output is then
the sorted set {(#, (7)) | te Y} according to the grades
fD)’s.

TAzl need employ the buffer £SEEN to cache all seen
tuples, and to check whether a tuple # has already been seen as

328

it is seen under the current sorted access in list ;. Thus, TAz1
may perform more maintenance than TAz, and then TAz is
usually more efficient than TAz1.

The TA and TA1 do both sorted and random accesses; in
this situation, obviously, TAz and TAzl can also be utilized to
handle top-K query. Intuitively, TAz and TAzl may do less
sorted accesses than TA and TA1 because Z = {i, iy, -+, iy} 18
a nonempty proper subset of {1, 2, -+, n}; hence TAz and TAz1
may be more efficient than TA and TA1, respectively. In order
to obtain better performance of TAz or TAzl, it is critical to
choose the “optimal” subset Z, of {1, 2, -, n}, which is
difficult since there are 2" — 2 nonempty proper subsets in
terms of the set {1, 2, ---, n}. It is important to consider the case
where |Z] = 1 as described in [3]; thus, we will report the best
performance of TAz or TAzl for Z ={i},i=1, 2, -, n, in our
experiments, which is indeed better than that of TA or TAI for
several datasets.

In order to obtain the best performances of TAz and TAzl
when Z ={i}, i=1, 2, --, n, we try to find a way to determine
the “optimal list’ of TAz and TAzl. Unfortunately, we have
not yet come up with a general method that is suitable for
every dataset and every aggregation function (at least three) in
our experiments. The issue requires further investigation.

For the situations where random accesses are impossible,
the algorithm NRA1 is shown below.

Algorithm NRA1
(1) Let p*y , -, p*, be the smallest possible values in lists
Ly, -, L,

(2) Do sorted access in parallel to lists L,
each step do the following:

(2.1) Maintain the last seen values pUI, ey pUn in the n
lists.

(2.2) For every tuple ¢ = (#, -, t,) with some
unknown attribute values, compute a lower
bound for f{f), denoted f;(f), by substituting
each unknown attribute value ¢ with pLi, and
compute an upper bound for f{#) denoted fi(7),
by substituting each unknown attribute value ¢
with pY;. For tuple # that has not been seen at all,
SOy =fp", -, P, and fu(d) = fip%, -, pY).

(2.3) Let Y be the set of K tuples with the largest
lower bound values f;(f) seen so far. If two
tuples have the same lower bound, then ties are
broken using their upper bounds fi(#), and
arbitrarily among tuples that additionally tie in
fu(®). Let My be the Kth largest f;(¢) value in ¥
(i.e., Mg <fi(f) forevery tin Y).

(3) Call a tuple ¢ viable if fi(f) > My. Halt when (a) at
least K distinct tuples have been seen, and (b) there
are no viable tuples outside Y. That is, if fi(f) < My
for z¢ Y. Else goto step (2).

(4) For every tuple £ = (¢, -+, t,,) in ¥ with some unknown
attribute values, do sorted access to obtain the
attribute values from the corresponding lists.

(5) Return the graded set {(¢, f(?)) | t€Y }.

-, L,, and at

The NRA in [8] has only steps (1), (2), (3) and (5) in the
above NRALI. In contrast, NRA1 can get the top-K tuples with

their overall grades by Step-(4), while NRA1 never does less
sorted accesses than NRA.

IV. EXPERIMENTS

We report our experimental results of the nine algorithms
NA, FA, TA, TAl, TAz, TAzl, NRA, NRA1 and CA with
eleven datasets. The experiments are carried out using Visual
C++ on a PC with Windows XP, Intel(R) Core(TM) i5-2400
CPU @ 3.10 GHz 3.09GHz, and 2.98GB memory.

A. Datasets and Preparations

The low-dimensional datasets coming from [2] involve
both synthetic and real datasets. The real datasets include
Census2D and Census3D (both with 210,138 tuples), and
Cover4D (581,010 tuples); the synthetic datasets are Gauss3D
(500,000 tuples) with Gaussian distribution, and Array3D
(507,701 tuples) with Zipfian distribution. The attribute values
in low-dimensional datasets are all integers. The moderate- and
high-dimensional real datasets are the same as in [4]. Their
attribute values are double precision floating point numbers.
The moderate datasets House8D, House16D and House20D are
derived from the U.S. Household Census dataset with 22,784
tuples, and their attribute values are normalized in the interval
[0,1]. High-dimensional datasets Lsi25D, LsiSOD and Lsil104D
are derived from Telcordia LSI Engine with 20,000 tuples, and
their attribute values are in the domain [-3.3991x10* -
8.01543x107°]1U[1.03108x10™", 3.40237x10°%).

In the following discussion, the names of datasets
Census2D, Census3D, Gauss3D, Array3D, CoverdD, House8D,
Housel6D, House20D, Lsi25D, Lsi50D, and Lsil04D are
abbreviated to C2D, C3D, G3D, A3D, C4D, H8D, H16D,
H20D, L25D, L50D, and L104D, respectively. In the name of
a dataset, suffix “#D” indicates that the dataset has n
dimensions.

We use the following default settings: (1) the aggregation
function is Sum-Function f#) = sum(f) =t,+ t, + - + t,; (2) the
program will be executed 10 times individually for each query,
and its measures is the averages of the results of the 10
executions; (3) K = 100 for all eleven datasets; (4) all sorted
lists are in main memory. When a different setting is used, it
will be explicitly specified.

The following measures are used in our experiments.

o The elapsed time (millisecond, ms) used to obtain the
top-K tuples: The time needed to find the top-K tuples
from the respective dataset.

o The number of sorted accesses (denoted by #SA): The
number of sorted accesses for a query to find the top-K
tuples from the respective dataset.

o The number of random accesses (#RA): The number of
random accesses for a query to find the top-K tuples
from the respective dataset.

o The number of seen tuples (#SeT): The number of seen
tuples for a query to find the top-K tuples from the
respective dataset.

For a top-K query over an n-dimensional dataset R, the TA
or TAz needs only a small bounded buffer to remember the
top-K tuples and their grades, and then the buffer size O(nK) is
independent of the size of the dataset. For the other algorithm
A, however, 4 may need a large buffer to store its seen tuples
with their related information, and the buffer size depends on
#SeT(A4) = [tSEEN)] the number of seen tuples by 4 over R, i.e.,
BufferSize(A4, R) = O#SeT(A)*n) = OmtSEEN|). Thus, we
will report #SeT rather than the memory overhead.

B. Experiments with Default Setting

1) Elapsed Time

We use the two API functions QueryPerformanceCounter()
and QueryPerformanceFrequency() to measure the elapsed
time of each algorithm. Table I lists the elapsed times of nine
algorithms for eleven datasets. If a value v is at least 1ms in
Table I, it will be converted to an integer by ROUND(v, 0).
Note that, as Z = {i}, i = 1, 2, -+, n, the elapsed times of TAz
and TAzl are the minimum values ming{time(TAz)} and
ming{time(TAz1)} respectively in Table I for each dataset.

Firstly, from Tables I, FA, TA, TA1, TAz, TAzl, and CA
outperform NA (the Naive Algorithm) for all eleven datasets;
furthermore, we can see that the performances of the TA, TA1,
TAz, TAzl and CA are stable since they are instance optimal,
and their internal computation costs are low. NRA and NRA1
are better than NA when the dimensionality of a dataset is at
most 3; however, they underperform NA if dimensionality is at
least 4.

TABLE L. THE ELAPSED TIMES OF THE NINE ALGORITHMS FOR THE ELEVEN DATASETS
time (ms) | C2D | C3D | G3D | A3D | C4D | H8D | H16D H20D L25D | LSOD | L104D

NA 167 231 628 628 873 32 67 90 94 281 940
FA 30 77 206 133 389 29 45 55 59 105 223
TA 5 5 63 30 5 4 13 33 2 14 45
TAl 26 31 101 82 101 7 16 22 14 30 69
TAz 0.24 | 0.24 47 10 5 11 14 13 14 21 37

TAzl 25 31 62 60 102 11 17 23 24 44 71
NRA 116 201 541 469 963 73 234 312 415 1359 5218

NRA1 119 204 547 469 982 74 234 316 415 1366 5182
CA 25 30 112 84 123 8 29 60 14 34 95

Next, we compare the performances among the TA-like
algorithms. Recall that CA is the Combined Algorithm by
combining TA and NRA. Based on | time(NRA1)/time(TA1)
in Table I, we assume that =4, 6, 5, 5, 10, 7, 14, 14, 29, 45,
and 75 for C2D, C3D, G3D, A3D, C4D, H8D, H16D, H20D,
L25D, L50D, and L104D, respectively. Obviously, TA and

TAz are better than CA from Table I since CA has to maintain
all seen tuples, i.e., CA is not suitable for the case ¢; > ¢,

TA, TA1, TAz, TAzl and CA outperform FA except for
CA over the dataset H20D, where time(CA, H20D) = 60ms >
time(FA, H20D) = 55ms. There are two reasons for the
exception: (1) as shown in [8, 9], TA will never access more

329

distinct tuples than FA, but TA may perform more random
accesses than FA. From Table III, the #R4 with TA is 1124800
for the dataset H20D, while the #RA is only 137660 by FA; (2)
the elapsed time of NRA is much larger than that of FA (312ms
versus 55ms) over the dataset H20D. Notice that the number of
seen tuples in Table IV for TA includes the count of repeating
seen tuples; in fact, the number of distinct seen tuples by TA is
the same as that by TA1 in Table IV.

In Table I, the elapsed time TAz (or TAzl) is the minimum
value with the optimal list for each dataset. Thus, TAz is highly
competitive with TA, and the performance difference between
TAz and TA is small for every dataset. Comparing TAz with
TA, time(TAz) is longer than time(TA) for datasets H8D,
H16D, L25D and L50D, while time(TAz) is at most time(TA)
for other datasets. Similarly, TAz1 is highly competitive with
TA1. Comparing TAz1 with TA1, time(TAz1) is longer than
time(TA1) when the dimensionality of a dataset is at least 4,
but time(TAz1) is at most time(TA1) if the dimensionality of a

dataset is at most 3. Generally, TAz and TAzl have the same
numbers of sorted and random accesses as shown in Tables II
and III respectively, while TAzl will incur more costs than
TAz to maintain the all seen tuples. Therefore, the elapsed time
of TAz is at most that of TAzl as shown in Table I.

From the definition of TA and TAIl, we know that TAL
never does more random accesses than TA, while TA1 incurs
additional costs to maintain all of its seen tuples. In general,
TA is slightly better than TA1; however, there is one dataset
H20D in which TALl is better than TA in Table I. This is
because the number of random accesses (#RA) for TA is much
larger than TA1 (see the following Table III).

2) Numbers of Sorted and Random Accesses
In this subsection, we report the number of sorted accesses
(#S4) in Table II and the number of random accesses (#R4) in

Table III. Note that no random access is performed for the
algorithms NA, NRA and NRAI.

TABLE II. THE NUMBER OF SORTED ACCESSES OF THE NINE ALGORITHMS FOR THE ELEVEN DATASETS
#SA C2D C3D G3D A3D C4D HS8D H16D H20D L25D L50D L104D
NA 420276 630414 1500000 1523103 | 2324040 | 182272 | 364544 | 455680 | 500000 | 1000000 | 2080000
FA 17080 75309 177699 86682 360216 90872 | 238000 | 318020 | 402425 893250 1975792
TA 202 303 124857 45357 10812 5440 34480 59200 4625 10350 24128
TA1 202 303 124857 45357 10812 5440 34480 59200 4625 10350 24128
TAz 101 101 116956 24284 11768 22784 22784 22784 20000 20000 20000
TAzl1 101 101 147629 28943 11768 22784 22784 22784 20000 20000 20000
NRA 417958 626844 1499997 1522320 | 2303232 | 180760 | 364416 | 455520 | 499575 999350 2079896
NRA1 417958 626844 1499997 1522320 | 2303348 | 180760 | 364431 | 455534 | 499575 999350 2079896
CA 202 296 161870 40371 125644 4411 38024 79326 9975 10461 24456
TABLE III. THE NUMBER OF RANDOM ACCESSES OF THE NINE ALGORITHMS FOR THE ELEVEN DATASETS
#RA C2D C3D G3D A3D C4D HSD H16D H20D L25D L50D L104D
NA 0 0 0 0 0 0 0 0 0 0 0
FA 16880 134292 | 305556 | 159480 | 808308 90688 126544 137660 97575 106750 104208
TA 202 606 249714 90714 32430 38080 507165 1124800 108576 | 499163 | 2454181
TA1l 202 604 235348 87618 32307 23758 214515 357105 99432 396851 | 1449107
TAz 101 202 233912 48568 35304 159488 341760 432896 480000 | 980000 | 2060000
TAzl 101 202 295258 57886 35304 159488 341760 432896 480000 | 980000 | 2060000
NRA 0 0 0 0 0 0 0 0 0 0 0
NRA1 0 0 0 0 0 0 0 0 0 0 0
CA 150 333 203 205 507 716 1446 1826 2178 4792 10083

Generally, more middleware cost or database access cost
(dacost(A) = s + r = #SA + #RA) will lead to more elapsed time
in terms of an algorithm. From Table II, the numbers of sorted
accesses (#54’s) of NA, NRA and NRA1 are large; moreover,
NA has to compute the overall grade of every tuple by the
aggregation function and rank the overall grades of all tuples in
the dataset; while NRA and NRA1 need to maintain and update
the information of all their seen tuples. Therefore, NA, NRA
and NRA1 have long elapsed times in Table 1.

As described in Section III, NRA1 will obtain the overall
grade for each top-K tuple, and then its number of sorted
accesses is at least that of NRA. Usually, NRA and NRAI
have the same number of sorted accesses as shown in Table II.
Indeed, there are datasets (e.g., C4D, H16D and H20D) with
#SA(NRAI1) > #SA(NRA). Therefore, NRA can obtain some
top-K tuple(s) with unknown individual grade(s). Furthermore,
the difference between #SA(NRAT1) and #SA(NRA) is little. In
fact, the maximum difference is 116 for C4D. Hence, NRA and
NRAT1 have almost the same elapsed times in Table I.

From Table II, the #S4 of FA is much more than that of TA,
TAI1, TAz, TAz1, or CA for all datasets. We know that ¢, > ¢,
[5] (see Section II) and FA needs to maintain all of its seen
tuples. Thus FA has large elapsed times in Table I and
underperforms TA, TA1, TAz, TAzl and CA (except CA over
H20D), though the number of random accesses (#RA) of FA is
smaller than that of TA, TAIl, TAz, or TAzl when the
dimensionality is at least 16 (see Table III).

Table II shows that TA and TAl do the same sorted
accesses, but they often make different random accesses as
illustrated in Table III since TA1 remembers all its seen tuples.
Thus, the #RA4 of TA1 is at most that of TA. If the #RA4 of TA1
is much less than that of TA, the elapsed time of TA1 may be
less than that of TA (e.g., for dataset H20D in Table I).

From Tables II and III, the #S4 and #RA of TAz are equal
to those of TAz1 respectively for each dataset except for two
synthetic datasets G3D and A3D. The reason for the exception
is that the optimal list of TAz differs from that of TAz1 for the
dataset G3D or A3D. Each of G3D and A3D has lots of

330

duplicate tuples. TAz needn’t insert a duplicate tuple into the
buffer containing top-K tuples, while TAzl has to remember
all its seen tuples; thus, they have different optimal lists.

For the datasets C2D and C3D, the #54 and #RA of TA,
TA1, TAz, TAzl and CA are much less than those of other
algorithms (Notice that no random access is performed for NA,
NRA and NRAI). Since 1 < Age < 99, —25897 < Income <

347998 and 0 < WeeksWorkedPerYear < 52 in C2D and/or
C3D, the top- K values of the attribute /ncome are much larger
than those of the other attribute(s), and Income is the
dominative factor of the function f{#) = #, + --- + #,. In fact, the
tuples with top-K values of Income may be the top-K tuples.

TABLE IV. THE NUMBER OF SEEN TUPLES OF THE NINE ALGORITHMS FOR THE ELEVEN DATASETS
#SeT C2D C3D G3D A3D C4D H8D H16D | H20D | L25D L50D | L104D
NA 210138 | 210138 | 500000 | 507701 581010 | 22784 | 22784 | 22784 | 20000 | 20000 20000
FA 16980 69867 161085 82054 292131 22695 | 22784 | 22784 | 20000 | 20000 20000
TA 202 303 124857 45357 10810 5440 33811 59200 4524 10187 23827
TAl 202 302 117674 43809 10769 3394 14301 18795 4143 8099 14069
TAz 101 101 116956 24284 11768 22784 | 22784 | 22784 | 20000 | 20000 20000
TAzl 101 101 147629 28943 11768 22784 | 22784 | 22784 | 20000 | 20000 20000
NRA 210132 | 210138 | 500000 | 507700 | 581010 | 22784 | 22784 | 22784 | 20000 | 20000 20000
NRA1 210132 | 210138 | 500000 | 507700 | 581010 | 22784 | 22784 | 22784 | 20000 | 20000 20000
CA 202 296 147906 39136 119649 2876 15274 | 20954 7935 8200 14476

3) Number of Seen Tuples

NA accesses all tuples in each dataset R, therefore, its #SeT
is equal to |R| in Table IV. The #SeT of FA is large, and FA
will see all tuples when the dimensionality is at least 16 in
Table IV. Regarding the TA, we count #Se7(TA, R) repeatedly
for duplicate seen tuples; thus, there is some R in Table IV
such that #SeT(TA, R) > |R| (e.g., the dataset H20D). In fact,
the number of distinct seen tuples by TA is identical with that
by TA1, satisfying #SeT(TA1, R) <|R| in Table IV.

TAz and TAzl define the threshold point p = (py, -, P
max(4,+1), -+, max(4,)), and compute the threshold value 7 =
Ap); thus, the final 7 may be too large such that f{r) < z for all ¢
€ R. In this situation, TAz or TAzl will not halt until it has
seen the grade of every tuple in every list. However, this
situation cannot happen with TA generally [8]. The results in
Table IV confirm this. From Table IV, TAz and TAz1 will see
a small number of tuples for low-dimensional datasets, but they
will see all tuples for moderate- and high-dimensional datasets.

Consequently, except for TA and TAz with small bounded
buffers, a larger number of seen tuples for the other algorithms
means larger buffers as well as larger elapsed times generally.

C. Experiments with Different Setting

In this section, we repeat the same experiments as in
Section IV.B for various settings, but we report only parts of
the results of each experiment due to space limitation.

1) Effect of Different Result Size K

Let K = 5, 10, 20, 40, 100, and 200, respectively. We
discuss the effect of K on the performance of the algorithms in
this subsection. For f{if) = #, + - + t,, we report the elapsed
times in Figure 1 for the three original algorithms TA, TAz and
NRA in [8] with three datasets C4D, H20D and L104D. In
Figure 1, TA4D, TA20D and TA104D are used to indicate the
values of TA for the datasets C4D, H20D and L104D,
respectively. The other signs of TAz and NRA are alike. the
three curves for TA grow slowly as K grows. The changes of
TAz are similar to those of TA. Moreover, time(TAz4D, top-
100) < time(TAz4D, top-200). The reason is that

331

BufferSize(TAz4D, top-100) < BufferSize(TAz4D, top-200),
and TAz incurs more costs to handle the Buffer for a top-200
query than that for a top-100 query. From Figure 1, the TA-like
algorithms are stable when K changes. The reason is as follows:
when TA or TAz obtains the top-K tuples, there is a high
probability that the top-(K+1)th tuple has already been
obtained, but it is not inserted into the buffer that stores only
top-K tuples and their grades.

—e— TA4D
TAz4D
| ——NRA4D

—=—TA20D —a— TA104D
—%— TAz20D —e— TAz104D

—=— NRA20D NRA104D|_

K=5 10 20 40 100 200

Top-K for original datasets and sum()

Fig. 1. Elapsed times for 5 < K <200

2) Dataset with Normalization

For each R of low- and high-dimensional datasets, we
normalize it such that R < [0, 1]", the Cartesian product of n
closed intervals [0, 1]. For a tuple = (¢, ---, #,)€ R, we also use
the Sum-Function f{f) = sum(f) = t; + - + t,. Notice that we
only discuss low- and high-dimensional datasets in this
subsection, as the moderate-ones are already normalized [4] as
described in Section IV.A. We report the elapsed time in
Figure 2.

Comparing Table I in Section IV.B.1 with Figure 2, the
trends of elapsed times of all algorithms over the normalized
datasets are similar to those over the original datasets except
for the TA and CA for the high-dimensional datasets. TA and
CA are much better than NA for the high-dimensional original
datasets; however, they underperform NA significantly for the
high-dimensional normalized datasets. From Figure 2, we can
also see that: time(TAz) < time(TAz1) < time(TA1) < time(FA)

< time(NA) < time(TA) < time(CA) < time(NRA) =~
time(NRA1) for the three high-dimensional normalized ones.

To our surprise, “TA underperforms NA significantly”, as
we know that TA is an elegant algorithm with instance
optimality [8].

TA stores only the K tuples with the highest overall grades.
It may perform many sorted and random accesses to the tuples,
many of which probed again and again. Therefore, the #SeT of
TA is much more than that of NA for the three high-
dimensional normalized datasets; meanwhile, TA does much
more sorted and random accesses than NA, i.e., dacost(TA) is
much more than #|R| when Re {L25D, L50D, L104D}. These
factors are the reasons behind “TA underperforms NA
significantly”.

——NA —=-FA & TA
10000 TAl —%—TAz —e—TAzl
1000
’é‘ 100
H
£ 10
[.) f . . .
a a a y a a a a
o o o« < vy (=3 by
o LO U O GRS E S
S

Datasets-[0,1]

Fig. 2. Elapsed times for normalized datasets

10000 | ——NA —=—FA —a—TA
TAl —%—TAz —e—TAzl >
—+—NRA ——NRAI CA /

1000

Time(ms)
g &

D
@mig

L104D

0.1
Datasets-min()

Fig. 3. Elapsed times for min()

——NA -—=—FA —a—TA
10000 TAl —%—TAz —e—TAzl
—+—NRA —=—NRAI CA
1000
)
% 100
£
]
10

=)
F
&)

L25D
L50D
L104D

Datasets-wsum()

Fig. 4. Elapsed times for wsum()

3) Effect of Different Aggregation Functions

The performance of TA-like algorithms may change
depending on the aggregation function used. In this subsection,
we conduct the experiments for the other two widely used
functions Min and Weighted-Sum: £1(¢) = min(f) = min(t,, -, t,)

332

and f() = wsum(t) = oty + - + @, for t = (1, -, t,)eR(4,,
-, A,), where @; = 1/max(jmax(4;)|,jmin(4,)|),i=1,2, -, n.

Figure 3 shows the results of min(r). Figure 4 demonstrates
the results with wsum(f) for low- and high-dimensional original
datasets. Notice that wsum(f) become sum(f) since all w; =1 (i
=1, -+, n) for moderate-ones.

From Table I in Section IV.B.1, and Figures 3 and 4, it can
be seen that the elapsed times of the nine algorithms are
sensitive to the aggregation functions. Regarding high-
dimensional datasets, for example, the algorithm TA
underperforms NA significantly when min(f) is used in Figure
3; the reasons are similar to those of the normalized datasets in
Section IV.C.2. However, TA will be the best among all nine
algorithms if sum(f) and wsum(f) are applied to the original
high-dimensional datasets. Also considering high-dimensional
datasets, FA is better than NA for sum(#) from Table I, but NA
is slightly better than FA for wsum(f) from Figure 4.

4) Min and Max Elapsed Times of TAz and TAz1

The elapsed time of the TAz or TAzl in the subsections
above is the minimum value with the “optimal list” for each
dataset. In this case, TAz and TAzl are highly competitive
with TA and TA1, respectively. Because we have not found a
way to obtain the “optimal list”, we use the minimum and the
maximum of elapsed times to estimate TAz and TAzl1.

Over each original dataset with the three aggregation
functions, Figure 5 depicts the elapsed times of NA, TA, TAzB,
TAzW, TAzIB and TAzIW, where TAzB indicates the Best
(or minimum) value and TAzW means the Worst (or maximum)
value for TAz, so do TAz1B and TAz1W for TAzl.

For sum(f), Figure 5(a) shows that the NA underperforms
all the others. The TAz and TAz1 are stable for moderate- and
high-dimensional datasets. TAzl is also stable for low-
dimensional datasets since the difference between TAzIW and
TAz1B is at most 37ms for all low-dimensional datasets except
for the dataset C4D with 148ms. The changes of the curves
with TAz are large for low-dimensional datasets since the
difference (TAzW — TAzB) is from 62ms to 195ms for all low-
dimensional datasets except for the dataset A3D with 12ms.
Comparing the worst values, TAz runs slower than TAzl for
the datasets C2D, C3D, and G3D since TAZW-TAz1W > 0.
The values of TAzW, TAzB, TAz1W, and TAzIB are all
smaller than that of TA for dataset H20D, while their five
values are almost the same for dataset H16D.

For min(f), Figure 5(b) shows that: (1) the elapsed times of
TAzB are smaller than the others over the eleven original
datasets, (2) NA underperforms all the others for low- and
moderate-dimensional datasets, (3) TA underperforms the
others significantly for high-dimensional datasets, and (4) the
values of TA are between the minimum and the maximum
clapsed times of TAz or TAzl for low- and moderate-
dimensional datasets. When min(f) is used, TAz, TA, and
TAzI1 are suitable for low- and moderate-dimensional datasets,
while TAz and TAzl are good choices for high-dimensional
datasets since TA halts only if it performs a lot of sorted and
random accesses in order to satisfy the termination condition
Silty) = min(tx) = 7.

Figure 5(c) shows the results for only low- and high-
dimensional original datasets with f,(¢) = wsum(), since wsum(f)
becomes sum(f) for moderate-ones over which the results are

shown in Figure 5(a). From Figure 5(c), we can see that NA
has significantly longer elapsed time than the others. The
difference between TAzIW and TAzIB is not large, which is
from 4ms to 30 ms for all datasets except for C4D with 110ms.
The difference between TAzW and TAzB is small, which is

from 3ms to 16ms for all datasets except for C2D with 76 ms.
Furthermore, TA works well with wsum(f), since its elapsed
times are smaller than the others for almost all datasets except
for C2D, G3D and A3D in Figure 5(c).

—e—NA = TA [—NA]
—a—TAzB TAzW
+TA§|B e TAZIW 10000 —a—TA 1000
1000 —&— TAzB
1000 TAzW -
ﬁ+TAle / o |
100 F=—Fp—— —e— TAzIW
- 2 100 AN ’ ot —
) ., A =) g
£ A/)A;/ k-1 A & "
" A~ %
g 7 N2 E L SN 1 Bt
= - /o = —— -
“ AR JE="NE=
A \ — 7] 7
! o‘g/‘o‘o‘o‘a‘o‘o‘o‘o‘g ! o\g‘o‘g‘\‘;/‘::.‘o‘o‘o‘o) —x—TAZIB —e—TAzlW|
o« j3e} <+ x © © v <o
w4820 E=d81135 §8528z2z:58%732 5 2 8 2 2 2 8 §
0 01 = c ¢ 8 2 I o9 =7 =

Datasets-sum()

(a) Aggregation function f{¢) = sum(t)

Datasets-min()

(b) Aggregation function f,(f) = min(f)

Datasets-wsum()

(c) Aggregation function f(t) = wsum(t)

Fig. 5. Elapsed times for NA and TA, and Min and Max elapsed times for TAz and TAz1

V. CONCLUSION

For processing top-K queries with monotone aggregation
functions, this paper provides an experimental evaluation of
nine algorithms NA, FA, TA, TAl, TAz, TAzl, NRA, NRA1
and CA, where NA is the Naive Algorithm as a baseline and
the others are TA-like algorithms. We conduct extensive
experiments with three aggregation functions based on eleven
datasets with different characteristics. From our experimental
results, we summarize the following observations. (1) There is
no single winner for all experiments. TAz with the “optimal
list” outperforms all the other algorithms when the aggregation
function is min(f) over all eleven datasets; however, TAz with
the “worst list” cannot beat for instance TA for all datasets. (2)
To our surprise, for the three original high-dimensional
datasets, TA underperforms NA significantly when the
aggregation function is min(f), in this case, TAz, TAzl and
TA1 are the most suitable algorithms, while TAz, TA, TAzl
and TAIl are preferable for low- and moderate-dimensional
datasets with the function min(¢). (3) The performances of TA-
like algorithms are sensitive to the attribute values of tuples in
a dataset. In reference to high-dimensional datasets, for
example, TA is the best algorithm for original datasets, but it is
not attractive for normalized datasets since TA runs
considerably slower than NA in these cases. With respect to
normalized datasets, TAz and TA are good choices if a dataset
has at most 8 dimensions; otherwise, TAz, TAzl and TA1 may
be the suitable algorithms. (4) In general, if aggregation
function is sum(f) or wsum(f) over original datasets, TAz and
TA are the best algorithms. There are two exceptions: (a) sum(f)
with H20D, TA1 and TAz1 are better than TA in this case, and
(b) wsum(f) with C4D, all algorithms excluding NRA, NRA1
and NA are better than TAz.

In the future, we plan to evaluate the performances of
existing state-of-the-art variations and improvements of the
original TA-like algorithms under the same experimental
framework. Another interesting issue is to devise a (heuristic)
strategy to find an optimal subset Z, {1, 2, ..., n}, such that

333

the elapsed time of TAz or TAzl with Z, is the minimum
among all subsets Z’s of {1, 2, ..., n}.

REFERENCES
[1]

R. Akbarinia, E. Pacitti, and P. Valduriez, Best position algorithms for
top-k queries. In VLDB, Vienna, Austria, 2007, pp. 495-506.

N. Bruno, S. Chaudhuri, and L. Gravano, Top-k selection queries over
relational databases: mapping strategies and performance evaluation.
ACM Trans. Database Syst., 27, 2 (2002), 153-187.

N. Bruno, L. Gravano, and A. Marian, Evaluating top-k queries over
web-accessible databases. In ICDE, San Jose, USA, 2002, pp. 369-380.

C. Chen, and Y. Ling, A sampling-based estimator for top-k selection
query. In /CDE, San Jose, USA, 2002, pp. 617-627.

R. Fagin, Combining fuzzy information from multiple systems. In
PODS, Montreal, 1996, pp. 216-226.

R. Fagin, Combining fuzzy information from multiple systems. J.
Comput. Syst. Sci. 58,1 (1999), 83-99.

R. Fagin, A. Lotem, and M. Naor, Optimal aggregation algorithms for
middleware. In PODS, 2001, pp. 102-113.

R. Fagin, A. Lotem, and M. Naor, Optimal aggregation algorithms for
middleware. J. Comput. Syst. Sci., 66, 4 (2003), 614-656.

U. Giintzer, W. Balke, and W. KieBling, Optimizing multi-feature
queries for image databases. In VLDB, Cairo, Egypt, 2000, pp. 419-428.

S.-W. Hwang, and K.C.-C. Chang, Optimizing top-k queries for
middleware access: a unified cost-based approach. ACM Trans.
Database Syst., 32, 1 (2007), NO.5.

I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid, Joining ranked inputs in
practice. In VLDB, 2002, pp. 950-961.

I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid, Supporting top-k join
queries in relational databases. VLDB J., 13, 3(2004), 207-221.

1. F. Ilyas, G. Beskales, and M. A. Soliman, A survey of top-k query
processing techniques in relational database systems. ACM Comput.
Surv., 40,4 (2008), NO.11.

W. Jin, and J. Patel, Efficient and generic evaluation of ranked queries.
In SIGMOD, Athens, Greece, 2011, pp. 601-612.

N. Mamoulis, M. L. Yiu, K. H. Cheng, and D. W. Cheung, Efficient top-
k aggregation of ranked inputs. ACM Trans. Database Syst. 32, 3 (2007),
NO.19

A. Marian, L. Gravano, and N. Bruno, Evaluating top-k queries over
web-accessible databases. ACM Trans. Database Syst., 29, 2 (2004),
319-362.

S. Nepal, and M. V. Ramakrishna, Query processing issues in image
(multimedia) databases. In /CDE, Sydney, 1999, pp. 22-29.

[2]

B3]
[4]
[3]
[6]
(7
[8]
91

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

