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Abstract

Facial expression plays a key role in non-verbal face-to-face communication. It is a challenging task to develop an automatic facial
expression reading and understanding system, especially, for recognizing the facial expression from a static image without any prior
knowledge of the test subject. In this paper, we present a topographic modeling approach to recognize and analyze facial expression from
single static images. The so-called topographic modeling is developed based on a novel facial expression descriptor, Topographic Context
(TC), for representing and recognizing facial expressions. This proposed approach applies topographic analysis that treats the image as a
3D surface and labels each pixel by its terrain features. Topographic context captures the distribution of terrain labels in the expressive
regions of a face. It characterizes the distinct facial expression while conserving abundant expression information and disregarding most
individual characteristics. Experiments on person-dependent and person-independent facial expression recognition using two public dat-
abases (MMI and Cohn–Kanade database) show that TC is a good feature representation for recognizing basic prototypic expressions.
Furthermore, we conduct the separability analysis of TC-based features by both a visualized dimensionality reduction example and a
theoretical estimation using certain separability criterion. For an in-depth understanding of the recognition property of different expres-
sions, the between-expression discriminability is also quantitatively evaluated using the separability criterion. Finally, we investigated the
robustness of the extracted TC-based expression features in two aspects: the robustness to the distortion of detected face region and the
robustness to different intensities of facial expressions. The experimental results show that our system achieved the best correct rate at
82.61% for the person-independent facial expression recognition.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Facial expression recognition and emotion analysis
could help humanize computers and robots. Due to the
wide range of applications in human–computer interaction,
telecommunication, law enforcement and psychological
research, facial expression analysis has become an active
research area. Generally, an automatic facial expression
reader consists of three major components: face detection,
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facial expression representation and facial expression clas-
sification [1,2]. Although the face detection component is a
crucial part towards realizing an automatic expression rec-
ognition system, most research currently concentrates on
how to achieve a better facial expression representation
and feature extraction.

Facial expression representation concerns itself with the
problem of facial feature extraction for modeling the
expression variations with a certain accuracy and robust-
ness. The Facial Action Coding System (FACS) [3,4], a
psychological finding made over 25 years ago, is a typical
example for representing and understanding human facial
expressions. In order to read facial expressions correctly,
hic modeling for facial expression recognition ..., Comput. Vis.
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the action units have to be detected accurately and auto-
matically. Based on the FACS, a number of systems were
successfully developed for facial expression analysis and
recognition [4,5,6]. Other systems have exploited the opti-
cal flow analysis to estimate the facial feature motions
[7,8,9]. In addition, several other approaches are reported
in recent literatures, such as Manifold-based analysis for
blended expressions [10], Gabor-wavelet-labeled elastic
graph matching for expression recognition [11], feature
selection using the AdaBoost algorithm with classification
by support vector machine [12], and learning Bayesian net-
work for classification [13,14,15], etc. Impressive results
were reported, however most representations of facial
expressions are in a transformed domain with an implicit
format. We believe that good features for representing
facial expression could alleviate the complexity of the clas-
sification algorithm design. The facial expression descriptor
should have the ability to decrease the significance of vari-
ations in age, gender and race when presenting the same
prototypic expressions. In other words, it should work in
a person-independent fashion.

Ideally, the facial expression can be modeled as a 3D face
surface deformation actuated by the movement of the facial
muscles. The intensity variations on a face image is caused by
the face surface orientation and its reflectance. The resultant
texture appearance provides an important visual cue to clas-
sify a variety of facial expressions [16]. Avoiding the ill-posed
problem of 3D reconstruction from a single image, we
exploit a so-called topographic representation to analyze
facial expression on a terrain surface. Topographic analysis
is based on the topographic primary sketch theory [17], in
which the gray scale image is treated as a 3D terrain surface.
Each pixel is assigned one type of topographic label based on
the terrain surface structure. We can imagine that the facial
skin ‘‘wave’’ is a reflection of a certain expression. Since the
skin surface is represented by a topographic label ‘‘map’’,
this ‘‘map’’ varies along with the change in facial expression.
This fact suggests that topographic features can be expected
to have the robustness associated with facial expression rep-
resentation. It is thus of interest for us to investigate the rela-
tionship between these topographic features and the
corresponding expressions in order to model the facial
expression in an intuitive way.

Motivated by the topographic analysis technique
[18,19], in this paper, we propose a novel facial expression
descriptor—Topographic Context (TC)—to represent and
classify facial expressions. Topographic Context describes
the distribution of topographic labels in a region of interest
of a face. We split a face image into a number of expressive
regions. In order to obtain the topographic feature vector
for an expression, the facial topographic surface is labeled
to form a terrain map. Statistics on the terrain map is then
conducted to derive the TC for each pre-defined expressive
region. Finally, a topographic feature vector is created by
concatenating all the TCs of expressive regions. With the
extracted TC features, the facial expression can be recog-
nized using some classification algorithms.
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Note that most existing work have exploited time-vary-
ing features from video sequences for the dynamic facial
expression analysis [5,8,9,12,15,20]. In this paper, we
address the problem of facial expression representation
and classification using static frontal-view facial images.
This poses more of a challenge than using video sequences
as no temporal information is available. Although tempo-
ral dynamics reflect facial behavior, it is essential to exploit
the static image to represent and analyze configurational
information of facial expressions [6]. The basic understand-
ing of static facial expressions can help facilitate the appli-
cation in psychological research and law enforcement when
the temporal information is unavailable or inaccurate (e.g.,
due to the head motion). Our facial expression recognition
system is tested on the static facial images from two facial
expression databases, one is the commonly used Cohn–
Kanade (CK) database [21] and the other is a newly pub-
lished MMI database [22]. This system is completely per-
son-independent, which means the subject to be tested
has never appeared in the training set. In fact, person-inde-
pendent expression recognition from a single static image is
much more difficult due to the lack of prior information of
the recognized subjects. The experiment shows that our
TC-based expression representation has a good perfor-
mance in classifying six universal expressions in terms of
accuracy and robustness.

We conducted a detailed evaluation on the separability
of the TC-based features, which includes an intuitive
dimensionality reduction analysis and a theoretical analysis
using a separability criterion. The evaluation results show
that the TC-based expression features reflect intrinsic
expression characteristics and decrease the variance on
the age, race and subject. In order to evaluate the reliability
of the TC-based feature representation, we further con-
ducted the robustness analysis in terms of two aspects:
robustness to the face region detection and robustness to
the facial expression intensity. The experiments show that
the TC-based feature representation has certain robustness
to the distortion of facial landmark detection. Also, the
TC-based features can be used to recognize mid-intensity
facial expressions, although the performance is not as high
as the extreme-intensity expression case.

The remainder of this paper is organized as follows. In
Section 2, the topographic analysis is introduced. In Sec-
tion 3, we present the concept of topographic context
and give our static topographic facial expression model.
The experiments on facial expression recognition are con-
ducted in Section 4. The performance of the TC-based
facial expression representation will be evaluated through
the separability analysis in Section 5 and the robustness
analysis in Section 6, followed by a discussion in Section
7. Finally, concluding remarks will be given in Section 8.

2. Topographic analysis

In order to derive the Topographic Context of facial
images, we apply the topographic primal sketch theory
hic modeling for facial expression recognition ..., Comput. Vis.
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[17] to study the pixel characteristics in the face region.
Topographic analysis treats the grey scale image as a ter-
rain surface in a 3D space. The intensity I(x,y) is represent-
ed by the height of the terrain at pixel (x,y). Fig. 1 shows
an example of a face image and its terrain surface in the
nose region. According to the property of the terrain sur-
face, each pixel can be assigned one of the topographic
labels: peak, ridge, saddle, hill, flat, ravine, or pit [17].
Hill-labeled pixels can be further specified as one of the
labels convex hill, concave hill, saddle hill or slope hill. Sad-
dle hills can be further distinguished as concave saddle hill

or convex saddle hill. Saddle can be specified as ridge saddle

or ravine saddle. So there are a total of 12 types of topo-
graphic labels [18,19]. In real face images the terrain sur-
face of the face region is mainly composed of ridge,
ravine, convex hill, concave hill, convex saddle hill and con-

cave saddle hill. We illustrate these six topographic labels in
Fig. 2, which will be used for our TC-based expression
representation.

In order to calculate the topographic labels of the input
gray scale image, a continuous surface f(x,y) is used to fit
the local N · N patch centered at (x,y) with the least square
error. Then the first-order derivatives oIðx;yÞ

ox and oIðx;yÞ
oy , and

the second-order derivatives o2Iðx;yÞ
ox2 , o2Iðx;yÞ

oy2 and o2Iðx;yÞ
oxoy are esti-

mated using f(x,y). Similar to the surface fitting approach
used in [18], we use discrete Chebyshev polynomials up to
the third degree as the bases spanning the vector space of
these continuous functions. With the function f(x,y), the
partial derivatives can be approximated as
f ðp;qÞðx; yÞ ¼
XN

i¼�N

XN

j¼�N

Iðx� i; y � jÞhði; pÞhðj; qÞ ð1Þ
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Fig. 1. Face image and the 3D terrain surface of the nose region. (a) Origina
(c) terrain surface of nose region smoothed by a Gaussian filter.

Fig. 2. A subset of the topographic labels [19]. The center pixel in each exampl
hill, convex saddle hill, ravine, concave hill and concave saddle hill.

Please cite this article in press as: J. Wang, L. Yin, Static topograp
Image Understand. (2007), doi:10.1016/j.cviu.2006.10.011
where f (p,q)(x,y) means the (p + q)th partial derivative at
(x,y) with p along x axis and q along y axis. h(i;p) and
h(i;q) are the smoothed differentiation filters from Cheby-
shev polynomials with degree p and q, respectively [23].
Thus the Hessian matrix is obtained as follows:

Hðx; yÞ ¼
o2Iðx;yÞ

ox2
o2Iðx;yÞ

oxoy

o2Iðx;yÞ
oxoy

o2Iðx;yÞ
oy2

2
4

3
5 ¼ f ð2;0Þðx; yÞ f ð1;1Þðx; yÞ

f ð1;1Þðx; yÞ f ð0;2Þðx; yÞ

" #

ð2Þ
After applying eigenvalue decomposition to the Hessian
matrix, we get:

H ¼ UDUT ¼ ½u1u2� � diagðk1; k2Þ � ½u1u2�T ð3Þ
where k1 and k2 are the eigenvalues and u1 and u2 are the
orthogonal eigenvectors. The gradient magnitude i$I(x,y)i
can be calculated as

krIðx; yÞk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oIðx; yÞ

ox

� �2

þ oIðx; yÞ
oy

� �2
s

ð4Þ

From the calculated k1, k2, u1, u2, i$I(x,y)i and the deriva-
tives, the terrain labels can be assigned to pixel (x,y) by
obeying a series of rules with some pre-defined empirical
thresholds (e.g., Tg for gradients and Tk for eigenvalues).
For example, the ridge label is determined if the following
condition is satisfied: i$I(x,y)i 6 Tg, k1 < �Tk and
jk2j < Tk. The detailed labeling rules can be found in [19].

In order to reduce the influence of noise, smoothing pre-
processing on the gray scale image is executed before calcu-
lating the derivatives. In our experiments, we use a
Gaussian filter with a size of 15 · 15, a standard deviation
r = 3.0. An example of a face image and the smoothed 3D
terrain surface of the nose region is shown in Fig. 1.
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l face image; (b) terrain surface of the nose region of the original image;

e carries the indicated label. From left to right, the labels are: ridge, convex
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3. Topographic context based feature extraction

By applying topographic analysis, the original gray-
scale image I = {Ixy} is transformed to a so-called terrain
map T = {Txy}, which is composed of the terrain labels
of each pixel.

Definition 3.1 (Terrain Map). A Terrain Map describes the
topographic composition of a 3D terrain surface by
indicating the type of terrain at each pixel.

In a terrain map, each pixel is represented by a certain
topographic label. We survey the distribution of topo-
graphic labels on the terrain map by statistically analyzing
864 face images in the CK database. In real face images the
terrain surface of the face region is mainly composed of
ridge, ravine, convex hill, concave hill, convex saddle hill

and concave saddle hill, which are more than 98.7% of all
topographic label types. Table 1 shows our statistical
results on 864 facial expression images. In the remaining
part of the paper, only these six types of terrain labels
are taken into account in our analysis.

The terrain map can be visualized using different colors
to represent the different types of label. Fig. 3 shows the
Table 1
The ratios of 12 kinds of topographic labels in face image based on the
statistic on 864 images from CK database

Convex hill Convex saddle hill Ridge Flat Ridge saddle Peak

20.3% 31.8% 6.0% 0.0% 0.4% 0.4%

Concave
hill

Concave saddle
hill

Ravine Slope Ravine
saddle

Pit

14.0% 21.8% 4.8% 0.0% 0.3% 0.2%

Fig. 3. Facial expression images and the corresponding terrain maps in face r

Please cite this article in press as: J. Wang, L. Yin, Static topograp
Image Understand. (2007), doi:10.1016/j.cviu.2006.10.011
examples of facial expression images from the CK database
and their corresponding terrain maps in the face regions.
The terrain maps exhibit different patterns corresponding
to different facial expressions. In order to give an explicit
and quantitative description, we use a so-called Topo-
graphic Context to describe the statistical property of the
terrain map.

3.1. Topographic context (TC)

The motion of facial muscles due to changing expres-
sions leads to a variation of facial terrain surface, which
also results in the variation of image intensities. This fact
suggests that topographic features can be expected to have
the robustness for expression representation. To find an
explicit representation for the fundamental structure of
facial surface details, the statistical distributions of topo-
graphic labels within certain regions of interest are
exploited.

Definition 3.2 (Topographic Context). Topographic con-
text is a descriptor of the terrain features inside a region of
interest of a gray-scale image. This descriptor is identified
by the distribution of topographic labels in the corre-
sponding terrain map.

In other words, the topographic context is a vector,
whose elements are the ratios of the number of pixels with
certain type of terrain label to the number of pixels in the
whole region. For a given region in the terrain map, the
topographic context can be computed as

e ¼ n1

n
; � � � ; ni

n
; � � � ; nt

n

h i
ð5Þ
egions. From left to right, Anger, Disgust, Fear, Happy, Sad and Surprise.
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where ni is the number of pixels with the ith type of terrain
label and n ¼

Pt
i¼1ni is the total number of pixels in the re-

ferred region. t denotes the number of terrain label types,
which is 6 in our approach.

As an example shown in Fig. 4, we mark two square
regions on the terrain map of a face image, and display
the corresponding topographic contexts using normalized
histograms. As illustrated in this figure, the topographic
contexts reflect different characteristics of terrain features
in different facial regions.

3.2. Face model

The formation of a facial expression is a combined
actuation by a number of facial muscles. Based on the
facial muscle distribution and the neuroanatomy of
facial movement [24,25,26], we partition the face image
into eight sub-regions, which are so-called expressive

regions, so as to derive the topographic context
efficiently.

Definition 3.3 (Expressive Region). An expressive region
is a pre-defined region of interest that reflects muscle
actions and facial expressions. The expressive region may
1 2 3
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Fig. 4. Terrain map and topographic context by histogram representation. (a) T
jowl and glabella. The bars in the histogram (from left to right) represent conv

Fig. 5. Face model: (a) 64 facial landm
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indicate facial organs or a single segment of the facial
surface.

To locate the expressive regions in a face, we define a
face model with 64 control points. We use the Active
Appearance Model (AAM), which was well developed by
Cootes etc. [27], to find the facial features and shapes. In
the case of the high level of expression intensity, AAM
may not detect the landmarks accurately. In order to eval-
uate our new facial expression features, the necessary man-
ual adjustment is added to alleviate the influence of the
facial landmark detection. In Section 6.1, we investigate
the robustness of facial landmark detection with the artifi-
cial landmark distortions. As a result, the expressive
regions can be constructed by polygons whose vertices
are the detected facial landmarks, as shown in Fig. 5.

Note that not all of the facial areas are defined by the
expressive regions. The nose bridge is excluded because
of its lack of expressive information. Although the fore-
head surface may signify the expression-related furrows,
due to the occasional occlusion by hairs, we exclude this
region from our regions of interest. Currently, eight expres-
sive regions are defined to construct the facial terrain mod-
el for TC-feature extraction.
1 2 3 4 5 6
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convex hill
convex saddle hill
concave hill
concave saddle hill
ridge
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convex hill
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concave hill
concave saddle hill
ridge
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c

errain map of the face image of Fig. 1; (b and c) topographic context of the
ex hill, convex saddle hill, concave hill, concave saddle hill, ridge and ravine.

arks; (b) 8 facial expressive regions.
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3.3. TC-based facial expression feature

With the detected facial region or features, the expres-
sion feature can be derived. Here, we propose a novel fea-
ture, Topographic Context based expression feature, which
has certain insensitivity to expression intensity and facial
region locations.

The variation of facial expressions is a result of the motion
of both facial organs and facial skin. For example, mouth
opening is a distinct organ motion in some surprise expres-
sions which present jowl surface stretching and flattening.
Through the analysis of facial terrain surface, we are able
to describe the terrain features in the expressive regions by
topographic contexts. These topographic contexts will be
eventually linked to a certain expression. The relationship
between the topographic context and the expression is illus-
trated by an example in Fig. 6, which shows two subjects with
three distinct prototypic facial expressions, Surprise, Anger

and Happy. The corresponding TCs of expressive region 1
and region 6 are illustrated by their histograms.

Given the same facial expression from different subjects,
the topographic contexts of expressive regions exhibit sim-
ilar histogram characteristics. Fig. 6 illustrates the quanti-
tative property of TCs for different subjects. It
demonstrates that the topographic label distribution
reflects different facial expressions. For example, in the
expressive region 6, the concave hill and ravine rarely
appear in mouth region when a face shows anger expres-
sion. Moreover, the prominent ratio of convex saddle hill

usually results from happiness. Similarly, the prototypic
expression information can also be uniquely represented
in other seven regions.

Since the topographic context is defined in each expres-
sive region, the eight expressive regions will produce eight
topographic contexts. The combination of these TCs will
generate a unique expression feature vector for a specific
expression. In general, the procedure for generating expres-
sion feature vectors can be described as the following four
steps:

1. Detect the 64 facial landmarks;
2. derive terrain map T = {Tx,y} from original facial image

I = {Ix,y} by label each pixel based on its terrain
property;

3. with the detected facial landmarks and the derived ter-
rain map, compute topographic context for each expres-
sive region;

4. combine the extracted topographic contexts of the eight
expressive regions to construct the expression features.
As a result, the expression feature vector is constructed
as

E ¼ ½e1; � � � ; ek; � � � ; eM � ð6Þ
where M is the number of expressive regions (M = 8 in our
experiment). The dimensionality of the expression feature
vector is t · M. Because only six kinds of terrain labels
Please cite this article in press as: J. Wang, L. Yin, Static topograp
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are used in our algorithm (t = 6), the expression feature
of each face image is represented by a 48-dimensional vec-
tor, which is much lower than the dimensionality of the ori-
ginal image space.

4. Experiments on facial expression recognition

In this section, we conduct person-dependent and per-
son-independent facial expression recognition experiments
using the extracted TC-based features. Two different dat-
abases are used in our experiments. One is a newly created
facial expression database (MMI-database) from the man–
machine interaction group of Imperial College London [22]
and the other is the widely used CK database [21]. MMI
database mainly provide action units based facial expres-
sion data. Currently, only a few subjects with six universal
expressions are available. The CK database consists of vid-
eo sequences of subjects displaying distinct facial expres-
sions, starting from neutral expression and ending with
the peak of the expression. Because some subjects only
show one or two facial expressions, we use a subset with
53 subjects for our experiment. On the average, four
expressions appear for each subject. For each expression
of a subject, the last four frames in the videos are selected.
Notice that although we use several frames from the video
sequence, we only treat these frames as static images for
both training and testing without using any temporal infor-
mation. Several samples of these two expression databases
are shown in Figs. 3, 6 and 7. The summary of the two dat-
abases is presented in Table 1.

Although many existing classification algorithms could
be employed for the experiment on facial expression recog-
nition, our purpose is to evaluate the inherent discrimina-
tory ability of the extracted TC features. The classifier
design and training are not our emphasis in this paper.
Hence, several standard and widely used classification
approaches are used in our experiments (Table 2).

4.1. Person-dependent recognition test

In person-dependent test, first we divide the MMI and
CK database into six and four subsets, respectively. Each
subset contains all the subjects and each subject includes
a set of available prototypic expressions. Then one of the
subsets is selected for test while the remainder is used to
construct the training set. It is a so-called ‘‘leave-one-
out’’ cross-validation rule. The tests are repeated six times
in the MMI database and four times in the CK database,
with different test subset being used for each time. Three
classifiers, quadratic discriminant classifier (QDC), linear
discriminant analysis (LDA) and naive Bayesian network
classifier (NBC), are employed to recognize the six proto-
typic facial expressions. Table 3 shows the average recogni-
tion rate. Table 4 reports the confusion matrix using the
NBC classifier on the CK database.

As shown in Table 3, LDA achieves the highest recogni-
tion rate for the MMI database, and NBC does for the CK
hic modeling for facial expression recognition ..., Comput. Vis.
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Fig. 6. TC features of two subjects with different expressions: (a and b) original images: Surprise, Anger and Happy of two subjects from the CK database;
(c and d) corresponding TCs in the region 1 of subject (a) and (b); (e and f) corresponding TCs in the region 6 of subject (a) and (b).
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Fig. 7. Expression images from the MMI database.

Table 2
Summary of the databases used for our experiments

Database # of subjects # of images per subject
for each expression

Overall # of images

MMI 5 6 180
CK 53 4 864

Table 3
Experimental results of person-dependent expression classification

Databasenclassifier QDC (%) LDA (%) NBC (%)

MMI 92.78 93.33 85.56
CK 82.52 87.27 93.29

Table 4
Confusion matrix of the average case of NBC classifier on the CK
database in person-dependent expression recognition

Inputnoutput Anger
(%)

Disgust
(%)

Fear
(%)

Happy
(%)

Sad
(%)

Surprise
(%)

Anger 83.70 5.43 0.00 1.09 9.78 0.00
Disgust 2.78 93.06 0.00 0.00 2.08 2.08
Fear 1.92 3.85 83.65 7.69 2.89 0.00
Happy 0.00 0.50 1.00 98.50 0.00 0.00
Sad 1.47 0.74 0.00 0.00 97.06 0.74
Surprise 0.00 1.60 1.06 0.53 1.59 95.21

Table 5
Experimental results of person-independent expression classification

Classifier QDC LDA NBC SVC

Recognition rate 81.96% 82.68% 76.12% 77.68%

Table 6
Confusion Matrix of the average case of LDA classifier for person-
independent expression recognition

Inputnoutput Anger
(%)

Disgust
(%)

Fear
(%)

Happy
(%)

Sad
(%)

Surprise
(%)

Anger 75.39 14.06 1.56 1.56 7.42 0.00
Disgust 12.50 69.50 10.04 0.00 5.87 2.08
Fear 3.72 2.93 68.88 21.54 1.33 1.60
Happy 0.00 2.70 4.46 91.76 1.08 0.00
Sad 13.20 5.28 1.94 0.18 79.40 0.00
Surprise 0.00 1.47 1.32 0.00 1.62 95.59
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database. In Table 4, we can see that Happy, Surprise, Dis-

gust and Sad are detected with high accuracy. Fear is some-
times confused with Happy while Anger is sometimes
misclassified as Sad.
4.2. Person-independent recognition test

Note that the person-independent facial expression rec-
ognition is more challenging and necessary for practical
applications. In order to train person-independent classifi-
ers, we need more training subjects covering various pat-
terns of same expression. Therefore, we use the CK
database to carry out the person-independent tests.
Because 53 subjects are contained in our database with a
total of 864 images, we partition the whole set into 53 sub-
sets, each of which corresponds to one subject and includes
all the images of this subject with different expressions. The
‘‘leave-v-out’’ strategy is used for separating these subsets
into training sets and test sets. This strategy is proved to
be a more elaborate and expensive version of cross-valida-
tion [28]. In our experiment, the value of v is 10. It means
Please cite this article in press as: J. Wang, L. Yin, Static topograp
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that for each test, the database is partitioned into 43 sub-
sets as the training set and 10 subsets as the test set. Note
that any subject used for testing does not appear in the
training set because the random partitioning is based on
the subjects rather than the individual images. The tests
are executed 20 times on each classifier with different parti-
tions to achieve a stable recognition rate. The entire pro-
cess guarantees every subject is tested at least once for
every classifier. For each test, all the classifiers are reset
and re-trained from the initial state. Totally four classifiers,
including QDC, LDA, NBC and support vector classifier
(SVC) with RBF kernel are used in the experiments.

Table 5 reports the average recognition rates of these
four classifiers, where LDA classifier achieve the highest
accuracy with 82.68% correct rate. The confusion matrix
of the average case for LDA classifier is shown in Table
6. The expressions Surprise and Happy are well detected
with accuracy over 95% and 91%. Anger, Disgust and
Sad are sometimes confused with each other, while Fear

is sometimes misclassified as Happy.

5. Separability analysis

In order to further study the property of the TC-based
expression representation, we investigate the inter-expres-
sion discriminability of TC-based expression features in
this section. First of all, we examine the separability of
the TC-based features in a low-dimensional space for an
intuitive demonstration. Then, we give an in-depth theoret-
ical analysis to quantitatively evaluate the between-expres-
hic modeling for facial expression recognition ..., Comput. Vis.
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sion separability using certain separability criterion, and
show how the separability criterions used in this study
agree with the results of human perception for distinguish-
ing facial expressions.

5.1. Separability in a low-dimensional space: an intuitive

example

High-dimensional TC-based expression features are
hard to be visualized. It is intuitive for us to observe the
clustering characteristic of the expression features in a
low-dimensional space (i.e., 3D space). Here, we apply
the Principal Component Analysis (PCA) to investigate
the inter-expression discriminability of TC-based expres-
sion feature. To do so, we project the extracted TC-based
features into a 3D space through the PCA dimensionality
reduction.

Although a complex classification algorithm or a well-
trained classifier can improve the performance, it heavily
relies on the training data and lacks enough generalization
ability. The unsupervised learning, for example, clustering
characteristic gives a clear clue for an in-depth study on
the separability of extracted features. We found that the
TC-based facial feature exhibits a good inter-expression
separability even in a low-dimensional space, especially
for the distinct expressions Happy and Surprise. An exam-
ple of separability study by reducing the dimensionality to
a visualized space is given in Fig. 8. The TC features of 30
expression images (10 subjects, each of which has three
expression images, Happy, Surprise and Disgust) are pro-
jected to a 3D space by PCA capturing 61.9% of the total
energy. The selected subjects cover the variations of gen-
der, race and face shapes.1 As we can see, the output sam-
ples are roughly clustered in three sets which correspond to
the three types of expressions. In general, the TC-based
expression feature vectors exhibit a good ability in distin-
guishing expressions even in a very low-dimensional space.

For comparison, the original intensity image is also pro-
jected to the 3D space by applying PCA. As shown in
Fig. 9, the three expression samples of each subject are dis-
tributed together. The three expressions are completely
indistinguishable from projections of the original intensity
images. The clustering sample intuitively demonstrates that
the separability of TC-based expression feature is much
superior to the intensity-based features, which exhibit the
clustering property by subjects rather than by expressions.

Note that a visualized expression manifold by the Lips-
chitz embedding has been successfully used by Chang and
Turk [10]. However, in [10], the constructed manifold is
built for individual subject with a plenty of expression
images of the same subject. Here, instead, we investigate
the separability and clustering characteristic of extracted
expression features using multi-subject and multi-expres-
sion data in a visualized 3D space. In general, the TC-based
1 The 10 selected subjects are numbered in the CK database as: S010,
S011, S014, S022, S026, S050, S052, S055, S067 and S100.

Please cite this article in press as: J. Wang, L. Yin, Static topograp
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expression descriptor reflects more intrinsic expression
property and alleviates the variations of non-expression
factors, such as race and gender. Although the separability
of other three expressions is hard to be visualized in 3D
space, we can still distinguish them in a higher dimensional
space, which is proved by the recognition experiments.

In the following section, we will give a theoretical anal-
ysis of the expression separability through the evaluation
and comparison between the TC-based features and the
intensity-based features.
5.2. Separability analysis of TC-based features

In order to quantitatively measure the separability of the
expression features, a computable criterion should be
defined first. There are some existing criteria, which are
mainly used for feature selection [29,30], for example,
probability based criterion, within-class and between-class
distance based criterion, etc. Bayesian decision theory pro-
vides the probability based separability criterion (e.g., cor-
hic modeling for facial expression recognition ..., Comput. Vis.
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rect probability or error probability), which can be used to
evaluate and select the extracted features. In our multi-cat-
egory case for expression classification, it is more efficient
to compute the correct probability rather than the error
probability. The correct probability metric is defined as

P ðcorrectÞ ¼
Xc

i¼1

P ðx 2 Ri;xiÞ ¼
Xc

i¼1

Z
Ri

pðxjxiÞP ðxiÞdx

ð7Þ

where x 2 Ri means the feature space divided by the classi-
fier, c is the number of classes, xi denotes the label of class
and P(xi) is the prior probability of xi. Although the def-
inition in Eq. (7) is simple, it is not feasible to calculate the
correct probability in practice because it is difficult to esti-
mate the class-conditional probability density functions

p(xjxi) and the multiple integration has to be executed in
high-dimensional space. Alternatively, the separability cri-
terion based on within-class and between-class distance is
more feasible and empirical. Suppose x

ðiÞ
k and x

ðjÞ
l are the

d-dimensional features with the label xi and xj, respective-
ly. The definition of average between-class distance in the
case of multiple categories is as follow:

J 1ðxÞ ¼
1

2

Xc

i¼1

P i

Xc

j¼1

P j
1

ninj

Xni

k¼1

Xnj

l¼1

dðxðiÞk ; x
ðjÞ
l Þ ð8Þ

where, ni, nj are the numbers of samples in class xi and xj,
Pi, Pj are the class-prior probabilities. dðxðiÞk ; x

ðjÞ
l Þ denotes

the distance between two samples, which is usually repre-
sented by the Euclidean distance

dðxðiÞk ; x
ðjÞ
l Þ ¼ ðx

ðiÞ
k � x

ðjÞ
l Þ

TðxðiÞk � x
ðjÞ
l Þ ð9Þ

In order to represent the J1(x) in a compact form, two new
concepts, within-class scatter matrix Sw and between-class

scatter matrix Sb, are introduced [29]

Sw ¼
Xc

i¼1

P i
1

ni

Xni

k¼1

ðxðiÞk �miÞðxðiÞk �miÞT ð10Þ

Sb ¼
Xc

i¼1

P iðmi �mÞðmi �mÞT ð11Þ

where mi is the mean of samples in the ith class

mi ¼
1

ni

Xni

k¼1

x
ðiÞ
k ð12Þ

m is the mean of all the samples.

m ¼
Xc

i¼1

P imi ð13Þ

With the definitions of Eqs. (10) and (11), we can get J1(x)
in the following form [30,31]:

J 1ðxÞ ¼ trðSw þ SbÞ ð14Þ

J1(x) is an efficient and computable separability criterion
for feature selection. But it is not appropriate for compar-
ing two different features because the value of calculated
Please cite this article in press as: J. Wang, L. Yin, Static topograp
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J1(x) depends on the scale and dimensionality of the fea-
ture space. Since the TC-based features and intensity-based
features lie in two completely different spaces with different
scales and dimensionalities, it is not easy to normalize the
value of J1(x) for comparison. Here we use a comparable
separability criterion to avoid the normalization. The new
metric, J2(x), is defined as a natural logarithm of the ratio
of determinant of within-class scatter matrix and between-
class scatter matrix. J2(x) is intrinsically normalized in the
comparable scale and reflects the separability of the fea-
tures. For the value of J2(x), the larger the values are, the
better the samples can be separated.

J 2ðxÞ ¼ ln
j ðSb þ SwÞj
j ðSwÞj

ð15Þ

We conducted the calculations of J2(x) on CK test set,
which includes 864 facial expression images of 53 subjects.
PCA is used to reduce the dimensionality of the extracted
TC-based expression features. The selected separability
metrics are calculated for each reduced dimensionality.
For comparison, the similar experiment is also conducted
using intensity features. Note that TC-based features and
intensity features locate in completely different feature
spaces, where the intensity feature has much higher dimen-
sionality than the TC-based feature has. Therefore we nor-
malize the calculated values by the percentage of retained
energy rather than by the dimensionality. The facial expres-
sion separability and human subject separability are exam-
ined, respectively. Each examination is conducted by
comparing the TC-based features and intensity features
using the metric measurement J2(x). Fig. 10 shows the
experimental results of the calculated value of J2(x). As
shown in Fig. 10a, for the same ratio of retained energy,
the value J2(x) of TC-based features is always higher than
that of intensity-based features, which means that the TC-
based features always exhibit much better between-expres-
sion separability than the intensity feature does.

The subject separability performance is also evaluated
using the similar experimental strategy. Here, we re-label
the facial images based on subjects rather than expressions.
There are totally c = 53 classes in our test data. The esti-
mated performance curve of separability criterion J2(x) as
to the ratio of retained energy is shown in Fig. 10b. The
separability curve of TC-based features is always lower
than that of intensity-based features, which means that
the intensity features have much better discriminability
for subjects than the TC-based features have.

5.3. Between-expression separability analysis

The person-independent experiment in Section 4 (see
Table 6) has shown that the correct recognition rates
for different expressions are different. Surprise and Hap-

py are the two most distinguishable expressions among
the six prototype facial expressions, while Anger, Dis-
gust and Sad are sometimes confused with each other.
As a result, the confusion matrix of recognition exhib-
hic modeling for facial expression recognition ..., Comput. Vis.
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its a considerable imbalance. The automatic facial
expression recognition system reported by Cohen etc.
[20], which used different expression features and classi-
fiers, shows the similar imbalance characteristic in clas-
sifying six prototype expressions. Here, we study the
expression separability in order to provide insights into
the intrinsic property of the facial expressions. We
attempt to quantitatively explain the expression separa-
bility for better understanding the machine recognition
and human cognition.

In order to evaluate the between-expression separabil-
ity, the two-category separability criteria are used. Differ-
ent from the criteria used in Section 5.2, here, the
metrics for within-class matrix and between-class scatter

matrix are specified for the two-category case. Assume
that the six prototypic expressions are indexed from 1
to 6, we want to estimate the separability between
expression ei and ej, where 1 6 ei, ej 6 6 and ei „ ej. In
the test data set, we only use those images with these
two types of expressions. The scatter matrices are calcu-
lated for the two-category case as

Sðei;ejÞ
w ¼ 1

n

Xnei

k¼1

ðxðeiÞ
k �meiÞðx

ðeiÞ
k �meiÞ

T

"

þ
Xnej

l¼1

ðxðejÞ
l �mejÞðx

ðejÞ
l �mejÞ

T

#
ð16Þ

S
ðei;ejÞ
b ¼ P ei P ejðmei �mejÞðmei �mejÞ

T ð17Þ

where n ¼ nei þ nej and P ei þ P ej ¼ 1. We estimate the sep-
arability criterion J2(x) for each pair of selected expressions
while excluding other expressions. For each pair of selected
expressions, the scatter matrices are computed using Eqs.
(16) and (17). Then the separability criterion J2(x) is
calculated. The evaluation is conducted on the extracted
TC-based features with the entire energy conserved.2
2 For a clear and distinguishable comparison, eJ2ðxÞ is calculated instead
of J2(x).
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Table 7 illustrates the separability of all pairs of proto-
typic expressions, where the larger values of J2(x) indicates
better discriminability between the two expressions. The
results support the confusion matrix shown in Table 6.
For example, expressions Happy and Surprise have the
highest recognition rates. Conformably, these two expres-
sions have a larger separability value J2(x) than other
expressions. Also, expressions Anger, Disgust and Sad are
easily misclassified because the separability value J2(x) is
fairly small for any two of these three expressions.

In short, the recognition performance of the six proto-
typic expressions is mostly affected by the intrinsic appear-
ance characteristics of expressions. The quantitative
separability analysis is consistent with the recognition
property for different expression, which is also obey the
human vision perception rule.

6. Robustness analysis

6.1. Robustness to facial landmarks detection

As we know, the topographic context is defined on the
individual expressive region of a face. It is conceivable that
the performance of facial expression recognition is affected
by the expressive region extraction, in other words, by the
facial feature detection.

An accurate facial landmark localization algorithm
could improve the performance of the expression recogni-
tion. Most previous work in facial expression analysis is
under controlled conditions. For real applications, the pos-
sible complicated environment (e.g., complex background
and uncontrolled illumination) could make the detection
of facial landmarks inaccurate and unreliable.

In order to evaluate the TC-based feature as to how sen-
sitive it is to the expressive region detection, we conduct
two simulation experiments. In our first experiment, we
simulate an uncontrolled environment by adding a Gauss-
ian noise kÆN(0,0.7) with a magnitude k to the detected
landmarks. An example of the facial landmarks with differ-
hic modeling for facial expression recognition ..., Comput. Vis.
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Table 7
Confusion matrix of the expression separability criterion of eJ2ðxÞ

Anger Disgust Fear Happy Sad Surprise

Anger N/A 3.432 8.890 7.179 4.957 9.066
Disgust 3.432 N/A 5.357 8.290 4.192 8.544
Fear 8.890 5.357 N/A 4.570 8.400 7.225
Happy 7.179 8.290 4.570 N/A 12.490 15.395
Sad 4.957 4.192 8.400 12.490 N/A 9.335
Surprise 9.066 8.544 7.225 15.395 9.335 N/A

N/A, not applicable.
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ent magnitudes of noise is shown in Fig. 11b and c. The
second experiment simulates the noise through applying a
random affine transformation to the detected entire facial
shape. The transformation (i.e., rotation and translation)
has the form as

M ¼ R
k

10
� P ð�0:5; 0:5Þ

� �
� Tð5k � P ð�0:5; 0:5ÞÞ ð18Þ

where P(�0.5,0.5) is a uniform distribution between
[�0.5, 0.5] and k is the magnitude of noise. Fig. 11d–f
shows the examples after affine transformation (Fig. 12).

For the training set, we use the clean facial landmarks.
For each test image, the modified landmarks are used to
calculate the facial expression features. The person-inde-
pendent experiments described in Section 4.2 are repeated
under the noise with different magnitudes. The perfor-
mance curves of all four classifiers are recorded in
Fig. 13. As shown in the figures, the recognition rate mono-
tonically decreases as the noise magnitude increases, but it
still maintains a fairly good performance, especially under
the random Gaussian noise. The classifiers QDC and LDA
maintain the correct recognition rate higher than 80%
when k = 4. In short, the experimental results demonstrate
that the TC-based facial expression features are not very
sensitive to facial landmark detection. The main reason is
that this feature representation is based on regional terrain
Fig. 11. (a) Original landmarks; (b and c) landmarks added with random
Gaussian noise with magnitude k = 2 and k = 5; (d–f) landmarks added
after random affine transformation with magnitude k = 1, k = 3 and
k = 4.

K(Magnitude of Affine Transformation Noise)

Fig. 13. Recognition under random affine transformation noise added to
detected facial landmarks.
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label statistics. These statistical characteristics are not
affected by local noises or by a certain shape distortion
seriously.
6.2. Robustness to expression intensity

Most of approaches for automatic facial expression
analysis attempt to recognize a set of prototypic emotional
expressions (e.g., fear, sadness, disgust, anger, surprise and
happiness). In everyday life, however, such prototypic
expressions with deliberate (i.e., posed) facial action rarely
occur. Instead, the spontaneous expressions with subtle
facial action appear more frequently [32]. Moreover, the
posed facial action tasks typically differ in appearance
and timing from the authentic facial expressions induced
through events in the normal environment of the subject.
hic modeling for facial expression recognition ..., Comput. Vis.
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Therefore, investigation of recognition performance on dif-
ferent degrees of expression intensity (or degree of expres-
sion saturation) is of interest to us. Low-intensity
expressions mostly reflect the spontaneity of human emo-
tions. A database with authentic face expressions from 28
subjects was created by Sebe et al. [32], which includes four
spontaneous expressions (neutral, happy, surprise and dis-
gust). Bartlett et al. tested their algorithm on facial expres-
sion with different intensities measured by manual FACS
coding [33]. Tian et al. combined Gabor features and neu-
ral network to discriminate eye status and compared their
method with manual markers [34]. Although there is some
existing work targeting the spontaneous expression analy-
sis, so far, no standard definition and quantitative measure-
ment of expression intensity has been reported.

As we know, recognizing a slight or low-intensity spon-
taneous expression is a very challenging task. Even for
human vision system, it is difficult to interpret a slight or
low-intensity expression based on only a single static image
(e.g., because of the ambiguity). For the static image based
universal expression recognition, most of previous research
focused on facial images with extreme expressions or suffi-
ciently perceivable expressions [1,35]. For low-intensity
spontaneous expression recognition, it will be more effec-
tive to explore the temporal information through the anal-
ysis of dynamic expression sequences.

In the research on static image based facial expression
recognition to date, little work has been done on the quan-
titative analysis of the recognition rate versus the expres-
sion intensity. In order to analyze the robustness and
sensitivity of TC-based facial expression representation,
we conduct an experiment to explicitly evaluate the perfor-
mance of the extracted TC-based features under different
degrees of expression intensities.

To do so, we extend the subset of CK database used in
Section 4 by selecting more frames from the original video
Fig. 14. Eight facial images with d
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sequences. For each subject, we selected eight frames,
which correspond to eight different degrees of perceived
expressions. The selected frames are indexed from 1 to 8
based on the order of the frames in the video sequence.
Because the expression video starts from the neutral
expression to the extreme expression, the expression inten-
sity increases from the index 1 to the index 8. As an exam-
ple, eight facial expression images of one subject with
different intensities are showed in Fig. 14. In our experi-
ments, a total of 1672 face images, selected from 209 video
sequences, are used.

The experimental strategy is same as the one used in Sec-
tion 4.2. The recorded recognition performance is reported
in Fig. 15. Moreover, the same criterion J2(x) that is used
in Section 5 is applied to evaluate the between-expressions
separability in different level of expression intensity. The
calculated values of J2(x) corresponding to expression
intensity indexed from 1 to 8 are recorded in Fig. 16.

Note that since there is no existing solution for the
quantitative measurement of the expression intensity, our
performance analysis in terms of expression intensity using
frame indexes is approximate. Since different subjects may
exhibit different styles of expressions (e.g., timing, speed,
etc.), the frame-indexing based approach may not be able
to extract the same expression intensity at a same indexed
frame across different videos.

Experimental results on both expression recognition and
between-expression separability illustrate the following
properties of the TC-based facial expression recognition.
First, the expression intensity does affect the recognition
performance. Especially, when the expression intensity
increases from index 1 to 5, the correct recognition rates
are dramatically improved. In general, the recognition rate
monotonically grows when the expression intensity increas-
es. Second, when the expression reaches a certain degree of
intensity, the correct recognition rate does not have a sig-
ifferent expression intensities.

hic modeling for facial expression recognition ..., Comput. Vis.
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nificant increment. In other words, when expressions reach
the ‘‘saturation’’ status with the high level of intensity, the
performance of the recognition is not further improved.
7. Discussion

7.1. Advantages of TC-based feature representation

Expression feature extraction is a fundamental issue in
automatic facial expression analysis and recognition. There
are, in general, two categories of facial expression features
used for classification, i.e., geometric features and appear-
ance features [2]. Both feature representations are sensitive
to imaging conditions and individual variations, such as
face shape, scale and other factors. Although the normali-
Please cite this article in press as: J. Wang, L. Yin, Static topograp
Image Understand. (2007), doi:10.1016/j.cviu.2006.10.011
zation process could reduce the effect of imaging and indi-
vidual variations, it is not trivial to obtain the normalized
features without the human interaction and a neutral face
input in some cases. For example, there is some prior work
utilizing the line-based (or edge-based) caricatures to clas-
sify expressions [36]. Because the detected edge features
are represented as binary levels (black and white), normal-
ization is impossible. Moreover, because edges or corners
are usually detected in the high contrast regions, it is hard
to capture subtle facial features on the entire facial region.
In [36], only three types of salient expressions can be clas-
sified correctly. However, in contrast, our topographic fea-
tures are labeled with six different categories on each pixel
of the entire face region. Since we use the statistics of the
six types of topographic labels for each pre-defined facial
region, the intrinsically normalized topographic context
alleviates the influence of the individual variance, such as
the face shape and scale. Although the calculation of TC
is based on the detected facial landmarks, it is not sensitive
to the facial region location because of its inherent statisti-
cal characteristics (proven by the experiments presented in
Section 6.1). By contrast, geometric features are sensitive to
the facial feature detection. Moreover, for the robustness
analysis as to the head rotation, we compared the TC fea-
tures with the Gabor-wavelet features on a synthesized
facial expression image database using a recently published
3D facial expression database [37]. The experimental
results reported in [38] show that the TC features are much
more insensitive to facial pose than the Gabor-wavelet
features.

It is worth noting that unlike most of existing approach-
es (e.g., FACS-based approaches), our TC-based facial
expression representation does not require the high-resolu-
tion image input since the preprocessing of topographic
labeling smooths the image details. Hence, it is conceivable
that the TC-based features should have certain robustness
to image quality.
7.2. Qualitative comparison with existing work

Identifying facial expression is a challenging problem in
computer vision community. However, there is no baseline
algorithm or standard database for measuring the merits of
new methods, or determining what factors affect the perfor-
mance. The unavailability of an accredited common data-
base (e.g., like FERET database for face recognition) and
evaluation methodology make it difficult to compare any
new algorithm with the existing algorithms. As quoted by
some researchers [1,6,35], most of existing work using static
expressions (e.g., see Table 8 in [1] and Tables 2 and 3 in
[35]) were tested on the in-house databases and some of
the approaches are only evaluated by a person-dependent
test. Although the CK database is widely used, some recent
work [20,15] only utilized a portion of the database because
not all the subjects in CK database have six prototypic
expressions. This makes the algorithm comparison not fea-
hic modeling for facial expression recognition ..., Comput. Vis.
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sible without knowing the exact test set used in their
approaches.

Here, we give a brief qualitative comparison with the
system recently reported by Cohen et al. in [20,15]. Both
our work and the Cohen’s system selected 53 subjects from
the CK database for person-independent experiments.
Although our system works on static images while Cohen’s
system worked on video sequences, both achieve similar
recognition results and characteristics. Cohen’s system
achieved the best correct recognition rate at 81.80%, while
our system achieves the best recognition rate at 82.68%.
Both systems show the similar characteristics in classifying
six prototypic expressions. For example, Surprise and Hap-

py, as both reported, have the highest recognition rate.
Fear is easily confused with Happy while Sad is confused
with Anger.

8. Concluding remarks

In this paper we proposed a novel and explicit static
topographic modeling for facial expression representation
and recognition based on the so-called Topographic Con-
text. Motivated by the mechanism of facial expression for-
mation in the 3D space, we exploit the topographic analysis
to study the facial terrain map which is derived by the
topographic labeling techniques at the pixel level of detail.
The facial expression is a behavior of an entire facial sur-
face. The distribution of topographic labels described by
the Topographic Context in expressive regions is a good
reflection of this behavior. The performance of such a
new facial expression descriptor is evaluated by the exper-
iments of person-dependent and person-independent
expression recognition on two public facial expression dat-
abases. The experimental results demonstrate that the TC-
based expression features can capture the characteristics of
facial expressions and achieve encouraging results in recog-
nizing six prototypic expressions with person-indepen-
dence. For a further investigation of the TC-based facial
expression features, the separability analysis is conducted.
The experimental results show that the TC-based features
are appropriate for expression recognition because they
reflect more intrinsic expression characteristics while allevi-
ating the individual variations, such as race, gender and
face shape. Robustness of TC-based features is evaluated
in two aspects, the robustness to distortion of facial land-
mark detection and the robustness to different levels of
expression intensities. Notice that the TC-based approach
still has some limitations. Because the topographic feature
estimation is based on the polynomial patch approxima-
tion, it is better than some edge detection approaches in
terms of the illumination variations. However, this
approach is still the pixel-based approach. It may not be
robust to the dramatic illumination change. Due to the lack
of the illumination-varied facial expression database, our
future work is to develop a synthesis-based approach to
simulate the various lighting conditions in order to study
the illumination sensitivity.
Please cite this article in press as: J. Wang, L. Yin, Static topograp
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As a challenging cross-disciplinary research topic, auto-
matic facial expression recognition is still in its infancy and
far from the real application. Although many advances and
successes are reported in recent literature, many questions
still remain open [2]. For the future work, we will work
on a dynamic system using temporal information to
improve the performance of the current static modeling.
We will study the action units detection based on the topo-
graphic context domain. The integration of the location
information and the topographic feature information could
benefit the tracking of AUs. Moreover, the investigation on
quantification and estimation of expression intensities is
another future research direction.
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