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Abstract the intensity image domain, which is sensitive to various
imaging conditions, facial poses and expressions. More-

Automatic eye detection and tracking is an important com- over, the framework for rapid object detection using a
ponent in the advanced human-computer interface designhboosted cascade, proposed by Viola and Jones, can be ap-
In this paper, we present a novel approach for detecting and plied for eye detection [15].
tracking eyes through matching their terrain features. Re-  Due to the fact that the iris of human eye has large reflec-
garded as a 3D terrain surface, eye region exhibits certain tion to infrared light, the infrared (IR) illumination based
intrinsic traits when using a so-called topographic repre- technique is widely employed for locating eyes [21, 6]. This
sentation. With the topographic classification of terrain fea- approach is relatively effective and robust. However, it re-
tures, we generate a terrain map for each facial image and quires the special hardware with IR lighting cameras. The
extract eye candidates from the terrain map. Our algorithm result of detection and tracking still depends on the various
mainly consists of two parts. First, eye locations are esti- eye appearances (e.g., orientation, size and eye blinking,
mated from the candidate positions using an appearance-etc.) In order to improve the performance of eye tracking,
based object recognition technique. Second, a mutual in-Kalman filter [6] or Mean Shift techniques [1, 4, 21] can be
formation based fitting function is defined to describe the applied as the alternative remedies for real time implemen-
similarity between two terrain surfaces. By optimizing the tation with sufficient accuracy.
fitting function, eye locations are updated for each frame  Observing that the pupil center of human eye exhibits
in a video sequence. The distinction of the proposed ap-fuscous while the eye white appears bright, if a gray-scale
proach lies in that both eye detection and eye tracking are image is treated as a 3D topographic surface with the height
performed in a terrain map domain rather than an origi- of each location being denoted by the intensity of the cor-
nal intensity image domain. The robustness of the approachresponding pixel, the eye region will show a certain terrain
is demonstrated under various imaging conditions and with pattern. In particular, the center of eye exhibits thi”

different facial appearances using a web camera. feature surrounded Wyillside features. This gives us a hint
that eyes can be detected by exploring their terrain features.
1. Introduction Motivated by the topographic analysis technique [14,

17], in this paper, we propose a hew method using a terrain

Research on eye detection and tracking has been intensifiefeature matching algorithm for eye detection and tracking.
in recent years, driven by its important application in non- First, we derive a terrain map from a gray level image based
verbal human computer interaction [9, 2, 12]. As one of the on the topographic primal sketch theory. The terrain map
most salient and stablest facial features, eye can be used fois composed of topographic labels, where each pixel is la-
helping locate face, providing gaze information and even beled by one of the twelve different types of terrain features.
identifying facial behaviors (e.g., expressions). Second, we extract thgit pixels in the terrain map as the

During the past decade, great technical progress hasandidates for pupil pair classification. Third, a probabilis-
been made for eye detection and eye tracking. Typi- tic appearance model is learned to describe the distribution
cally, the holistic method and the abstractive method haveof terrain features and used as a classifier to choose the eye
been developed for eye detection [7, 20]. The holistic pair from the candidate points.
method utilizes the global information to locate eyes, such  After determining the initial eye location, we can fur-
as the Eigenspace based method [11]. The abstractiveéher proceed to track eyes through dynamically matching
method applies standard pattern analysis algorithms to lo-their surface patches between two adjacent frames. A mu-
cate eyes with extracted local appearance features, suckual information (MI) based fitting function is constructed
as deformable template [19]. Both Eigenspace-based ando estimate the similarity between two patches. Although
template-based methods evaluate the appearance featuresihe eye location can be tracked by optimizing the fitting



function, it is computationally expensive if we exhaust all
the possible matchings in the search area. Alternatively,
here we apply an efficient strategy to find the optimal fea-
ture match. We take advantage of thie terrain features

to selectively compute the mutual information in the terrain
map domain. Using such a strategy brings twofold benefits.
First, the probability distribution functiom(d. f.) is much
easier and more precise to be estimated in the terrain map
domain than in the intensity domain because the terrain map
has only twelve types of topographic features while inten-
sity domain hag56 levels. Second, the optimal match can
be usually found in the location gfit feature pixel. This
implies that for most of cases, we do not need to traverse all
the pixels in the search area. Experiments on eye tracking
show that the optimal match can be achieved for more than
98% of frames by searching only sevegat pixels in real
video sequences.

The rest of the paper is organized as follows. In Section

2, the background of topographic representation and classiFigure 1: A face image and the corresponding 3D terrain

fication of gray scale image is introduced. In Section 3, the surface of the eye region. The surface is reversed for better

algorithm for estimating initial eye locations is described, Visualization, so th@eakdenotes theit in real surface. (a)

followed by the description of the eye tracking algorithm in Original face image, marked out a eye patch with a size of

Section 4. Finally, the experimental result and concluding 24 x 48 pixels; (b) Corresponding distribution in the joint

remarks are discussed in Section 5 and Section 6. spatial-range space with 52 points; (c) Continuous terrain
surface of the eye patch in the original image; (d) Smoothed
terrain surface of the eye patch using a Gaussian filter with
a kernel size of5 x 15 ando = 2.5.
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2. Topographic Feature Extraction

The gray scale image is typically represented ag-a

dimensional lattice of-dimensional intensity vectors. The

space of the lattice is known as thgatialdomain while the 2 f(zy) 0% f(zy)
gray information is denoted aangedomain [3]. Differing H(z,y) = [ 82?20;1/) BQafx(?cyy) ]
from other joint spatial-range domain based analysis, topo- Dzdy o7
graphic analysis treats the gray level images as a continuous . ] N )
3D terrain surface, instead of distribution of discrete points. After applying eigenvalue decomposition to the Hessian
The intensityl (z, y) is represented by the height of the ter- Matrix, we can get:

rain at pixel(z,y). Figure 1 shows an example of a face )

image zfnd it(s egt)a terrgain surface. P H=UDU" = [u; ug]-diag(\i,A2) - [ur w2]” (2)

As we know, the intensity variations ore® face image  \yhere); and\, are the eigenvalues and ,u, are the or-
is caused by the face surface orientation and its reflectanceihogonal eigenvectors. it pixel can be detected when a
The resulted texture appearance provides an important Vi4ocal minimum gradient|V f(z, y)|| is found in the local
sual cue to classify a variety of facial regions and features region. In other words, the following conditions must be
[18]. If viewed as a 3D terrain surface, a face image Showssatisfied,”Vf(x,y)H =0,\ > 0,\ > 0 (i.e., the gradi-

certain “waves” in the face region due to its surface re- gnt js zero and the second directional derivative is positive

flectance property. For the eye region, it is generally com- i g directions.)

posed of two parts: the black pupil part and the white part.  gimijlarly, there are also other terrain types being defined,

The center of eye (or pupil) usually appears sqéea-  gych agpeak, ridge, saddle, hill, flaand ravine [5]. Hill

tures surrounded by sonhéliside features. pixels can be further specified as one of the lalelsvex
Mathematically, we can give a strict definition fopé hill, concave hill, saddle hilbr slope hill andsaddle hills

feature on the terrain surface. Assume that a continuouscan be further distinguished esncave saddle hitir convex

surface is represented by= f(z,y), the Hessian matrix ~ saddle hil| saddle asidge saddleor ravine saddlg14, 17].

can be obtained: Figure 2 shows the twelve types of terrain features.

@




Notice that the definition of terrain feature is restricted to a statistical verification approach to remove the fake feature
the continuousD surface. In order to apply it to the digital pixels, which will be described in the next section.
image, the continuous surface function must be regressed

from the discret@D points. We use a smoothed differentia- ; ;
tion filter based on the Chebyshev polynomials to fit a small 3. Topographlc Eye Location

patch to the local surface. Then each surface point can begjyen the candidate set @it features, a pair of eyes can
classified by its gradient value and principal curvatures (de-pe determined according to its local appearance in the ter-
tails can be found in [10, 17, 18].) rain map. In order to classify the candidaui¢ pixels, we
select a patch around each candidate pixel to analyze its ter-
rain feature distribution. Assume that the centers of the left
pupil and the right pupil are located at poirtsand 5 re-
spectively, and the distance between them is measuréd as
Two rectangular patches centeredvatnd are then gener-
ated along the direction of lines. Each patch has a size of
0.6d x 0.3d. In order to determine the real eye location from

Figure 2: Topographic labels: The center pixel in each ex- the candidatit features, we use a parametric_probat_)ilistic

ample carries the indicated label [14]. @ak (b) pit; (c) model 'Fo evaluate thg possibility o_f the two _pom_ts bemg an
ridge; (d) ravine (e) ridge saddle (f) ravine saddle (g) eye-pair. In the terrain map dom_aln, each pixel is quan_nzed
convex hil| (h) concave hili (i) convex saddle hill(j) con- to a range ofl,2...M, whereM is the number of terrain

cave saddle hill(k) slope hilt and (l)flat. type (i.e..M = 12). To analyze the topographic feature dis-
tribution, we generate a terrain feature vector for each can-

didate patch, which is defined &s= {t1,t2,...t;,....,tN },

In general, in order to reduce the noise, it is necessarywherel < t; < M is the terrain type of each pixel ard
to apply a smoothing process before regressing the surfaceis the number of pixels in the patch.
Figure 1 (d) shows an example of the terrain surface of an Here we employ a Gaussian Mixture Model (GMM) to
eye region after it is smoothed by a Gaussian filter. describe the property of the terrain feature vector. If we
treat each terrain feature vector pit pixels as a sam-
ple, GMM presumes all the samples distribute in a high-
dimensional space complying with several Gaussian distri-
butions. Among all the samples for both eye candidates
and non-eye candidates, we can further categorize them into
three sub-spaces, i.e., a left eye space, a right eye space and
an non-eye space. Each of them is described by a Gaussian
distribution. Let's define a subspaégfor the left eye &,
for the right eye and/ for the non-eye candidates, with the
probability distribution beingV;(u;, 3;), N, (p, ;) and
N (1, o), respectively. All these three subspaces consti-
tute a sample spa&®, whose parameterized form is defined

®)

Figure 3: (a) Results of topographic classification of a facial
image (e.g., twelve gray levels from black to white represent
the labels from (a) to () respectively); (b) Tipé features

in the facial region are marked by the “cross” symbols. O = {u, B, pis pir, By Prs s, Li, P} @)

wherep;,p,- andp,, are the prior probabilitieg; andX de-
note the mean and covariance matrix of the Gaussian distri-
butions. Given a pair of candidatesandb, with the terrain
feature vectors beint}, andt,, the posterior probability of
the candidate pair belonging to the eye spéce {&;, &}

is calculated as follow:

By applying the topographic classification technique,
each pixel in the original gray scale image is labeled by
one of the twelve terrain features. Figure 3(a) shows one
labeled face image, in which each label type is rendered b
a distinct gray level. Figure 3(b) shows the detegiidea-
tures (denoted by “cross” symbols) in the face region. As

we can see, thpit features are distributed very sparsely in p(Eltasts) = pl&lta) - p(Erfts) + p(E1]ts) - P(Er[ta)

the facial region. Although there are only a small number of _ p(tal&1) - pu ) p(ts|Er) - pr

pit features being detected, eye is the most reliable feature p(ta]O) p(ts|O)

which shows theit character in the face region. In order to p(tal&r) - pr P(|E) -1

extract the eye pair among the candidaitepixels, we use + p(ta]O) | p(t5]O) )



where the probability(t,|O) andp(t,|O) are calculated  distance with respect to the given image size, or the orienta-
as: tion of the eye-pair is near the vertical direction.) As such,
only a small number of pairs of candidates need be exam-
p(ta|O) = p(tal&1) - pu+ p(tal&r) - pr + p(tald) - pu (5) ined, and thus the computation load can be greatly reduced.
. Figure 5 shows four examples from the first frames of four
p(ts|O) = p(ts|&) - pi + p(t6|Er) - pr + p(t6|U) - pu (6) videos, where the eyes of four subjects are detected cor-
With the estimated parametric model, the real eye-pair rectly from a few of candidate pixels. The topographic eye
can be extracted according to the maximum value of proba-location approach has some ceartain robustness to uncon-
bility p(Eta, ts). strained background. Moreover it can be extended to solve
We use a training set, includir§3 face images, to learn  multiple-face cases, which is verified by the experiments in
the parameters of the probabilistic model. Among all the our previous work [16].
candidate pixelsgt-labeled pixels), we randomly select a
pair of candidates, and generate a terrain patch for each can-
didate. After obtaining all the terrain patch vectors, we di-
vide them into three sets, i.e., two positive sets including a
group of left eyes and right eyes samples, respectively, and
a negative set including a non-eye group. Figure 4 shows
some samples of the positive set and the negative set used
for training.

Figure 5: Examples of eye detection: “cross” symbols in the
face regions mark the candidate locations; “circle + cross”
symbols mark the detected eyes.

4. MI-Based Eye Tracking

i After locating the eye position in the initial frame, the eye

j : ' motion can be tracked in the subsequent frames. It seems

© ;d) ’ that the GMM based model could be used to find the eye
location in each frame. However, due to the training set

Figure 4: (a) The samples used as a positive training set2nly includes frontal facial images, it is not feasible to track
whose corresponding terrain patches are shown in (c); (b)€Yes under various poses. We seek to explore the mutual

corresponding terrain patches are shown in (d). and robust tracking. Our experiments show that it is more

reliable to use the eye patch detected in the previous frame
as a dynamic template to estimate the eye location in the
From the training set, the parameters in formula 3 can becurrent frame.

estimated. By using such a probability model, we are ableto  Given the eye locations andg of theith frame, the eye
extract the eye-pair with a maximum probability value cal- positionsa’ and 3’ in the jth frame can be found through
culated by Equation 4. Note that during the classification matching the terrain surface of patches. Figure 6(a-b) illus-
of all candidate pixels, searching all possible pairs of can- trates two sample frames, indexediasd;, where thejth
didates is a time-consuming process. In order to reduce thérame is several frames after tligh frame. Figure 6(c-d)
search space, we discard the pairs of candidates which havehows two smoothed terrain surfaces of the left eye, which
unreasonable distances between them (e.g., the distance arrespond to the image patches in (a) and (b), respectively.
a pair of candidates is beyond the range of a normal eye-pairAs shown in this figure, the two surfaces exhibit the similar
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terrain patterns, while the intensities of the corresponding whereP defines a search area. Then the mutual information

image patches distribute in different ranges: one-in180, can be defined as a function of the variapjeas shown in
the other ind — 200. the following formula:
The similarity of the two patterns can be measured in a . P
Y P I(X,Y) = g(p) = 9(Ps’ By) (8)

3D surface domain or a intensity image domain. However,

in order to find a match efficiently, we use the mutual infor- wherep = (p,, p,) is a 2D coordinate of the patch center
mation to measure the similarity of two terrain patches in a in the ¢ + 1 frame. The functiory(p) does not have the
terrain map space. explicit form, but it can be computed with the sampliad
Figure 7 (c) plots the MI values within a patch. From the
theory of sparse structuring of statistical dependency [13],
the variable of terrain features has strong statistical depen-
dency with a small number of other variables and negligible
dependency with the reaming ones. The exactly geometrical
alignment of two patches demonstrates the property. As we
know, the statistical dependency can be empirically evalu-
ated by mutual information (MI). If we take the position of

a terrain patch as a variable, the estimated Ml value varies
along with this variable. As illustrated in Figure 7, when
the rectangular terrain map in (a) matches the region of (b)
centered aty’, the MI function outputs a maximum value
Ihqe- The statistical dependency described by MI can be
visualized in (c) and (d). The brightest spot shows the posi-
tion with strongest statistical dependency between the two
patches while the dark or shaded areas indicate different de-
grees of patch independency.

Figure 6: Framé (a) and framej (b) show the centers of
pupils, denoted byd, 3) and ¢/, '), respectively. (c-d):
The terrain surfaces of the left eye patch in frainend
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Assume that two patches are centered ahda’ and the i L o =
corresponding terrain feature vectors ggeandt,., which -.-"f_.“ . A - r’-[: 1
are represented by the random variablestaandY’, the 1 R, L
mutual information between the two variables is calculated (€)
as:

XXX Pxy (ta, tar)
I(X,Y) = Pxy (ta, to)log ——22 e za’/ (7
(X,Y) X ( ) log Px(to) Py (t) @)

X Y

In order to calculate the mutual information, we must es-
timate the marginal and joiptd. f. of the random variables PRy 49
X andY (wherel < XY < 12). Because there are only "‘““(C) @
12 kinds of terrain labels rather than 256 levels in the inten-
sity domain, itis fairly easy and fast to estimate the discrete Figure 7: (a-b) The terrain maps of the framieand j,
p-d.f.S Px,Py and Pxy, which correspond to the normal- \here rectangles denotes the eye regions; (c) M calculated
ized1D and2D histograms of the terrain map. _on thejth frame as a function of the patch position. (d) The

As described in Section 3, the appearance based terrainyaystical dependency measured by the empirical mutual in-

features can be represented by a terrain map. Figure 7(aformation of thejth frame. The white spot corresponds to
b) illustrates the terrain maps of two patches correspondingi,e peak position of (c).

to the two surfaces in Figure 6(c-d). The terrain patch is

marked out by a rectangle along the direction of the detected

eye-pair in thaeth frame. Letp; = o denote the determined To this end, we formulate the fitting function for patch
eye location in theth frame and the variablg € P rep- matching in thgi + 1)th frame, given the eye locatign in
resent the current searching position in the- 1)th frame, theith frame:




_— Note that unlike the computation in the eye detection
f(pi,p) = g(p) + X~ e 9) stage, eye tracking stage only computes the terrain map in a
small search area around the eye rather than the whole face

The fitting functionf(-) is composed of two parts: the oo o
region, it greatly reduces the computation time.

mutual informationg(-) for measuring the statistical inde-
pendency and the distance penalty term for guaranteeing the )
continuity of tracking and preventing the terrain match from 9. EXperiments
distracting by other similar regions (e.g., eyebrows). The
parameters\ andn are used to balance the weights of the
two parts. The updated eye locations of the- 1)th frame

is obtained by maximizing the fitting function:

The proposed eye detection and tracking algorithms are
evaluated through the real time video sequences. We used
normal webcam to capture the video (i.e., CREATIVE
LABS webcam NX Ultra with frame resolution @40 x
pi+1 = argmax f(p;,p) (10) 480.) The first frame is used for detecting eyes by our
peP topographic-based eye detection algorithm. The whole pro-
It is conceivable that the computation cost is fairly ex- cedure runs fully automatically.
pensive if the fitting function is optimized through travers-  The performance of the initial eye localization is affected
ing all the pixels in the search area. Fortunately, our targetpy two factors: the candidate detection and the estimation
location (i.e, center of eye or pupil) shows, in most cases, of eye pairs from the candidates. The result of candidate de-
the stablepit feature, which makes the maximum fitting tection relies on the parameter selection of smoothing filter
value appear at suchpt feature location reliably. There- and differentiation filter, especially the scale of the filters.
fore, the eye location can be estimated quickly by searchingin order to reduce noises as well as maintain facial image
the best fitted patch in a very fepit locations. details, we set the consistent parameters for the following
When eyes are completely closed or the head rotation ispperations, both for the training images and for the testing
in a large degree which makes pupils almost invisible, the videos.
fitting function outputs a small value, which signifies the
loss of tracking. In this case, an approximate eye location e The Gaussian filter for smoothing has the size< 15
must be estimated by finding the maximum fitting function ando = 2.5;
value through all the pixels in the search area. Note that the _ .
distance penalty term can prevent the tracking point from  ® The discrete Chebyshev polynomial based differential
jumping far into the other non-eyait locations, such as eye- filter has the kernel with a size 6fx 5;
brows. This functlor_1 malntams_the smoc_)th trz_ackmg of eyes. The width and height of eye window {564 and0.3d
The whole automatic eye tracking algorithm is summarized : . .
as follows: (d is the distance of a pair of eyes).

1. Derive the terrain map of the first frame using * T.h € search area for tracking(6d+15) x (0.3d-+15)
topographic classification technique and set pite pixels.

pixels as eye candidates; e For the fitting function, the coefficientis 0.4, and the

2. Localize the eye-pair positions in the fifst value ofy is set as the distance of the tracked eye pair
frame through the GMM probability maximization as in the previous frame. The threshdlds set ad).65.

shown in Eq. 4;

3. Given eye locations of théh frame asp; and Our eye detector is tested on a static image database
the terrain feature;, determine a search ar@awith (i.e., Japanese Female Facial Expression (JAFFE) database
size K x K and centep; in the (i + 1)th frame for| [8]). The JAFFE images of each subject show seven univer-
searching the current eye locatipn 1; sal facial expressions. Figure 8 demonstrates some sample
4. Calculate the terrain map of the selected seprch  results from our eye detector. Among 213 facial images,
areaP and detect theit pixels. Compute the fitting 204 of them are correctly detected. The algorithm achieves
function at eaclpit pixel location and get the maxi- 95.8% correct detection rate. As an initialization stage, we
mum value. apply the eye detector to ten test videos, which are captured
5. If there is nopit pixel in the patch or the max- in our lab environment with a complex background. Exper-
imum fitting value computed in (4) is less than the iments show that our eye detector localized eyes of the first
predefined threshol@él, maximize the fitting function frames of all the videos correctly. Figure 5 demonstrates
by computingf (p;, p) for each pixelp € P; some sample frames.

6. Update the current eye locations and eye tefrain We test our tracking algorithm in two scenarios using
featureasi+1 — 4,p;y1 — pi, tix1 — t;. GO both a fixed webcam and a movable webcam. In each sce-
to step 3 for the next frame tracking; nario, the eye appearance of a subject is changed along




Figure 8: Examples of eye detection on the JAFFE database ['_"

[8].

with the aspects of facial scales (e.g., moving forward and &&=
backward), facial poses (e.g., rotating head), gaze direc-

tions (e.g., rotating eye-balls), eye status (e.g., blinking, Figure 9: (A) Sample frames of detected and tracked eyes
opening/closing eyelids by expressions), illuminations (e.g., from a video sequence captured by a static web-cam. From
changing lighting orientations and intensities) and partial top-left to bottom-right: frame 1, 31, 54, 68, 125, 192, 203,
face occlusions (e.g., wearing eye glasses or hiding non-eye292 and 404.

areas). Figure 9 shows one example sequence which was

captured by a fixed webcam. Figure 10 illustrates the sam-

ple frames from a video clip captured by an active webcam, hased only on the range of in the terrain domain rather

which performed panning, tilting and rolling operations. than the range d56 in the intensity domain.
The experiment shows that our eye detection and tracking

algorithms perform well under various imaging conditions . . .
(The video clips can be found in author’s website.) 6. Conclusions and Discussions

Our eye tracking algorithm runs frames per second |n this paper, we proposed a system for eye detection and
on the PC with a single CPU (P4-3.4GHz.) We tested on tracking through matching the terrain features. Our sys-
10 videos performed by 5 different subjects under vary- tem works automatically using an ordinary webcam without
ing imaging conditions (e.g., dynamic change of lighting, special hardwares. The major contribution of this work lies
moving of camera, etc.) Each video has 400 - 600 frames.in the proposed unique approach for topographic eye feature
Experiments show that most of the tim@8{; of frames)  representation, by which both eye detection and eye track-
the system outputs the correct tracking result (i.e., locatinging algorithms can employ the probabilistic measurement
pupil positions precisely.) Our system fails to track eyes if of eye appearance in the the terrain map domain rather than
the following cases occur: (1) the head rotation is beyond athe intensity image domain. In addition, we defined a fitting
certain range to make the eye invisible; (2) the eye is com-function based on the mutual information to describe the
pletely closed; (3) the subject is far from the camera, so thesimilarity between terrain surfaces of two eye patches. With
size of eye appeared in the image is too small. In the situa-fajirly small number of terrain types, thed. f. of marginal
tion of missing track, we use the previous frame to find the and joint distributions can be easily estimated, and eventu-
eye location by re-initializing the system or wait until the ally, the eye location is determined by optimizing the fitting
normal case is restored. function efficiently and robustly.

As compared to the conventional eye tracking ap-  Unlike some other approaches [9] which require to esti-
proaches, our approach is advantageous in that (1) no spemate the face region as a first pre-processing step, our al-
cial hardware (e.g., IR devices) is employed; (2) no face gorithm can detect eyes directly from images with complex
tracker is required, which alleviates the potential instability background. Since the maximum fitting value usually ap-
of the system; (3) The use of the topographic terrain map pears on theit feature pixels, the matching process can be
makes the MI calculation very fast because the iteration isonly performed on several candidai¢ locations in the ter-
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