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Abstract

Automatic eye detection and tracking is an important com-
ponent in the advanced human-computer interface design.
In this paper, we present a novel approach for detecting and
tracking eyes through matching their terrain features. Re-
garded as a 3D terrain surface, eye region exhibits certain
intrinsic traits when using a so-called topographic repre-
sentation. With the topographic classification of terrain fea-
tures, we generate a terrain map for each facial image and
extract eye candidates from the terrain map. Our algorithm
mainly consists of two parts. First, eye locations are esti-
mated from the candidate positions using an appearance-
based object recognition technique. Second, a mutual in-
formation based fitting function is defined to describe the
similarity between two terrain surfaces. By optimizing the
fitting function, eye locations are updated for each frame
in a video sequence. The distinction of the proposed ap-
proach lies in that both eye detection and eye tracking are
performed in a terrain map domain rather than an origi-
nal intensity image domain. The robustness of the approach
is demonstrated under various imaging conditions and with
different facial appearances using a web camera.

1. Introduction
Research on eye detection and tracking has been intensified
in recent years, driven by its important application in non-
verbal human computer interaction [9, 2, 12]. As one of the
most salient and stablest facial features, eye can be used for
helping locate face, providing gaze information and even
identifying facial behaviors (e.g., expressions).

During the past decade, great technical progress has
been made for eye detection and eye tracking. Typi-
cally, the holistic method and the abstractive method have
been developed for eye detection [7, 20]. The holistic
method utilizes the global information to locate eyes, such
as the Eigenspace based method [11]. The abstractive
method applies standard pattern analysis algorithms to lo-
cate eyes with extracted local appearance features, such
as deformable template [19]. Both Eigenspace-based and
template-based methods evaluate the appearance features in

the intensity image domain, which is sensitive to various
imaging conditions, facial poses and expressions. More-
over, the framework for rapid object detection using a
boosted cascade, proposed by Viola and Jones, can be ap-
plied for eye detection [15].

Due to the fact that the iris of human eye has large reflec-
tion to infrared light, the infrared (IR) illumination based
technique is widely employed for locating eyes [21, 6]. This
approach is relatively effective and robust. However, it re-
quires the special hardware with IR lighting cameras. The
result of detection and tracking still depends on the various
eye appearances (e.g., orientation, size and eye blinking,
etc.) In order to improve the performance of eye tracking,
Kalman filter [6] or Mean Shift techniques [1, 4, 21] can be
applied as the alternative remedies for real time implemen-
tation with sufficient accuracy.

Observing that the pupil center of human eye exhibits
fuscous while the eye white appears bright, if a gray-scale
image is treated as a 3D topographic surface with the height
of each location being denoted by the intensity of the cor-
responding pixel, the eye region will show a certain terrain
pattern. In particular, the center of eye exhibits the“pit”
feature surrounded byhillside features. This gives us a hint
that eyes can be detected by exploring their terrain features.

Motivated by the topographic analysis technique [14,
17], in this paper, we propose a new method using a terrain
feature matching algorithm for eye detection and tracking.
First, we derive a terrain map from a gray level image based
on the topographic primal sketch theory. The terrain map
is composed of topographic labels, where each pixel is la-
beled by one of the twelve different types of terrain features.
Second, we extract thepit pixels in the terrain map as the
candidates for pupil pair classification. Third, a probabilis-
tic appearance model is learned to describe the distribution
of terrain features and used as a classifier to choose the eye
pair from the candidate points.

After determining the initial eye location, we can fur-
ther proceed to track eyes through dynamically matching
their surface patches between two adjacent frames. A mu-
tual information (MI) based fitting function is constructed
to estimate the similarity between two patches. Although
the eye location can be tracked by optimizing the fitting

1



function, it is computationally expensive if we exhaust all
the possible matchings in the search area. Alternatively,
here we apply an efficient strategy to find the optimal fea-
ture match. We take advantage of thepit terrain features
to selectively compute the mutual information in the terrain
map domain. Using such a strategy brings twofold benefits.
First, the probability distribution function (p.d.f.) is much
easier and more precise to be estimated in the terrain map
domain than in the intensity domain because the terrain map
has only twelve types of topographic features while inten-
sity domain has256 levels. Second, the optimal match can
be usually found in the location ofpit feature pixel. This
implies that for most of cases, we do not need to traverse all
the pixels in the search area. Experiments on eye tracking
show that the optimal match can be achieved for more than
98% of frames by searching only severalpit pixels in real
video sequences.

The rest of the paper is organized as follows. In Section
2, the background of topographic representation and classi-
fication of gray scale image is introduced. In Section 3, the
algorithm for estimating initial eye locations is described,
followed by the description of the eye tracking algorithm in
Section 4. Finally, the experimental result and concluding
remarks are discussed in Section 5 and Section 6.

2. Topographic Feature Extraction

The gray scale image is typically represented as a2-
dimensional lattice of1-dimensional intensity vectors. The
space of the lattice is known as thespatialdomain while the
gray information is denoted asrangedomain [3]. Differing
from other joint spatial-range domain based analysis, topo-
graphic analysis treats the gray level images as a continuous
3D terrain surface, instead of distribution of discrete points.
The intensityI(x, y) is represented by the height of the ter-
rain at pixel(x, y). Figure 1 shows an example of a face
image and its eye terrain surface.

As we know, the intensity variations on a2D face image
is caused by the face surface orientation and its reflectance.
The resulted texture appearance provides an important vi-
sual cue to classify a variety of facial regions and features
[18]. If viewed as a 3D terrain surface, a face image shows
certain “waves” in the face region due to its surface re-
flectance property. For the eye region, it is generally com-
posed of two parts: the black pupil part and the white part.
The center of eye (or pupil) usually appears somepit fea-
tures surrounded by somehillside features.

Mathematically, we can give a strict definition for apit
feature on the terrain surface. Assume that a continuous
surface is represented byz = f(x, y), the Hessian matrix
can be obtained:
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Figure 1: A face image and the corresponding 3D terrain
surface of the eye region. The surface is reversed for better
visualization, so thepeakdenotes thepit in real surface. (a)
Original face image, marked out a eye patch with a size of
24 × 48 pixels; (b) Corresponding distribution in the joint
spatial-range space with1152 points; (c) Continuous terrain
surface of the eye patch in the original image; (d) Smoothed
terrain surface of the eye patch using a Gaussian filter with
a kernel size of15× 15 andσ = 2.5.

H(x, y) =

[
∂2f(x,y)

∂x2
∂2f(x,y)

∂x∂y
∂2f(x,y)

∂x∂y
∂2f(x,y)

∂y2

]
(1)

After applying eigenvalue decomposition to the Hessian
matrix, we can get:

H = UDUT = [u1 u2] · diag(λ1, λ2) · [u1 u2]T (2)

whereλ1 andλ2 are the eigenvalues andu1 ,u2 are the or-
thogonal eigenvectors. Apit pixel can be detected when a
local minimum gradient‖∇f(x, y)‖ is found in the local
region. In other words, the following conditions must be
satisfied,‖∇f(x, y)‖ = 0, λ1 > 0, λ2 > 0 (i.e., the gradi-
ent is zero and the second directional derivative is positive
in all directions.)

Similarly, there are also other terrain types being defined,
such aspeak, ridge, saddle, hill, flatand ravine [5]. Hill
pixels can be further specified as one of the labelsconvex
hill, concave hill, saddle hillor slope hill, andsaddle hills
can be further distinguished asconcave saddle hillorconvex
saddle hill, saddle asridge saddleor ravine saddle[14, 17].
Figure 2 shows the twelve types of terrain features.
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Notice that the definition of terrain feature is restricted to
the continuous3D surface. In order to apply it to the digital
image, the continuous surface function must be regressed
from the discrete3D points. We use a smoothed differentia-
tion filter based on the Chebyshev polynomials to fit a small
patch to the local surface. Then each surface point can be
classified by its gradient value and principal curvatures (de-
tails can be found in [10, 17, 18].)

Figure 2: Topographic labels: The center pixel in each ex-
ample carries the indicated label [14]. (a)peak; (b) pit; (c)
ridge; (d) ravine; (e) ridge saddle; (f) ravine saddle; (g)
convex hill; (h) concave hill; (i) convex saddle hill; (j) con-
cave saddle hill; (k) slope hill; and (l)flat.

In general, in order to reduce the noise, it is necessary
to apply a smoothing process before regressing the surface.
Figure 1 (d) shows an example of the terrain surface of an
eye region after it is smoothed by a Gaussian filter.

(a) (b)

Figure 3: (a) Results of topographic classification of a facial
image (e.g., twelve gray levels from black to white represent
the labels from (a) to (l) respectively); (b) Thepit features
in the facial region are marked by the “cross” symbols.

By applying the topographic classification technique,
each pixel in the original gray scale image is labeled by
one of the twelve terrain features. Figure 3(a) shows one
labeled face image, in which each label type is rendered by
a distinct gray level. Figure 3(b) shows the detectedpit fea-
tures (denoted by “cross” symbols) in the face region. As
we can see, thepit features are distributed very sparsely in
the facial region. Although there are only a small number of
pit features being detected, eye is the most reliable feature
which shows thepit character in the face region. In order to
extract the eye pair among the candidatepit pixels, we use

a statistical verification approach to remove the fake feature
pixels, which will be described in the next section.

3. Topographic Eye Location

Given the candidate set ofpit features, a pair of eyes can
be determined according to its local appearance in the ter-
rain map. In order to classify the candidatepit pixels, we
select a patch around each candidate pixel to analyze its ter-
rain feature distribution. Assume that the centers of the left
pupil and the right pupil are located at pointsα andβ re-
spectively, and the distance between them is measured asd.
Two rectangular patches centered atα andβ are then gener-
ated along the direction of lineαβ. Each patch has a size of
0.6d×0.3d. In order to determine the real eye location from
the candidatepit features, we use a parametric probabilistic
model to evaluate the possibility of the two points being an
eye-pair. In the terrain map domain, each pixel is quantized
to a range of1, 2...M , whereM is the number of terrain
type (i.e.,M = 12). To analyze the topographic feature dis-
tribution, we generate a terrain feature vector for each can-
didate patch, which is defined ast = {t1, t2, ...ti, ..., tN},
where1 ≤ ti ≤ M is the terrain type of each pixel andN
is the number of pixels in the patch.

Here we employ a Gaussian Mixture Model (GMM) to
describe the property of the terrain feature vector. If we
treat each terrain feature vector ofpit pixels as a sam-
ple, GMM presumes all the samples distribute in a high-
dimensional space complying with several Gaussian distri-
butions. Among all the samples for both eye candidates
and non-eye candidates, we can further categorize them into
three sub-spaces, i.e., a left eye space, a right eye space and
an non-eye space. Each of them is described by a Gaussian
distribution. Let’s define a subspaceEl for the left eye,Er

for the right eye andU for the non-eye candidates, with the
probability distribution beingNl(µl,Σl), Nr(µr,Σr) and
Nu(µu,Σu), respectively. All these three subspaces consti-
tute a sample spaceO, whose parameterized form is defined
as:

O = {µl,Σl, pl;µr,Σr, pr;µu,Σu, pu} (3)

wherepl,pr andpn are the prior probabilities,µ andΣ de-
note the mean and covariance matrix of the Gaussian distri-
butions. Given a pair of candidates,a andb, with the terrain
feature vectors beingta andtb, the posterior probability of
the candidate pair belonging to the eye spaceE = {El, Er}
is calculated as follow:

p(E|ta, tb) = p(El|ta) · p(Er|tb) + p(El|tb) · p(Er|ta)

=
p(ta|El) · pl

p(ta|O)
· p(tb|Er) · pr

p(tb|O)

+
p(ta|Er) · pr

p(ta|O)
· p(tb|El) · pl

p(tb|O)
(4)
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where the probabilityp(ta|O) andp(tb|O) are calculated
as:

p(ta|O) = p(ta|El) · pl + p(ta|Er) · pr + p(ta|U) · pu (5)

p(tb|O) = p(tb|El) · pl + p(tb|Er) · pr + p(tb|U) · pu (6)

With the estimated parametric model, the real eye-pair
can be extracted according to the maximum value of proba-
bility p(E|ta, tb).

We use a training set, including293 face images, to learn
the parameters of the probabilistic model. Among all the
candidate pixels (pit-labeled pixels), we randomly select a
pair of candidates, and generate a terrain patch for each can-
didate. After obtaining all the terrain patch vectors, we di-
vide them into three sets, i.e., two positive sets including a
group of left eyes and right eyes samples, respectively, and
a negative set including a non-eye group. Figure 4 shows
some samples of the positive set and the negative set used
for training.

(c) (d)

(a) (b)

Figure 4: (a) The samples used as a positive training set,
whose corresponding terrain patches are shown in (c); (b)
The non-eye samples used as a negative training set, whose
corresponding terrain patches are shown in (d).

From the training set, the parameters in formula 3 can be
estimated. By using such a probability model, we are able to
extract the eye-pair with a maximum probability value cal-
culated by Equation 4. Note that during the classification
of all candidate pixels, searching all possible pairs of can-
didates is a time-consuming process. In order to reduce the
search space, we discard the pairs of candidates which have
unreasonable distances between them (e.g., the distance of
a pair of candidates is beyond the range of a normal eye-pair

distance with respect to the given image size, or the orienta-
tion of the eye-pair is near the vertical direction.) As such,
only a small number of pairs of candidates need be exam-
ined, and thus the computation load can be greatly reduced.
Figure 5 shows four examples from the first frames of four
videos, where the eyes of four subjects are detected cor-
rectly from a few of candidate pixels. The topographic eye
location approach has some ceartain robustness to uncon-
strained background. Moreover it can be extended to solve
multiple-face cases, which is verified by the experiments in
our previous work [16].

Figure 5: Examples of eye detection: “cross” symbols in the
face regions mark the candidate locations; “circle + cross”
symbols mark the detected eyes.

4. MI-Based Eye Tracking
After locating the eye position in the initial frame, the eye
motion can be tracked in the subsequent frames. It seems
that the GMM based model could be used to find the eye
location in each frame. However, due to the training set
only includes frontal facial images, it is not feasible to track
eyes under various poses. We seek to explore the mutual
information (MI) between neighbor frames to achieve a fast
and robust tracking. Our experiments show that it is more
reliable to use the eye patch detected in the previous frame
as a dynamic template to estimate the eye location in the
current frame.

Given the eye locationsα andβ of theith frame, the eye
positionsα′ andβ′ in the jth frame can be found through
matching the terrain surface of patches. Figure 6(a-b) illus-
trates two sample frames, indexed asi andj, where thejth
frame is several frames after theith frame. Figure 6(c-d)
shows two smoothed terrain surfaces of the left eye, which
correspond to the image patches in (a) and (b), respectively.
As shown in this figure, the two surfaces exhibit the similar
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terrain patterns, while the intensities of the corresponding
image patches distribute in different ranges: one in0−180,
the other in0− 200.

The similarity of the two patterns can be measured in a
3D surface domain or a intensity image domain. However,
in order to find a match efficiently, we use the mutual infor-
mation to measure the similarity of two terrain patches in a
terrain map space.
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Figure 6: Framei (a) and framej (b) show the centers of
pupils, denoted by (α, β) and (α′, β′), respectively. (c-d):
The terrain surfaces of the left eye patch in framei and
framej.

Assume that two patches are centered atα andα′ and the
corresponding terrain feature vectors aretα andtα′ , which
are represented by the random variables asX andY , the
mutual information between the two variables is calculated
as:

I(X, Y ) =
X
X

X
Y

PXY (tα, tα′) log
PXY (tα, tα′)

PX(tα) · PY (tα′)
(7)

In order to calculate the mutual information, we must es-
timate the marginal and jointp.d.f. of the random variables
X andY (where1 ≤ X, Y ≤ 12). Because there are only
12 kinds of terrain labels rather than 256 levels in the inten-
sity domain, it is fairly easy and fast to estimate the discrete
p.d.f.s PX ,PY andPXY , which correspond to the normal-
ized1D and2D histograms of the terrain map.

As described in Section 3, the appearance based terrain
features can be represented by a terrain map. Figure 7(a-
b) illustrates the terrain maps of two patches corresponding
to the two surfaces in Figure 6(c-d). The terrain patch is
marked out by a rectangle along the direction of the detected
eye-pair in theith frame. Letpi = α denote the determined
eye location in theith frame and the variablêp ∈ P rep-
resent the current searching position in the(i + 1)th frame,

whereP defines a search area. Then the mutual information
can be defined as a function of the variablep̂, as shown in
the following formula:

I(X, Y ) = g(p̂) = g(p̂x, p̂y) (8)

wherep̂ = (p̂x, p̂y) is a 2D coordinate of the patch center
in the i + 1 frame. The functiong(p̂) does not have the
explicit form, but it can be computed with the sampledp̂.
Figure 7 (c) plots the MI values within a patch. From the
theory of sparse structuring of statistical dependency [13],
the variable of terrain features has strong statistical depen-
dency with a small number of other variables and negligible
dependency with the reaming ones. The exactly geometrical
alignment of two patches demonstrates the property. As we
know, the statistical dependency can be empirically evalu-
ated by mutual information (MI). If we take the position of
a terrain patch as a variable, the estimated MI value varies
along with this variable. As illustrated in Figure 7, when
the rectangular terrain map in (a) matches the region of (b)
centered atα′, the MI function outputs a maximum value
Imax. The statistical dependency described by MI can be
visualized in (c) and (d). The brightest spot shows the posi-
tion with strongest statistical dependency between the two
patches while the dark or shaded areas indicate different de-
grees of patch independency.

α
α

α’

(a) (b)

(c) (d)

Figure 7: (a-b) The terrain maps of the framesi and j,
where rectangles denotes the eye regions; (c) MI calculated
on thejth frame as a function of the patch position. (d) The
statistical dependency measured by the empirical mutual in-
formation of thejth frame. The white spot corresponds to
the peak position of (c).

To this end, we formulate the fitting function for patch
matching in the(i+1)th frame, given the eye locationpi in
theith frame:
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f(pi, p̂) = g(p̂) + λ · e− ‖pi−p̂‖
η (9)

The fitting functionf(·) is composed of two parts: the
mutual informationg(·) for measuring the statistical inde-
pendency and the distance penalty term for guaranteeing the
continuity of tracking and preventing the terrain match from
distracting by other similar regions (e.g., eyebrows). The
parametersλ andη are used to balance the weights of the
two parts. The updated eye locations of the(i + 1)th frame
is obtained by maximizing the fitting function:

pi+1 = arg max
p̂∈P

f(pi, p̂) (10)

It is conceivable that the computation cost is fairly ex-
pensive if the fitting function is optimized through travers-
ing all the pixels in the search area. Fortunately, our target
location (i.e, center of eye or pupil) shows, in most cases,
the stablepit feature, which makes the maximum fitting
value appear at such apit feature location reliably. There-
fore, the eye location can be estimated quickly by searching
the best fitted patch in a very fewpit locations.

When eyes are completely closed or the head rotation is
in a large degree which makes pupils almost invisible, the
fitting function outputs a small value, which signifies the
loss of tracking. In this case, an approximate eye location
must be estimated by finding the maximum fitting function
value through all the pixels in the search area. Note that the
distance penalty term can prevent the tracking point from
jumping far into the other non-eyepit locations, such as eye-
brows. This function maintains the smooth tracking of eyes.
The whole automatic eye tracking algorithm is summarized
as follows:

1. Derive the terrain map of the first frame using
topographic classification technique and set thepit
pixels as eye candidates;

2. Localize the eye-pair positions in the first
frame through the GMM probability maximization as
shown in Eq. 4;
3. Given eye locations of theith frame aspi and
the terrain featureti, determine a search areaP with
sizeK ×K and centerpi in the(i + 1)th frame for
searching the current eye locationpi+1;
4. Calculate the terrain map of the selected search
areaP and detect thepit pixels. Compute the fitting
function at eachpit pixel location and get the maxi-
mum value.
5. If there is nopit pixel in the patch or the max-
imum fitting value computed in (4) is less than the
predefined thresholdθ, maximize the fitting function
by computingf(pi, p̂) for each pixel̂p ∈ P;
6. Update the current eye locations and eye terrain
feature as:i+1 −→ i, pi+1 −→ pi, ti+1 −→ ti. Go
to step 3 for the next frame tracking;

Note that unlike the computation in the eye detection
stage, eye tracking stage only computes the terrain map in a
small search area around the eye rather than the whole face
region, it greatly reduces the computation time.

5. Experiments
The proposed eye detection and tracking algorithms are
evaluated through the real time video sequences. We used
normal webcam to capture the video (i.e., CREATIVE
LABS webcam NX Ultra with frame resolution of640 ×
480.) The first frame is used for detecting eyes by our
topographic-based eye detection algorithm. The whole pro-
cedure runs fully automatically.

The performance of the initial eye localization is affected
by two factors: the candidate detection and the estimation
of eye pairs from the candidates. The result of candidate de-
tection relies on the parameter selection of smoothing filter
and differentiation filter, especially the scale of the filters.
In order to reduce noises as well as maintain facial image
details, we set the consistent parameters for the following
operations, both for the training images and for the testing
videos.

• The Gaussian filter for smoothing has the size15× 15
andσ = 2.5;

• The discrete Chebyshev polynomial based differential
filter has the kernel with a size of5× 5;

• The width and height of eye window is0.6d and0.3d
(d is the distance of a pair of eyes).

• The search area for tracking is(0.6d+15)×(0.3d+15)
pixels.

• For the fitting function, the coefficientλ is 0.4, and the
value ofη is set as the distance of the tracked eye pair
in the previous frame. The thresholdθ is set as0.65.

Our eye detector is tested on a static image database
(i.e., Japanese Female Facial Expression (JAFFE) database
[8]). The JAFFE images of each subject show seven univer-
sal facial expressions. Figure 8 demonstrates some sample
results from our eye detector. Among 213 facial images,
204 of them are correctly detected. The algorithm achieves
95.8% correct detection rate. As an initialization stage, we
apply the eye detector to ten test videos, which are captured
in our lab environment with a complex background. Exper-
iments show that our eye detector localized eyes of the first
frames of all the videos correctly. Figure 5 demonstrates
some sample frames.

We test our tracking algorithm in two scenarios using
both a fixed webcam and a movable webcam. In each sce-
nario, the eye appearance of a subject is changed along
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Figure 8: Examples of eye detection on the JAFFE database
[8].

with the aspects of facial scales (e.g., moving forward and
backward), facial poses (e.g., rotating head), gaze direc-
tions (e.g., rotating eye-balls), eye status (e.g., blinking,
opening/closing eyelids by expressions), illuminations (e.g.,
changing lighting orientations and intensities) and partial
face occlusions (e.g., wearing eye glasses or hiding non-eye
areas). Figure 9 shows one example sequence which was
captured by a fixed webcam. Figure 10 illustrates the sam-
ple frames from a video clip captured by an active webcam,
which performed panning, tilting and rolling operations.
The experiment shows that our eye detection and tracking
algorithms perform well under various imaging conditions
(The video clips can be found in author’s website.)

Our eye tracking algorithm runs18 frames per second
on the PC with a single CPU (P4-3.4GHz.) We tested on
10 videos performed by 5 different subjects under vary-
ing imaging conditions (e.g., dynamic change of lighting,
moving of camera, etc.) Each video has 400 - 600 frames.
Experiments show that most of the time (98% of frames)
the system outputs the correct tracking result (i.e., locating
pupil positions precisely.) Our system fails to track eyes if
the following cases occur: (1) the head rotation is beyond a
certain range to make the eye invisible; (2) the eye is com-
pletely closed; (3) the subject is far from the camera, so the
size of eye appeared in the image is too small. In the situa-
tion of missing track, we use the previous frame to find the
eye location by re-initializing the system or wait until the
normal case is restored.

As compared to the conventional eye tracking ap-
proaches, our approach is advantageous in that (1) no spe-
cial hardware (e.g., IR devices) is employed; (2) no face
tracker is required, which alleviates the potential instability
of the system; (3) The use of the topographic terrain map
makes the MI calculation very fast because the iteration is

Figure 9: (A) Sample frames of detected and tracked eyes
from a video sequence captured by a static web-cam. From
top-left to bottom-right: frame 1, 31, 54, 68, 125, 192, 203,
292 and 404.

based only on the range of12 in the terrain domain rather
than the range of256 in the intensity domain.

6. Conclusions and Discussions
In this paper, we proposed a system for eye detection and
tracking through matching the terrain features. Our sys-
tem works automatically using an ordinary webcam without
special hardwares. The major contribution of this work lies
in the proposed unique approach for topographic eye feature
representation, by which both eye detection and eye track-
ing algorithms can employ the probabilistic measurement
of eye appearance in the the terrain map domain rather than
the intensity image domain. In addition, we defined a fitting
function based on the mutual information to describe the
similarity between terrain surfaces of two eye patches. With
fairly small number of terrain types, thep.d.f. of marginal
and joint distributions can be easily estimated, and eventu-
ally, the eye location is determined by optimizing the fitting
function efficiently and robustly.

Unlike some other approaches [9] which require to esti-
mate the face region as a first pre-processing step, our al-
gorithm can detect eyes directly from images with complex
background. Since the maximum fitting value usually ap-
pears on thepit feature pixels, the matching process can be
only performed on several candidatepit locations in the ter-
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Figure 10: (B) Sample frames of detected and tracked eyes
from a video sequence captured by an active web-cam.
From top-left to bottom-right: frame 1, 73, 145, 250, 360,
425, 490, 515 and 540.

rain map. This saves us from ransacking all the pixels in
the search area. The experiments show that our system can
track eyes precisely in most of the time (98% of frames)
using both static and active cameras under various imag-
ing conditions and with different facial appearances. In the
case of failure (e.g., large head rotation, eye invisible or eye
close), we take the measure by re-initializing eye locations
using the previous frame, or waiting until the normal case is
restored by monitoring the fitting function values.

Note that our topographic-based appearance model can
alleviate the influence of various imaging conditions. How-
ever, the image smoothing process and the surface patch fit-
ting process are all dependent on the facial scale in the im-
age. Our future work is to include a wide variety of training
samples with multi-scale facial images and various light-
ing conditions to improve the robustness of eye detection
and eye tracking. We will also extend the work to further
analyze the facial pose information, as well as extend to de-
tect precise eye information, such as gaze. Currently, our
method achieves the tracking speed of18 frames per sec-
ond. Generating terrain map costs the most computation
time, however, the nature of the parallel calculation of the
terrain feature allows us to use dual CPUs to make multiples
face tracking simultaneously in the future.
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