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Abstract—Deep learning models have significantly improved
object detection essential for traffic monitoring. However, these
models’ increasing complexity results in higher latency and re-
source consumption, making real-time object detection challeng-
ing. To address this issue, we propose a lightweight deep learning
model called Empty Road Detection (ERD). ERD efficiently
identifies and removes empty traffic images that do not contain
any object of interest, such as vehicles, via binary classification.
By serving as a preprocessing unit, ERD filters out nonessential
data, reducing computational complexity and latency. ERD is
highly compatible and can work seamlessly with any third-party
object detection model. In our evaluation, we found that ERD
improves the frame processing rate of EfficientDet, SSD, and
YOLOVS by approximately 44%, 40%, and 10%, respectively,
for a real-world traffic monitoring video.

Index Terms—Real-Time Object Detection, Empty Road De-
tection, Traffic Surveillance

I. INTRODUCTION

Traffic congestion and accidents incurs significant costs and
even losses of lives. In New York City, 102 hours are lost
in traffic, costing a driver over $1594 in 2021 [1]. Visual
traffic surveillance is a fundamental infrastructure required
to mitigate traffic congestion, reduce the travel time, and
effectively respond to incidents. In traffic surveillance, real-
time object detection is essential to analyze the traffic flow
and detect incidents/anomalies, if any. Recently, CNN (Con-
volutional Neural Network) models, such as Region-based
CNN (R-CNN) [2], Fast R-CNN [3], Faster R-CNN [4],
EfficientDet [5], SSD (Single Shot MultiBox Detector) [6],
and YOLO models [7], [8], have significantly enhanced the
object detection performance, in terms of accuracy, precision,
and recall.

Real-time object detection requires a high frame processing
rate of at least 30 fps (frames per second). However, it can
be difficult for deep learning models to achieve this speed due
to their increasing complexity. To tackle the challenge, we
propose a new lightweight CNN model that preprocesses each
video frame to detect if there is any object of interest, such as
a vehicle, motorcycle, or pedestrian. Our CNN model, called
ERD (Empty Road Detection), filters empty traffic frames with
no object of interest and forwards nonempty frames only to
the object detection model to enhance the end-to-end frame
processing rate. ERD detects empty frames with high accuracy
of 0.96. In addition, ERD is not designed for a particular
object detection model but rather serves as a preprocessing
unit that can be used in tandem with any third-party object

detection model. Unlike standalone lightweight CNN models
such as MobileNetV3 [9], ShuffleNetV2 [10], SqueezeNet
[11], EfficientNetV2 [12], and InceptionV3 [13], ERD has
a much smaller model size and faster inference latency, as
demonstrated in Table I. In this paper, we perform a case
study to demonstrate the general applicability of ERD, where
ERD works with three powerful object detection models,
EfficientDet [5], SSD [6], and YOLOVS [7], respectively.

Models [ Parameters [ GFLOPs [ Latency @ GPU [ Latency @CPU
MobileNetV3-Small 25M 0.27 8.4 ms 14.2 ms
ShuffleNetV2-X0 23M 0.71 9.3 ms 20.3 ms
SqueezeNetl.1 1.2M 1.74 5.5 ms 22.5 ms
EfficientNet-BO 53M 1.88 12.2 ms 46.1 ms
EfficientNetV2-Small | 21.5M 13.4 25.1 ms 94.5 ms
InceptionV3 23.8 M 15.01 18.6 ms 80.9 ms
ERD (ours) 0.15M 0.54 4.7 ms 10.2 ms

TABLE I: ERD vs. lightweight CNN models, processing with
the images in size of 360x640.

A summary of our key contributions follows:

e« We propose a new lightweight CNN model, ERD, to
filter out empty traffic images to enhance the real-
time performance of object detection in terms of fps.
It supports high accuracy of 0.96. Also, its latency and
resource consumption, i.e., the number of parameters
and GFLOPS, are several times smaller than those of
current lightweight models for complete object detection,
as shown in Table L.

o« We design an efficient pipeline consisted of our ERD
model and an object detection model orthogonal to ERD,
such as SSD, EfficientDet, or YOLOVS, to first re-
move empty frames and subsequently process unfiltered,
nonempty traffic video frames, respectively.

e We have conducted extensive experiments for evaluation
using a real-world traffic video [14]. By preprocessing
frames and dropping frames estimated to be empty,
ERD enhances the overall object detection fps. In our
evaluation, ERD works together with EfficientDet, SSD,
and YOLOVS, respectively. In this way, ERD enhances
the fps of EfficientDet, SSD, and YOLOVVS by approx-
imately 44%, 40%, and 10% for the real-world traffic
monitoring video, respectively. The ERD + YOLOvS
pipeline, which supports the highest fps among the tested
combinations, supports over 30 fps per stream for up



to three concurrent video streams by efficiently utiliz-
ing resources. Furthermore, we analyze the performance
impact of ERD for different proportions of empty frames
in the traffic monitoring video. According to our results,
the joint models, namely, ERD+EfficientDet, ERD+SSD,
and ERD+YOLOVS, support higher fps than EfficientDet,
SSD, and YOLOvV5 when the percentage of empty road
frames in a video exceeds about 7%, 17%, and 24%,
respectively.

The rest of the paper is organized as follows. In Sec-
tion II, our approach, ERD, is described. In Section III, the
performance of ERD is compared to SSD, EfficientDet, and
YOLOVS. Finally, we conclude the paper and discuss future
work issues in Section IV.

II. EMPTY ROAD DETECTION VIA DEEP LEARNING

In Figure 1, our proposed object detection pipeline consisted
of ERD and an object detection model orthogonal to ERD,
such as EfficientDet, SSD, or YOLOVS, is depicted. In Stage
1, ERD predicts whether the current video frame is empty or
not. If ERD predicts that the frame is nonempty, we execute
Stage 2 to detect and classify objects in the frame. Otherwise,
we skip Stage 2.

In this paper, we design a lightweight CNN, ERD, which
classifies a traffic monitoring image into empty or nonempty
classes. We opt to design a CNN, since CNNs are very
effective for computer vision. Before designing ERD, we
have applied a traditional computer vision method, namely,
background subtraction [15], but it provided low accuracy of
0.89 only. Also, we have analyzed the applicability of VGG-
16 [16], ResNet-50 [17], and the lightweight models in Table I
to detect empty traffic images. Although their accuracy is as
high as ERD, they perform complete object detection unlike
ERD, leading to significantly higher latency and resource
consumption, as summarized in Table I.

In general, there is a tradeoff between prediction accuracy
and latency. To strike a balance between the potentially
conflicting requirements for high accuracy and low latency,
we propose a new lightweight CNN model, ERD. We have
explored a comprehensive set of CNN architectures with the
varying depth and width, i.e., the number of the layers and
neurons in each layer, and chosen the architecture with high
accuracy and real-time performance. As illustrated in Figure 1,
ERD consists of 13 layers that are grouped into 6 blocks: the
first 5 blocks are convolutional, and the 6th block consists
of the 3 fully-connected layers. Max/average pooling, being
parameterless, is not considered a separate layer. Through the
5 convolution blocks, ERD squeezes the width and height
of the feature maps, while increasing their depth: the input
image is 360x640x3 and the feature map produced by the
last convolution layer is 22x40x32, as shown in the figure.
Each convolutional block consists of two convolutional layers.
Thus, as depicted in Figure 1, ERD has 10 convolutional layers
and 3 fully connected layers. In each convolution layer, ERD
applies batch normalization and uses the rectified linear unit

(ReLU) to speed up gradient descent, while mitigating possible
gradient dispersion.

Figure 1 shows that the input image has a resolution of
360x640 with 3 channels (RGB). In ERD, the first two
convolutional layers each use 8 kernels for 2D convolution.
Each kernel in ERD is 3x3 in size with stride 1. The two
360x640x8 feature maps produced by the convolution layers
are concatenated and down-sampled into the 180x320x16
feature map via 2x2 max pooling. Each of the first 4 convolu-
tion blocks consists of two convolution layers followed by max
pooling. In the 5th convolution block, two convolutional layers
are followed by 2x2 average pooling. By using max/average
pooling, we compress the features maps to enable efficient
inference of the road status (empty or not). Moreover, we
aim to enhance the generalizability of our CNN model by
considering features maps with different levels of variance,
e.g., different degrees of illumination. When the average
pooling in the 5th convolution block completes, the output
feature map is flattened and input into the first fully connected
(FC) layer with 32 neurons, as illustrated in Figure 1. ERD
also has another FC32 layer, and finally an FC2 layer with
two neurons. In this way, ERD converts the semantic features
of the input image learned by the convolution blocks to the
probability of the road being empty or not.

In total, ERD has 146K parameters only; it is smaller
than the state-of-the-art CNN models by several orders of
magnitude. For example, AlexNet [18], the first CNN model
for image classification, which substantially outperformed
classical low-level computer vision techniques not based on
deep learning, has over 62 million parameters. The smallest
YOLOvVS model [7] has more than 7 million parameters.
Furthermore, ERD is significantly smaller and faster than the
lightweight models for full object detection in Table I.

III. EVALUATION

In this section, we evaluate performance in terms of fps,
i.e., the number of frames processed per second by the object
detection system. For our evaluation, we use a commodity
machine with an Intel® Corei7-7820X CPU, 64 GB RAM,
and a GeForce GTX 3080Ti GPU. Our operating system is
Ubuntu 18.04.6 LTS. We have used Python 3.9, Pytorch 1.13,
and OpenCV-python 4.6.0 [19] to implement and evaluate deep
learning models.

A. Dataset

The dataset contains the images extracted from a video
recorded on the road from the Bolshoy Moskvoretsky Bridge
to Kremlin Embankment in Moscow, Russia. It is published
on YouTube for computer vision research and development
[14]. We extract the images of the whole video and label each
image O or 1: empty or nonempty. Since only 21% of images
are labeled 0, labels are imbalanced. To avoid overfitting and
enhance generalizability, we augment the dataset by synthe-
sizing every image labeled O by rotating, flipping, lighting,
and blurring them. As a result, the fraction of empty images
with no object of interest has increased to 35%, obtaining total
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Fig. 2: An example of ERD + YOLOVS results.

6438 images with 720x 1280 resolution. We split the dataset
into the training, validation, and testing set with the ratio of
0.6:0.2:0.2.

B. Object Detector

Our system is flexible in that it can work with any object
detector to enhance the real-time performance of object de-
tection by dropping empty frames reliably. In this paper, we
use EfficientDet [5], SSD [6], and YOLOVS5 [20], which are
effective one-stage object detection models. We select them for
their superior real-time inference speed and similar detection
accuracy to the other state-of-the-art object detection models,
such as Region-based CNN (R-CNN) [2], Fast R-CNN [3],

Faster R-CNN [4], and the previous versions of YOLO [8].
Specifically, we have chosen EfficientDet-D0, SSD300, and
YOLOVSs for our study, because they are smaller than their
variants, still achieving high-quality object detection. This
makes them desirable for real-time applications that require
efficient and accurate object detection.

C. Evaluation Results

1) ERD accuracy: Figure 3 illustrates the confusion matrix
of ERD. ERD misclassifies only 5 images that are empty as
nonempty. Its accuracy is 0.96, recall 0.95, precision 0.97,
F1-score 0.97.
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Fig. 3: Confusion Matrix of Empty Road Detection. Accuracy:
0.96, Recall: 0.95, Precision: 0.97, Fl-score: 0.97.

2) Frame rate enhancements by ERD: In this paper, we
run both ERD and object detection on the GPU to achieve
significantly higher frame processing rates than the other
configurations, which use the CPU for ERD and the GPU
for object detection (or use the CPU for both), due to the
massive parallelism provided by the GPU. In our experiments,
we have observed that EfficientDet and YOLOVS support the
lowest and highest frame processing rate (fps), respectively
(the results are omitted due to space limitations). Similarly,
the ERD + YOLOVS pipeline supports the highest fps, which
is over 62 fps as shown in Table II. As summarized in Table II,
ERD enhances the fps of the three tested pipelines using
the different object detection models by approximately 10-
44%. Notably, ERD achieves the highest fps improvement
for EfficientDet, which is the slowest model. This is because
removing empty frames via ERD allows the pipeline to run
the slowest model less frequently, creating more impact on the
overall performance.

| Pipeline [ ERD+YOLOvS5 | ERD+SSD | ERD+EfficientDet |
[ Performance [ 62.4 (10.4%) [33.3(39.9%) | 13.7(44.2%) |

TABLE II: Frame processing rate improvements by ERD.
In each cell, the first number is the total frame processing
rate (fps) and the second number in the parenthesis is the
enhancement of the fps achieved by ERD.

Due to the performance improvement brought by ERD,
ERD + YOLOVS, which is the highest-performing scheme, can
support more than 30 fps per stream for up to three concurrent
streams as summarized in Table III. This is interesting because
the aggregate frame rate of the three streams is over 91
fps, which is over 47% higher than the frame rate of the
single stream of 62.4 fps in Table III. Therefore, ERD allows
more efficient resource utilization to support real-time object
detection for more concurrent streams.

3) Frame rates for different proportions of empty images:
Intuitively, ERD can drop more frames if the video contains

l Number of Streams [ 1 stream [ 2 streams [ 3 streams ‘
624 [ 531 [ 306 |

l Performance l

TABLE III: Frame processing rate for multiple concurrent
streams

more empty frames, resulting in a higher fps for the ERD
+ object detection pipeline. However, ERD can impair the
fps in an extreme case, where all frames are nonempty. In
the rest of this section, we adjust the proportion of empty
frames in the video described in Section III-A to perform a
cost-benefit analysis of ERD. More specifically, we evaluate
the frame rate for different proportions of empty frames in
the traffic monitoring video, ranging from 0% to 100%, with
a 10% increment. Thus, zero and all images are empty for
0% and 100%, respectively. As shown in Table IV, the fps
monotonically increases as the proportion of empty frames in
the video increases.

| Pipeline [ ERD+YOLOv5 | ERD+SSD | ERD+EfficientDet |

[ Performance [ 455-193.5 [20.8-167.2]  8.9-160.0 |

TABLE IV: Proportion of empty frames vs. fps. In each cell,
the first and second number are the fps when 0% and 100%
of the frames are empty.

In Figure 4, we present more detailed cost-benefit analysis
results. Each dotted horizontal line shows the fps of a stan-
dalone object detection model without ERD, i.e., EfficientDet,
SSD, or YOLOvVS, which is not affected by the proportion
of empty frames in the traffic video. It is worth noting that
an ERD + object detection outperforms the corresponding
object detection model without ERD when the percentage of
empty frames is beyond a break-even threshold. Table V shows
the break-even threshold for the tested pipelines. The slowest
EfficientDet model and the fasted YOLOvVS model have the
lowest and highest threshold, respectively.

These results suggest that ERD can be turned off during rush
hour. Alternatively, offline profiling can be performed to iden-
tify the break-even threshold for an ERD + object detection
configuration selected by the system administrator, e.g., the
ERD + YOLOVS pipeline, using an existing traffic monitoring
video. At runtime, the percentage of empty frames can be
continuously monitored to turn on ERD if the percentage
exceeds the break-even threshold. A thorough investigation is
reserved for future work.

| Pipeline | ERD+YOLOv5 | ERD+SSD | ERD+EfficientDet |
[ Threshold | 24.4% | 173% | 7.0% |

TABLE V: Break-even thresholds of ERD. If the proportion
of empty frames is higher than these thresholds, an ERD +
object detection scheme supports higher frame processing rate
than the corresponding standalone object detection model.
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IV. CONCLUSIONS AND FUTURE WORK

Traffic problems incur substantial societal costs. Real-time
object detection is a core component in the traffic surveillance
infrastructure. Advanced deep learning models developed re-
cently have significantly improved object detection perfor-
mance. Such models, however, are becoming deeper and more
complex. As a result, their latency and resource consumption
pose significant challenges for real-time object detection. In
this paper, we propose a new lightweight CNN model, called
empty road detection (ERD). ERD drops empty traffic images
with no object of interest, such as vehicles or pedestrians,
with high accuracy (0.96). By forwarding only nonempty
images to the advanced object detection model, ERD improves
the frame processing rate by 10-44% for the tested object
detection models. The fastest combination, consisting of ERD
and YOLOVS, supports over 30 fps/stream for three concurrent
video streams. Additionally, ERD + EfficientDet, ERD + SSD,
and ERD + YOLOVS5 support higher frame processing rates
than EfficientDet, SSD, and YOLOVS5, when the proportion of
the empty road frames in the video exceeds approximately 7%,
17%, and 24%, respectively. In the future, we will investigate
more advanced approaches to further improve the real-time
performance of traffic surveillance and deal with more general
traffic scenarios.
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