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Abstract

The ability to distinguish different people by using 3D facial
information is an active research problem being undertaken
by the face recognition community. In this paper, we pro-
pose to use a generic model to label the 3D facial features.
This approach relies on our realistic face modeling tech-
nique, by which the individual face model is created using
a generic model and two views of a face. In the individu-
alized model, we label the face features by their maximum
and minimum curvatures. Among the labeled features, the
“good features” are selected by using a Genetic Algorithm
based approach. The feature space is then formed by using
these new 3D shape descriptors, and each individual face is
classified according to its feature space correlation. We ap-
plied 72 individual models for the test. The experimental re-
sults show that the shape information obtained from the 3D
individualized model can be used to classify and identify in-
dividual facial surfaces. The rank-four correct recognition
rate is about 92%. The 3D individualized model provides
consistent and sufficient details to represent individual faces
while using a much more simplified representation than the
range data models. This work provides the possibility to re-
duce the complexity of 3D data processing, and is feasible
for real applications such as in a non-cooperative imaging
circumstance or in the situation when range data using 3D
scanners are not possible to acquire.

1. Introduction
3D face recognition has attracted much attention in recent
years [4, 6-12, 18, 21]. It seems to be superior to 2D face
recognition due to its less affection by imaging conditions
and facial pose variations [1, 3]. Currently, most research
for exploring 3D face information focuses on the investi-
gation of 3D range data obtained by 3D digitizers due to
the difficulty of 3D reconstruction from 2D images [7, 21,
2, 9]. Despite its high fidelity representation of faces, 3D
range data is not feasible for many application scenarios.
Firstly, an ideal environment with the cooperation of sub-
jects is needed to capture 3D information using a 3D scan-
ner. Secondly, the range data obtained is usually in a raw

format, and different persons’ faces may have a different
number of vertices. It is hard to compare from face to face
without building consistent correspondences between two
subjects. Therefore, further processing is needed in order to
extract the feature regions and segment the facial surface.
Finally, although the high-resolution range data provides a
realistic appearance that is good for perception and anima-
tion in the entertainment industry, it contains redundant in-
formation, which may be unnecessary or could make the
face shape comparison noise sensitive.

In order to reduce the complexity of data processing
and to provide the model correspondence easily, a template
model could be used for fitting a generic model to the face
image [15, 16]. Currently, there are some successful sys-
tems that utilize 3D wire-frame models to represent the face
shape for recognition. However, the accuracy of 3D feature
representation is still limited by the selected simple mod-
els in which only a small number of vertices are presented.
Thus it is hard to label the face surface and characterize its
property precisely.

In this paper, we present a more accurate face representa-
tion method using a generic model with about 3000 vertices.
The utilization of the face model with certain accuracy can
help us to describe the face surface more precisely. We label
the face surface by its principal curvatures based on the gen-
erated individual facial model. Since every individualized
model has the same number of vertices, the correspondence
between different individual models is inherently kept. And
thus, the 3D shape comparison can be carried out easily.

Figure 1 shows the general framework of our proposed
system. In this system, a 3D face model database is firstly
created based on two views of face images of each sub-
ject and a generic face model. Then we implement a cu-
bic approximation method on each 3D individualized model
to analyze the principal curvatures (i.e., the maximum and
minimum curvatures at each vertex’s location). After label-
ing the facial surface by using 8 categories of surface types
(e.g., concave, convex, saddle, etc.), we are able to segment
different regions and extract the 3D shape descriptors us-
ing their surface features. These 3D shape descriptors are
the simplified representation of each facial instance, which
preserve the surface varieties of different faces. Among the



Figure 1: Framework of proposed 3D face labeling and recognition system (images in the left are provided by FERET[14])

3D descriptors, only the partial features (“good features”)
are selected. We apply a feature selection procedure based
on the Genetic Algorithm to form a feature vector that is
composed of the selected “good features”. As a result, the
dimension of the 3D descriptors is greatly reduced. Finally,
the composed new feature vectors are used for a similarity
measurement to classify individual facial models based on
their feature space correlations.

The paper is organized as follows: the 3D face model
database creation using our existing face modeling tool is
introduced in Section 2. The algorithms for face model la-
beling and the good feature selection are described in Sec-
tion 3 and Section 4, respectively. Section 5 explains the
similarity measurement using the feature space correlation,
followed by the experiments and performance analysis in
Section 6. Finally, the concluding remarks are given in Sec-
tion 7.

2. 3D facial model database creation

Based on our existing work [13], we created a 3D facial
model database by modifying a generic facial model to cus-
tomize the individual person’s face, given two views of im-
ages, i.e., a front view and a side view of the face. This ap-
proach is based on recovering the structure of selected fea-
ture points in the face and then adjusting a generic model
using these control points to obtain the individualized 3D
head model. The algorithm is implemented by three ma-
jor components. First of all, a set of fiducial points are ex-
tracted from a frontal view and a side view of face images
using a maximum curvature tracing algorithm. Then, the
generic face model is adjusted to fit the face images in two
views separately. The model fitting process is based on the
dynamic interpolation approach using the extracted fiducial
points. Finally, the two view’s models are combined to-
gether to generate the individualized 3D facial model. The
blended textures from the two views are synthesized and
mapped onto the instantiated model to generate the face
images in arbitrary views. Our generic wire-frame facial
model consists of 2953 vertices, which represent the face

surface with sufficient accuracy. This model instantiation
approach is simple and efficient. The created model is accu-
rate enough to characterize features of the individual face.
Our 3D face model database is generated using 105 pairs
of face images from 40 subjects. These source image pairs
are mainly chosen from the database of FERET [14] and
XM2VTS [22], and some additional images are captured by
our research group. For each subject, there are two or three
pairs of frontal and profile images, which were taken under
different imaging conditions (e.g., different poses, lighting,
hair style and facial appearances at different time periods).
We created two or three instance models for each subject,
and in total there consists of 105 individual instance mod-
els in our database. Figure 2 shows three examples of the
generated models in the database.

3. 3D facial model labeling

In order to better characterize 3D features of the facial sur-
face, each vertex on the individual model is labeled by one
of the label types (i.e., convex peak, convex cylinder/cone,
convex saddle, minimal surface, concave saddle, concave
cylinder/cone, concave pit and planar). Therefore, the fa-
cial model is represented by a set of labels. Our labeling
approach is based on the estimation of principal curvatures
of the facial surface. Curvature has desirable computational
and perceptual characteristics [2, 5], which is independent
of rigid transformation. It is believed that the curvature in-
formation is a good reflection of local shapes of the facial
surface.

Given a face mesh model of vertices and polygons ap-
proximating the facial smooth surface, we need to calculate
accurate estimates of the principal curvatures and their di-
rections at points on the facial surface. There are a num-
ber of methods for estimating the principal curvatures and
principal directions of the underlying surface, including the
normal curvature approximation, quadratic surface approx-
imation, cubic approximation and the higher order meth-
ods [17]. Since the estimation is performed on the sparse
mesh model rather than the dense range data model, the mi-
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Figure 2: Example of 3D model database created from the frontal and profile views of each subject. Row 1 to Row 3 show
three subjects, each subject has two instance models.

nor normal curvature approximation errors could be mag-
nified into large errors in the estimated principal directions.
Therefore we need to choose a high order approximation
method. Considering the trade-off between the estimation
accuracy and the computation complexity, we adopt the cu-
bic approximation approach to calculate the principal cur-
vatures and their directions on each vertex of the 3D model.
The calculation is briefly described as follows: Let p denote
a point on a surface S, Npdenote the unit normal to S at
point p, and X(u, v) be a local parameterization of S at p.
Using Xu(p), Xv(p) and Np as a local coordinate system,
we can obtain the principal curvatures and the principal di-
rections by computing the eigenvalues and eigenvectors of
the Weingarten curvature matrix:

W =

(
eG−fF
EG−F 2

fE−eF
EG−F 2

fG−gF
EG−F 2

gE−fF
EG−F 2

)
(1)

Where
e = Np · Xuu(p) E = Xu(p) · Xu(p)
f = NP · Xuv(p) F = Xu(p) · Xv(p)
g = Np · Xvv(p) G = Xv(p) · Xv(p)

The eigenvalues λ1and λ2 of the matrix W are the max-
imum and minimum principal curvatures of the surface S at
point p. The eigenvectors v1 and v2, which are represented
in a global coordinate system, are the corresponding max-
imum and minimum principal directions. In order to esti-
mate the Weingarten curvature matrix accurately, we apply
the cubic approximation approach to fit a local cubic sur-
face onto the face model surface centered on each vertex.
To do so, we firstly transform the adjacent vertices of p to a
local system with the origin at p and with the positive z axis
along the estimated normal Np. Based on the cubic surface
equation, we can derive its surface normal and establish two

equations for each normal. Then a linear regression method
can be applied to solve the equation groups [17], and the
elements of the Weingarten matrix can be determined (see
detail in [17]). Figure 3 shows one example of the obtained
maximum and minimum principal directions for the vertices
of the generic face model.

Figure 3: Principal directions for the vertices of a generic
3D model. Left: the minimum principal directions; Right:
the maximum principal directions.

After estimating the principal curvatures and the direc-
tions of each vertex, we can further categorize each vertex
into one of the eight distinct label types. The labels are clas-
sified according to the relation of the principal curvatures,
which are expounded in Table 1.

Since every vertex is represented by a surface label, each
labeled vertex provides a feature component in the facial
feature space. The reason that we use the surface labeling
to represent the local shape on each vertex is that the sur-
face type determined by the curvatures is stable to the loca-
tion of each vertex and is relatively insensitive to the small
shape distortion when compared to the other feature repre-
sentations, such as the vertex’s coordinates, curvature value
itself and other geometric measurements (e.g., distance, an-



(1) Convex peak λ1 <0 λ2 <0
(2) Convex Cylinder λ1=0 λ2 <0
(3) Convex Saddle λ1 >0 λ2 <0 |λ1| <

|λ2|
(4) Minimal Surface |λ1| = |λ2|
(5) Concave Saddle λ1 >0 λ2 <0 |λ1| >

|λ2|
(6) Concave Cylinder λ2=0 λ1 <0
(7) Concave Pit λ1 >0 λ2 >0
(8) Planar λ1=0 λ2=0

Table 1: Eight kinds of facial surface labels classified by
their principal curvatures.

(a)

(b)

Figure 4: Histograms of the vertex label types in regions of
(a) eyeballs and (b) eye-lids of nine subjects. (Eight label
types 1-8 are defined in the Table 1).

gle, etc.) So, once the reconstruction from two orthogonal
views of images to the 3D individualized model is accurate
enough to preserve the curvature types of the vertices, it
will not influence the classification result. The usage of sur-
face labeling can help improve the robustness to the facial
expression variation. We will illustrate this property in the
section 6.

Figure 5(a) shows the result of surface labeling on the
generic model using the cubic approximation method. Four
label types (i.e., convex (peak), convex saddle, concave (pit)
and concave saddle) are dominant on this model as a whole.
In order to understand the label distribution on different re-
gions of a face, we conduct histogram statistics on the dif-
ferent regions of the individual models. The statistical re-
sults show that different facial regions of the same subject
have different distributions of the label types. Furthermore,
the label distributions of the same facial region for different
subjects are also clearly distinguishable. As an example,
Figure 4 illustrates the label histograms of nine subjects’ fa-
cial models on two selected regions (i.e., eyeballs and eye-
lids). As seen from (a) and (b), the label histograms in the
same region are different from one person to another among
the nine subjects, e.g., the dominant label in the region of
eye-lids is the convex saddle for Subject 9, while it is the
concave saddle for Subject 6. The label histograms are also
different from region to region in the same subject’s model,
as compared between region (a) eyeballs and (b) eye-lids.

4. Good feature selection using a GA-
based approach

After the stage of facial model labeling, each individual face
model is represented by a set of labels (i.e., 2953 labeled
vertices in each model). Among the set of labels, only the
labels located in certain regions are of our most interest.
Some non-feature labels could be noises that could blur the
individual facial characteristics. Therefore, we need to ap-
ply a feature screening process to select features in order
to better represent the individual facial traits for maximiz-
ing the difference between different subjects while mini-
mizing the size of the feature space. We refer to the se-
lected features as the “good features”. In order to select
the good features, we partition the face model into 15 sub-
regions based on their physical structures(there are overlaps
between some of the regions), which is similar to the region
components used in [6], as expounded in Table 2 and Figure
5(b). These sub-regions represent the anatomic structure of
the human face. However, they are not equally robust for
characterizing the traits of each individual subject. For ex-
ample, some regions are sensitive to local expression varia-
tion, and they may not be the good features for discriminat-
ing different faces.

Since not all the sub-regions contribute to the recogni-



R0 Eye
brows

R5 Upper eye lid of the
left eye

R10 Lower eye lids
(R6+R8)

R1 Eye
balls

R6 Lower eye lid of the
left eye

R11 Eye lids (R9 + R10)

R2 Lip R7 Upper eye lid of the
right eye

R12 Frontal head contour

R3 Nose R8 Lower eye lid of the
right eye

R13 Central facial profile

R4 Mouth R9 Upper eye lids
(R5+R7)

R14 Chin contour

Table 2: Selected 15 sub-regions (R0 - R14) for feature ex-
traction.

(a) (b)

Figure 5: (a) 3D model labeling using eight label types
based on the principal curvatures. Each dot corresponds to
one vertex, which is labeled by one color. (b) Sub-regions
defined on the generic facial model.

tion task, and not all the vertices within one sub-region con-
tribute to the classification, we need to select (1) the best
set of vertex labels within each sub-region, and (2) the best
set of sub-regions. The purpose of the feature selection is
to remove the irrelevant or redundant features which may
degrade the performance of face classification. Since it is
a difficult task to examine all possible combinations of fea-
ture sets, an efficient strategy for optimal feature selection
is highly necessary. The genetic algorithms (GA) have been
used successfully to address this type of problem [24]. So
we choose to use a GA-based method to select the compo-
nents that contribute the most to our face recognition task.
GA provides a learning method analogous to biological evo-
lution. It is an evolutionary optimization approach which is
an alternative to traditional optimization methods. GA is
most appropriate for complex non-linear models in order
to find the location of the global optimum [19]. The so-
lution of GA is identified by a fitness function where the
local optima are not distinguished from other equally fit in-
dividuals. Those solutions closer to the global optimum will
have higher fitness values, and the outcomes will tend to get
closer to the global optimum. Here, we chose to use the
Equal Error Rate (EER) as the fitness function. For each
sub-region, we obtained an EER when we performed the
face similarity measurement based on the sub-region only,

given the training set of the 3D face model database. The
similarity measurement is based on the feature space’s cor-
relation, which will be introduced in the next section. The
procedure for the feature selection consists of two parts: (1)
initialization for vertices selection in each sub-region and
(2) the integration sub-regions.

1. Vertices selection for each sub-region

The GA-based initialization is described by the follow-
ing pseudo-procedure:

Let the EER denote as a fitness function,
Compute the fitness function for each chromosome
and rank them.
Feature space = the chromosome with the highest rank
fitness value.
For each chromosome left in the current sub-region:
Do add it in the feature space, and
Compute the EER of the feature space
If EER has decreased
Remove the added chromosome
Keep the final regional feature space as the optimal
feature space of the current sub-region.

(a)

(b)

Figure 6: (a) EERs for 15 sub-regions which are sorted in
a non-decreasing order; (b) The optimized feature space
(marked with red color) after performing the GA-based
method on the training set.

2. The integration of sub-regions



Following the previous step, all the sub-regions have
been reduced to the regional feature spaces. At this point,
we may use the EER to determine which regional feature
spaces should be selected as our final feature spaces. Here
we choose those regional feature spaces that have a high-
ranking fitness value (EER) as the final feature space. Fig-
ure 6(a) shows the EER for each sub-region after the ver-
tices are selected from the training set. Figure 6(b) depicts
the selected sub-regions on the face model. Note that in
this training stage, the EER values are obtained by testing
on the training set, which contains 33 face models from 15
subjects.

We set the threshold at the EER value of 0.15 (i.e., the
first 8 ranks) based on the mean of the fitness values. As
a result, the first 8 sub-regions are selected, which are sub-
regions 0, 3, 8, 10, 11, 12, 13 and 14 as shown in Figure
6(a) and (b). The numbers of vertices selected from the sub-
regions are: 15 vertices for R0; 45 for R3; 11 for R8; 13 for
R10; 23 for R11; 42 for R12; 15 for R13 and 21 for R14.
Since there are overlaps for different regions, the optimized
feature space contains 137 vertices. Although using a sub-
region, R14 for instance, may achieve a lower EER rate,
we think it contains too small number of vertices that are
relatively sensitive to the selection of training data set and
sensitive to the noise. Note that the optimized feature space
represents the individual facial traits. Because the majority
of these features are located in the “static” facial regions,
the feature space is less influenced by the facial skin defor-
mation caused by facial expressions.

5. Face model matching based on fea-
ture space correlation

After selecting the optimal features in the previous training
stage, the components (i.e., vertex labels) in the final feature
space form a feature vector for each individual facial model.
The similarity of two individual facial models can be mea-
sured by the similarity of their feature vectors. The Euclid-
ean distance and cross-product of two vectors could be the
direct solutions to calculate the similarity score. However,
by considering the statistical property of feature label space,
we chose to use the correlation [23] to measure the sim-
ilarity of two feature vectors. The usage of correlation-
based similarity measurement is based on the observation
that the facial surface primitive labels are highly correlated
across the instances of the same individual. The compu-
tation of feature correlations can be described as follows:
given two feature vectors X and Y from two individual mod-
els, X = {x1, x2, ..., xm} and Y = {y1, y2, ..., ym}, where
m is the number of vertices in the feature space. Each com-
ponent of X and Y corresponds to each vertex individually,
and each component is represented by one of the eight label
types (denoted from 1 to 8). The correlation coefficient ρis

calculated by

ρ(X, Y ) =

m∑
i=1

(xi − x)(yi − y)√
(

m∑
i=1

(xi − x)2) · (
m∑

i=1

(yi − y)2)

(2)

The high correlation coefficient of two feature vectors in-
dicates the high similarity of two individual models. As a
result, the individual models can be simply classified ac-
cording to their correlation values.

6. Experiments and analysis
In our 3D face model database, there are 40 subjects with
total 105 instance models (note that each subject has two or
three generated instance models depending on two or three
pairs of instance images available.) We chose 33 generated
instance models from 15 subjects as a training set, and 72
generated models from 25 subjects as a test set. As de-
scribed in Section 4, after the training stage, 137 feature
vertices are finally included in the optimal feature space.

(a)

(b)

Figure 7: (a) ROC curve (marked with FAR, FRR, and
EER) and (b) Accumulative score vs. rank



The performance of the 3D facial model classification is
illustrated by a ROC curve, which is obtained by conduct-
ing the classification on the test set (72 instance models).
As shown in Figure 7(a), the EER is 9%. Figure 7(b) shows
the correct recognition rates using the score vs. rank curve.
Our system can achieve a 92% correct recognition rate if
the first four candidates (rank=4) are selected. In order to
investigate how critical the facial expression could affect
the feature space and how well our feature labels could rep-
resent the individual characteristics, we compared both the
labeled models from different subjects and the models from
different expressions of the same subject. Among our test
set, the feature space difference between expression mod-
els of the same subject is much smaller than the difference
between the different subjects. Figure 8 shows one exam-
ple with two different subjects (i.e., one subject has one in-
stance model (a) and the other has two instance models (b-c)
with two different expressions). As seen in the nose region
(marked with a black box), the distribution of feature labels
has a distinct pattern in (a) as compared to the patterns in (b)
and (c). The label compositions of (b) and (c) are very sim-
ilar although the nose shape has been changed because of
the smiling expression. This suggests that without large ex-
pressional variations, the similarity between models of the
same subject (intra-class) is higher than the similarity be-
tween models of different subjects (intra-class). The reason
for that lies in (1) the surface labeling at each vertex location
is stable to the surface change if the expression is performed
in a non-exaggerate fashion and (2) the set of good features
selected by our system are less affected by the expression
change.

7. Conclusions and future work

We proposed a system for recognizing human faces based
on the 3D model labeling technique. The generated 3D fa-
cial models derived from two facial views and the label-
based feature space have shown to perform well for charac-
terizing the individuals’ 3D features. The system achieved
a 92% correct recognition rate at the fourth rank and 9%
equal error rate when 72 models were tested. The proposed
work has certain existing implications and practices: (1) im-
age pairs (frontal and profile views) are the most commonly
used data source for personal records, which are available
from existing police and federal government databases. (2)
The setup of two surveillance video cameras (front and pro-
file) to simultaneously capture two views of a face is fea-
sible in many public sites, such as security entrances and
check-in points in airports and federal government build-
ings, where each individual must pass through a security
gate or check point one-by-one. The performance of our
system relies on the quality of the reconstructed 3D mod-
els. Low quality of input images will degrade the accuracy

(a)

(b)

(c)

Figure 8: Example of two subjects with three instance mod-
els: In order to better show the label distribution, we render
the labels on both vertices and polygons by using linear in-
terpolations. So the labeled models are displayed in a con-
tinuous fashion. The black box delineates the nose feature
region.

of the individual model representation, and may increase
the rate of misclassification. Our future work is to design
a better feature selection algorithm, by incorporating mul-
tiple feature descriptors combined with normal maps, cur-
vature maps, and label maps together and by using a multi-
classifier strategy [20] to enhance the system performance.

Currently, our 3D face model database contains 105 face
models. Our future work is to expand the existing database
to a large scale and to conduct the intensive test for the data
obtained under variable imaging conditions (e.g., various
face sizes, variable lighting conditions and poses, etc.). We
plan to compare our system with range data based systems
(e.g., the reports in FRGC[25]) for performance improve-
ment in the future.
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