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Abstract—5G communication requires continuous exchanges
of channel state information (CSI) between the base station and
user equipment (UE) to adjust the physical layer parameters.
CSI classification in a noisy environment is challenging, since
CSI can get corrupted. To address this problem, we apply a
convolutional neural network (CNN) to classify several key CSI
parameters. In a simulation study, our CNN method classifies the
CSI parameters with accuracy ranging between 84-98 %, which is
approximately 24-38% higher than the 3GPP recommendations
for UEs [1].

I. INTRODUCTION

Typically, a wireless communication system designer first
designs and analyzes an end-to-end communication system
using standard channel models [1]], [2]. Such an analysis con-
sists of rich mathematical theories and proofs-of-concept for
robust communication in noisy environments. In a real-world
environment, however, an implemented system may not prove
as robust as seen in the analysis for various reasons [3[]—[|10].
From the physical (PHY) layer perspective, unforeseen varia-
tions in parameters and conditions, such as delays, Doppler
effects, signal correlations, atmospheric effects, scattering,
fading, hardware non-linearities, and power failures, result in
performance degradation of well-studied models in the real-
world. This gap between the theory and practice at the PHY
layer requires the designer to investigate alternative approaches
to tackle these challenges for building efficient 5G wireless
systems.

5G communication requires continuous channel state infor-
mation (CSI) exchanges between the base station (BS) and
user equipment (UE) for robust communication. Based on CSI,
a BS and UE adjust the physical layer parameters [1], [2]. In
this paper, we convert CSI frames to a 2D data structure by
exploiting the fact that CSI is organized in a specific pattern
according to the 3GPP recommendations [1]]. After mapping
CSI to the data structure, we apply neural network techniques
to learn and classify CSI parameters in noisy environments.
Specifically, we apply the convolutional neural network (CNN)
methodology very effective and robust in classification [11]].

CNN technology itself is well established especially for
computer vision. CNNs have also been applied to support mo-
bile wireless applications, e.g., multiple-input multiple-output
(MIMO) modulation recognition [3]], activity recognition [[12]],
traffic forecasting [13]], anomaly detection [14]], and power ef-
ficiency [|15]]. However, much less work has been done to apply

CNNs to CSI classification [[16], [17]. Duan et al. [16] apply
CNNs to classify OFDM-QAM, UFMC, and FBMC-OQAM
using an additive white Gaussian noise model that is rather
ideal and may fail to model real-world channel conditions.
In [17], a CNN and long short-term memory, which is a type
of a recurrent neural network, are used together to predict CSI
based on historical CSI data; however, the authors do not focus
on classifying CSI parameters in a noisy environment. As CSI
can be corrupted in a noisy environment, this is a serious
issue and, therefore, more work is needed to enhance CSI
classification. In this paper, we use more realistic and noisier
models—the pedestrian A (EPA), extended vehicular A (EVA),
extended typical urban (ETU) channel models—that subsume
the channel models used in [[16], [17]. Moreover, we consider
a more comprehensive set of key 5G CSI parameters: the
delay spread, Doppler spread, signal interference to noise ratio
(SINR), precoding matrix indicator (PMI), channel quality
indicator (CQI), and rank indicator (RI). The main contribution
of this paper is effectively applying CNN techniques to support
more comprehensive 5G CSI parameter classification using
more realistic channel models. Thus, it is different from and
complementary to related leading-edge works discussed above
131, [12]-{17].

In this paper, we design, train, and evaluate a CNN
framework for CSI classification. In a simulation study, our
CNN classifies the aforementioned CSI parameters with high
accuracy that range between 84-98%, which is approximately
24-38% higher than the 3GPP recommendations for UEs [1].

The rest of this paper is organized as follows. Section
provides background on CSI. Section [lII| discusses the overall
5G system structure. Section describes our approach to
designing a CNN for CSI classification. Section [V] evaluates
the performance of the proposed CNN. Finally, Section
concludes the paper and discusses future work.

II. CHANNEL STATE INFORMATION

As the frequency spectrum is the most precious resource in
wireless communication, a wireless system designer needs to
design a system that utilizes available frequency resources effi-
ciently. To design a spectrally efficient system, a designer typi-
cally uses higher order MIMO, 5G new radio (NR) waveforms,
5G-NR modulation and coding schemes (MCS) in the PHY
layer [2]. However, unforeseen channel conditions can degrade
the overall system performance as discussed in Section
Hence, the BS and UE need to continuously exchange CSI
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Fig. 1: Overall 5G System Structure

and adjust the PHY layer parameters accordingly to achieve
robust performance even in a noisy environment. 1], 2.

As shown in Figure|l} CSI exchanged between a BS and UE
is 3D data with the size of H x W x C' where H, W, and C
represent the number of sub-carriers, the number of symbols,
and the number of MIMO antennas, respectively. CSI contains
many parameters; however, in this paper, we mainly focus on
the PHY layer and consider several key CSI parameters useful
to design an adaptive 5G PHY layer. They are classified into
two broad categories as follows:

1) Communication channel properties allow a UE to esti-
mate the conditions of incoming BS signals.

o The delay spread allows the UE to estimate the delay
propagation with recommended propagation scenarios,
such as EPA, EVA, and ETU.

o The Doppler spread lets the UE estimate the mobility
with recommended velocities, such as SHz, 70Hz, and
300Hz.

o Based on the SINR, the UE estimates the noise level
of the channel between the BS and UE.

2) PHY layer interference parameters allow the UE to adjust
the PHY layer configuration as per the BS.

o RI denotes the number of independent data streams
coming toward the UE.

e PMI informs the UE of the codebook for downlink
transmission. It determines how to map the individual
data streams to the antennas.

o CQI measures the downlink channel quality to specify
the best possible MCS for the UE.

III. OVERALL COMMUNICATION SYSTEM STRUCTURE

Figure [I] shows the overall 5G communication system
structure used for our work presented in this paper. It mainly
consists of two parts: a BS and UE. For simplicity, we depict
just one UE assuming that all the other UEs have the same
PHY layer. As illustrated in Figure |1} the BS applies channel

coding to the incoming signal based on CQI, layer mapping
based on RI, and precoding based on PMI in sequence.
After that, it applies OFDM modulation and signal generation
based on the delay spread, Doppler spread, and SINR. In
the UE, a similar process takes place in reverse order. In
addition, channel estimation and CSI calculation are performed
to distinguish among different uplink/downlink channels.

Based on the CSI parameters, the BS and UE adapt channel
coding, layer mapping, and precoding to optimize wireless
communication. To adjust the PHY layer parameters in a
noisy channel environment, the UE and BS exchange the CSI
through a feedback link as shown in Figure [I] Specifically, the
UE provides CSI feedback through the physical uplink control
channel (PUCCH) and the physical uplink shared channel
(PUSCH) as shown in Figure [I} The BS transmits its CSI
information to the UE through the physical downlink shared
channel (PDSCH) and physical downlink control channel
(PDCCH) [2]]. In this paper, we extract CSI frames exchanged
between the BS and UE through these channels and label them
to design and train the CNN for CSI classification.

IV. CNN DESIGN

In this paper, we map CSI frames to our data structure.
Using the data structure, we design a CNN to classify CSI
parameters.

¢ As communication data involve complex numbers, ex-
isting CNN techniques (e.g., image processing) are not
directly applicable. To address this issue, we put the
real and imaginary parts of each data in two consec-
utive columns to distinguish them and process them
accordingly in our CNN. For example, if there is a
complex number 5 + 37, we write 5 and 3 into two
columns. Although one may argue that this conversion
is straightforward, it allows us to avoid any data loss
that can significantly degrade the performance of CSI
classification.
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Fig. 2: CNN for CSI Parameter Classification

e In 5G communication, there are multiple channels de-
pending on the MIMO antenna array configuration. For
example, there are 16, 64, and 256 channels for 4 x 4,
8 x 8, and 16 x 16 MIMO antennas, respectively. To
address this issue, we rearrange the 3D CSI input data
into the 2D and put multiple antenna frames next to
each other as shown in Figure 2] In this way, we can
classify CSI data for any number of MIMO antennas
rather than being restricted to a specific MIMO antenna
configuration.

e In communication data, there is the smallest amount of
data in the W axis for symbols as shown in Figure [I] To
deal with the small region of interest, we stack multiple
2D data structures as depicted in Figure

o In this paper, we choose LeNet [[11], which has two
hidden layers, as our CNN model, since the CSI data
is relatively small and it is reduced to half after going
through each convolution layer. We have investigated sev-
eral other state-of-the-art CNN models, including ResNet,
VGG, and inception, effective for classification [[11]],
[18]-[20]]; however, they require deeper networks.

Given that, our CNN model performs feature extraction and

CSI classification:

1) Feature extraction aims to extract the features of input
CSI frames and create a feature map. The first convolu-
tional layer in Figure 2] learns the features from input by
shifting the filter (kernel) across the CSI frames. By doing
this, it produces a mid-level feature representation of the
CSI frames. To the feature representation, we apply the
rectified linear unit (ReLu) activation function that is a
very effective nonlinear activation function. In the pooling
layer following the first convolution layer in Figure 2]
we apply the max-pool function to the result produced
by ReLu for down-sampling. In the second convolutional
layer, convolution and ReLu activation are performed,
similar to the first convolutional layer. Subsequently, max
pooling is applied for another sub-sampling. The output
is flattened and provided as the input to the following
layers for CSI parameter classification.

2) In the classification stage, we use two fully-connected
(FC) layers that take the feature map as the input as
shown in Figure 2] for high accuracy classification of
CSI. We also apply the dropout method [11]], [[18]-[20] to
the second fully connected layer to avoid overfitting the

network and enhance the CSI classification accuracy for
new data unseen in model training. Finally, we employ
the softmax function for CSI parameter classification in
the output layer.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
CNN method for CSI parameter classification. First, we build
and simulate the 5G link-level system structure according
to the 3GPP standard requirements [1]] and extract the CSI
frames by mapping them to our data structure as discussed in
Section Second, we label the extracted CSI parameters to
collect data necessary for training the CNN. Third, we train
and validate the CNN using the labeled data in the training
and validation sets, while tuning the hyper parameters of the
CNN. Moreover, we evaluate the accuracy of CSI parameter
classification using the test set not used for training and
validation.

A. CSI Data Generation

Parameters [ Labels

Delay Spread EPA, EVA, ETU
Doppler Spread S5Hz, 70Hz, 300Hz
Signal Interference to Noise Ratio (SINR) | -10:2:20

Rank Indicator (RI) 0-4
Precoding Matrix Indicator (PMI) 0:16:255
Channel Quality Indicator (CQI) 0-15

TABLE I: CSI Parameters and their Labeling

To generate CSI data, we design and simulate the 5G link-
level system framework in Figure [T] using the MATLAB LTE
Toolbox. A generated CSI frame has the dimension of 96 x
8 X 16 as discussed in Section After generating CSI data,
we label the dominant CSI parameters in Table [I] discussed in
Section [[Il As shown in Table [, we have considered six CSI
parameters and manually labeled the parameters by examining
all CSI frames. In this paper, we have generated 43,200 CSI
frames After generating CSI data and labeling them, we train
and validate the CNN as follows.

Tn addition, an extensive set of real-world communication data was used
while Ankur Vora worked at Cadence System Design as an intern in 2018. The
evaluation results were similar to the ones presented in this paper; however,
we no longer have access to the Cadence data. Neither can we present the
results produced using the Cadence data due to the nondisclosure agreement.
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Fig. 3: Errors for Training and Validating CSI Parameters

B. Network Training and Validation

We design the LeNet in Figure [2] using TensorFlow [T8].
We provide the CSI data and their labels as input to the
LeNet and start training the network. We use 80% of the data
for network training, 10% of the data for network validation,
and the remaining 10% of the data for testing purposes. To
optimize the classification accuracy, we tune the CNN hyper
parameters. For the given data set, the best hyper parameters
we found are presented in Table

Hyper Parameters | Values

Hidden Layers 2
Batch Size 128
Activation Function | ReLu
Learning Rate 0.01
Decay Rate 0.95
Conv. Layer Width 64,32
FC Layer Width 512
Dropout Probability | 50%
Padding same
Kernel Size 3x3

TABLE II: Hyper Parameters of the Proposed Network

Using the hyper-parameters, we have trained and validated
the CNN again. As shown in Table [ each of the labeled
CSI parameters has different complexity, noise, and labels
associated with it. The results of our network training and
validation using the hyper parameters are shown in Figure 3]
and discussed in the following.

First, we evaluate the CSI parameters of channel properties:
1) delay-spread, 2) Doppler-spread, and 3) SINR. In Figures[33]
and [3b] the training and validation results observed after more
than 1600 iterations are plotted. As shown in Figures [33]
and [3b] the errors of delay and Doppler spread generally
reduce toward zero. However, the training data of SINR are
noisier. Thus, it has relatively large errors than the delay and
Doppler spread.

Further, we evaluate the CSI parameters that estimate PHY
layer interference: 1) RI, 2) PMI, and 3) CQI. Among them,
PMI and CQI have more complex data structures and more
subject to corruption in a noisy environment [1], [2]. In fact,
reducing their complexity is a separate research problem for
effective wireless communication [21]—[24]]. To address this
issue, we have undertaken much more iterations (over 6000)
for training and validation. As shown in Figures and [3d|
the error of RI generally decreases toward zero, but the errors
of PMI and CQI do not reduce toward zero due to the noisy,
complex nature.

C. Classification Accuracy

The testing results using the saved 10% test set that
the LeNet has never seen are presented in Table [l The
classification accuracy of delay spread, Doppler spread, and
RI range between 93-98%, which is higher than the 3GPP
recommendations for UE manufactures [[1]] by 33-38%.

The accuracy of SINR classification is 90%, since it is
noisier than delay spread and Doppler spread are as discussed
before. Due to the noisy and complex nature, PMI and



Parameters [ Accuracy
Delay Spread 98%
Doppler Spread 93%
Signal-Interference-to-Noise-Ratio (SINR) | 90%
Rank Indicator (RI) 96.7%
Precoding Matrix Indicator (PMI) 84.7%
Channel Quality Indicator (CQI) 86.6%

TABLE III: CSI Parameter Classification Accuracy Results

CQI classifications achieve the lowest accuracy of 84.7%
and 86.6%, respectively. However, their accuracy is higher
than the 3GPP recommendations [1]] by 24.7-26.6%. A more
effective approach is needed to further enhance the accuracy.
A thorough investigation is reserved for future work.

VI. CONCLUSIONS

In 5G communication, the channel state information (CSI)
is continuously exchanged between the base station and a user
equipment. Thus, CSI is essential for effective 5G communica-
tion; however, CSI can be corrupted in a noisy environment. In
this paper, to support effective CSI parameter classification in
noisy environments, we effectively apply convolutional neural
network (CNN) techniques. Although the CNN methodology
itself is well established, related work on its application to
CSI parameter classification in noisy environments is relatively
scarce (discussed in Section E[) In our simulation study, our
CNN achieves 84-98% accuracy of CSI classification, which
is approximately 24-38% higher than the 3GPP recommenda-
tions [1f]. In this paper, the classification accuracy is measured
for a single channel at the physical and link layers. In practice,
however, a UE has multiple uplink and downlink channels. It is
desirable for the UE to pick the channel with the lowest noise
to further enhance the classification accuracy. In the future,
we will explore whether it is feasible to effectively integrate
channel selection and CSI classification by applying machine
learning techniques, such as deep reinforcement learning.
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