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Abstract In data-intensive real-time embedded applications, it is desirable
to process data service requests in a timely manner using fresh data, spending
less power. However, related work is relatively scarce despite the importance.
In this paper, we present an effective approach to reduce both deadline misses
and power expenditure in real-time databases with one or more processor
by merging similar real-time queries to decrease repeated data accesses and
processing, while doing dynamic power management. In a simulation study,
our approach substantially decreases deadline misses and power consumption
compared to state-of-the-art baselines.

Keywords Real-Time Databases - Timeliness - Power Conservation - Query
Aggregation

1 Introduction

The demand for real-time data services in embedded systems is increasing.
For example, small-footprint embedded databases are developed to support
data-intensive real-time embedded and cyber-physical applications, such as
traffic control, surveillance, smart buildings, energy-efficient avionics, medi-
cal devices, firefighting, and real-time engine diagnosis [mcobject(2017), Kang
and Chung(2017), Kang and Son(2012), Kang and Chung(2015), Gustafsson
et al(2005)Gustafsson, Hallgvist, and Hansson).

In data-intensive real-time embedded applications, it is desirable yet chal-
lenging to process real-time transactions and queries (read-only transactions)
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in a timely manner using fresh data representing the current real-world sta-
tus, while reducing the power consumption. Optimal energy scheduling is in-
tractable even in a single processor with dynamic voltage and frequency scaling
(DVFS) and a low-power idle state [Irani et al(2007)Irani, Shukla, and Gupta].
Saving power without impairing the timeliness in real-time databases (RTDBs)
could be more challenging, because the arrival rate of user transactions may
vary considerably depending on the current real-world status, e.g., the traffic
or weather conditions [Lam and Kuo(2006)]. Further, transactions may get
aborted and restarted due to data/resource conflicts unknown a priori, incur-
ring deadline misses. Therefore, in this paper, we investigate effective heuristics
to decrease both the deadline miss ratio and power consumption in RTDBs
with one or more processor, while supporting the required data freshness.

In a database system, multiple queries often access common data, e.g.,
traffic data of busy intersections or severe weather data. In fact, large data
access skews are prevalent [Wires et al(2014)Wires, Ingram, Drudi, Harvey,
and Warfield]. For example, the well-known 80/20 rule indicates that 20% of
data are accessed for 80% of accesses. However, a direct application of this ap-
proach to RTDBs may result in many deadline misses, because queries should
be delayed for aggregation. For instance, Lang et al. [Lang and Patel(2009)]
intentionally delay queries to combine them in non-RTDBs. Although their
approach decreased the energy consumption by up to 54%, it increased the
average response time by 43%.

To combine real-time queries that access common data without jeopardiz-
ing the timeliness, we schedule the transaction with the highest priority (e.g.,
the earliest deadline transaction) first, while scanning the ready queue sorted
in non-ascending priority order backwards to merge similar user transactions
together in the background.! In this way, we avoid duplicate data analyses as
well as accesses in RTDBs as much as possible without disrupting high priority
transactions at or near the head of the queue. In traffic control, for example,
several queries for travel route planning may require the RTDB to read and
process the same sensor data by running a shortest path algorithm to find a
path from location A to B expected to be fastest considering the geographic
distance and current traffic status, even if their sources and final destinations
are different. Multiple real-time queries may require the RTDB to access and
process common data to analyze the air quality and micro-climate conditions
in a smart building to process queries for allergy warnings or heating, ventila-
tion, and air conditioning (HVAC). Also, several real-time surveillance queries
may need to access and process common surveillance images captured on a
busy street to do background subtraction and object detection, even if they
are tracking different objects, e.g., different types of cars or pedestrians, in the
images. Thus, our approach for real-time query aggregation combines multi-
ple queries into a single query to avoid repeated data accesses and analyses
of common data, which may incur significant overhead and deadline misses,

1 Although we not only aggregate queries but also combine data reads and processing for
transactions, we call our approach real-time query aggregation to be consistent with the
term ’query aggregation’ used in the database literature [Lang and Patel(2009)].
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while reducing data/resource contention among transactions that could cause
transaction aborts/restarts.

Race-to-idle and never-idle are two major approaches for power saving. In
the race-to-idle scheme, the processor runs at the maximum speed to enter a
low-power idle state as early as possible. In the never-idle scheme, however, the
processor speed is continuously adapted to meet the performance requirement
with less power consumption. In this paper, we mainly take a race-to-idle
approach to reduce the processor power consumption due to the decreasing
effectiveness of the never-idle approach based on, for example, DVFS [Bam-
bagini et al(2016)Bambagini, Marinoni, Aydin, and Buttazzo]. At runtime,
our approach processes real-time update and user transactions at the highest
processor speed, while reducing the RTDB workload via real-time query aggre-
gation. When a processor is idle with no update or user transaction to execute,
our approach switches it to a low-power idle mode based on the idle interval
length estimated considering the data update periods and recent user transac-
tion arrival pattern. Thus, our real-time query aggregation and power saving
methods cooperate with each other to simultaneously reduce both the deadline
miss ratio and power consumption rather than doing trade-offs between them.

Despite the importance, related work on RTDB power management is rel-
atively scarce [Kang and Chung(2015), Kang and Son(2012)]. A summary of
our key contributions and novelty follows:

— Our real-time query aggregation scheme reduces both the miss ratio and
power consumption rather than doing trade-offs between them.

— It is generally applicable to RTDB power management, since it does not
assume a constrained or specialized transaction/query model.

— It requires neither any special hardware nor extensive system modeling
and tuning. It only needs low-power idle states supported by almost all
processors today.

— Our approach is configurable and relatively easy to use. A database ad-
ministrator (DBA) needs to set only a few parameters for real-time query
aggregation.

In this paper, we have considerably extended our previous work [Kang(2016)],
which only considers uniprocessor RTDBs, to reduce the deadline miss ratio
and power consumption in multiprocessor as well as uniprocessor RTDBs:

— We extend the RTDB system architecture to provide fundamental sup-
port for power-aware real-time data services in RT'DBs with one or more
processors, e.g., real-time transaction scheduling and power management.

— Based on the new RTDB architecture with m > 1 processors, we extend
the real-time query aggregation and dynamic power management (DPM)
schemes. Especially, we aggregate real-time queries by scanning the global
earliest deadline first (GEDF) queue backwards. We assign a set of aggre-
gated real-time queries together to one processor in the EDF order to share
the common data and processing results already retrieved and produced
by earlier deadline transactions, if any. In this way, we reduce repeated
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memory accesses and computations, which may occur otherwise, to de-
crease the deadline miss ratio, while saving power via DPM. Our approach
naturally maps to a uniprocessor RTDB too: In a uniprocessor RTDB,
we schedule transactions via EDF and scan the EDF queue backwards
to decrease duplicate data accesses and analyses to reduce the miss ratio
and power consumption via real-time query aggregation and DPM. Thus,
our approach conserves power for relatively moderate workloads, while en-
hancing the timeliness for higher workloads in RTDBs with one or more
processor.

— We support the data freshness requirements based on the notion of ab-
solute validity intervals (discussed in Section 3) [Lam and Kuo(2006)]
without dynamically adapting the freshness different from our previous
work [Kang(2016)]. Although dynamic freshness adaptation could be effec-
tive for certain applications, e.g., weather or stock price updates on the web
with relatively relaxed freshness requirements, freshness assurance based
on absolute validity intervals can be more appropriate for data-intensive
real-time embedded or cyber-physical applications such as traffic control
or surveillance, in which stringent freshness requirements are determined
by physical characteristics.

— In addition, we have thoroughly evaluated the performance of our approach
in not only uniprocessor but also multiprocessor RTDBs via an extensive
simulation study modeled after real-world RTDB applications, e.g., traf-
fic control, fire detection, and engine diagnosis [Xiong et al(2008)Xiong,
Han, Lam, and Chen, Han et al(2014)Han, Chen, Xiong, Lam, Mok, and
Ramamritham, Kang and Son(2012)]. Our approach decreases the dead-
line miss ratio and dynamic power consumption compared to the tested
state-of-the-art baselines by up to approximately 86% and 45% for differ-
ent workload and numbers of cores (1—8 in Section 5).

The rest of this paper is organized as follows. Section 2 discusses related
work. Section 3 discusses the supported transaction types, data freshness re-
quirements, and power-aware RTDB architecture. Section 4 describes our ap-
proach for reducing the deadline miss ratio and power consumption in RTDBs.
Section 5 evaluates the performance of our approach and baselines. Section 6
discusses open research issues. Finally, Section 7 concludes the paper.

2 Related Work

In general, research on power/energy management in database systems is rel-
atively new. It is known that [Lang and Patel(2009)] is the first to provide
concrete techniques for energy-efficient query processing. It explicitly delays
queries for combined processing, while supporting DVFS. It has been followed
by other projects on database power/energy management in data centers in-
cluding [Xu et al(2013)Xu, Wang, and Tu, Tu et al(2014)Tu, Wang, Zeng,
and Xu, Kunjir et al(2012)Kunjir, Birwa, and Haritsa, Xu et al(2015)Xu, Tu,
and Wang]. In these approaches, the database energy consumption is reduced
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for the increased response time or decreased throughput. However, they are
not directly applicable to RTDBs, since delaying real-time queries to en-
hance energy efficiency via aggregation may incur many deadline misses as
discussed before. Neither do they support real-time transaction scheduling,
concurrency control, or data freshness (temporal consistency). Sensor network
databases [Madden et al(2005)Madden, Franklin, Hellerstein, and Hong, Tsiftes
and Dunkels(2011)] support relatively simple in-network data processing, e.g.,
sensor data aggregation, to mainly optimize communication costs. In [Hu and
et al.(2015)], efficient data freshness management is explored when data are
retrieved from wireless sensors in sequence specialized for rescue or tactical
situations. Kim et al. [Kim et al(2016)Kim, Abdelzaher, Sha, Bar-Noy, and
Hobbs] propose a scheduling algorithm to retrieve sensor data over a single
bottleneck connection, which is optimal on the condition that no data is shared
among real-time decision making tasks. However, aggregating real-time queries
and reducing the RTDB power consumption are not considered.

Surprisingly little work has been done on RTDB power management. A
novel work [Kang and Son(2012)] is the first to support the desired power con-
sumption and I/O deadline miss ratio, via multi-input, multi-output (MIMO)
control, in an RTDB based on flash memory. In [Kang and Chung(2015)], a
control theoretic approach is developed to support the timeliness of a single
periodic real-time transaction running concurrently with a few interfering non-
real-time transactions in an embedded database. The power consumption is
decreased via dynamic frequency scaling and sensor data dropping in the feed-
back loop. In [Kang and Chung(2017)], the same authors support DVFS, while
adapting the data temporal consistency for fine-grained control in the feedback
loop despite discrete voltage/frequency levels. However, the general applicabil-
ity of [Kang and Chung(2015),Kang and Chung(2017)] is limited, because they
have a constrained transaction model that supports one real-time user transac-
tion only. In [Xu et al(2013)Xu, Wang, and Tu], DVFS based on proportional
and integral (PI) control is applied to decrease the power consumption for
I/0O bound queries, while supporting the desired throughput in a non-RTDB.
The energy costs of query operators are evaluated in [Xu et al(2015)Xu, Tu,
and Wang]. However, real-time query aggregation is not considered to reduce
the RTDB power consumption. These projects [Kang and Son(2012), Kang
and Chung(2015), Kang and Chung(2017), Xu et al(2013)Xu, Wang, and Tu]
essentially take never-idle approaches that require extensive system modeling
and tuning, which should be repeated in different platforms. Our approach
adopts a more general real-time transaction and data model. Also, it reduces
RTDB power consumption via DPM without requiring complex modeling and
tuning.

Power-aware real-time scheduling has been well explored. Related work
includes [Irani et al(2007)Irani, Shukla, and Gupta, Volp et al(2014)Volp,
Hahnel, and Lackorzynski, Cao and Ravindran(2014), Imes et al(2015)Imes,
Kim, Maggio, and Hoffmann, Legout et al(2015)Legout, Jan, and Pautet, Fu
et al(2016)Fu, Calinescuy, Wang, Li, and Xue, D’souza and Rajkumar(2017),
Guo et al(2017)Guo, Bhuiyan, Saifullah, Guan, and Xiong,Kehr et al(2017)Kehr,
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Quinones, Langen, Boeddeker, and Schaefer| just to name a few. A good sur-
vey of power management in hard real-time systems is given in [Bambagini
et al(2016)Bambagini, Marinoni, Aydin, and Buttazzo]. Although the trans-
action timeliness, data freshness, and power management in RTDBs are not
directly considered in these approaches, basic principles could be applied for
more effective RT'DB power management.

Novel hardware and operating system techniques are developed to deal
with interference among the CPU cores in safety-critical real-time embedded
systems [Valsan et al(2017)Valsan, Yun, and Farshchi, Kim et al(2017)Kim,
Ward, Chisholm, Fu, Anderson, and Smith]. Our approach is complementary
to them in that it strives to reduce user transaction workloads and power
consumption via real-time query aggregation and DPM, potentially decreasing
interference by executing aggregated real-time queries in the same core.

Further, our work could benefit more from previous database research.
For example, approximate query processing techniques are developed to pro-
duce rough results under overload [Deshpande et al(2007)Deshpande, Ives,
and Raman, Babu and Bizarro(2005)]. The miss ratio and power consumption
of our approach could be decreased further, if it is combined with approxi-
mate query processing. In [Xiong et al(2008)Xiong, Han, Lam, and Chen, Han
et al(2014)Han, Chen, Xiong, Lam, Mok, and Ramamritham]|, update trans-
actions are deferred to reduce the update workload, supporting the data tem-
poral consistency. Little prior work has been done to support the freshness
of temporal data in multiprocessor environments. In [Li et al(2011)Li, Chen,
Xiong, and Li], a novel method is developed to maintain the data tempo-
ral consistency via workload-aware partitioning under EDF. Han et al. [Han
et al(2016)Han, Lam, Chen, Xiong, Wang, Ramamritham, and Mok] present
novel algorithms to maintain data temporal consistency even during a mode
change in dynamic cyber-physical systems with multi-modal behavior. Thus,
our work is complementary to these approaches.

3 Data Types, Transactions, and System Overview

In this section, the data and transaction types and data freshness requirements
considered in this paper are described. Background for DPM is given. Also,
an overview of our power-aware RTDB architecture is given.

3.1 Data Types, Transactions, and Deadlines

In our data service model, there are two types of data: temporal and non-
temporal data. Temporal data, e.g., sensor readings, become outdated as time
goes by, because the real-world status, e.g., traffic or weather state, may con-
tinuously change. The temporal consistency between the real-world state and
the temporal data in the RTDB is maintained based on the absolute valid-
ity intervals [Lam and Kuo(2006)]. A temporal data item O; is associated
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<begin transaction T3>
read and analyze O;;
read and analyze Oj;

write Og;
deadline D;; /* relative deadline x*/
<end transaction T3>

Fig. 1 An Example of a Real-Time Transaction Tj

with a timestamp that indicates the latest update time. It is considered fresh,
i.e., temporally consistent, if (current time — timestamp(O;) < avi(O;)) where
avi(0;) is the absolute validity interval of O;. On the other hand, non-temporal
data, e.g., a vehicle registration number, do not become outdated unless users
explicitly modify them. Thus, we focus on managing temporal data in this
paper.

In RTDBs, there are two types of transactions. If a real-time transaction
T; is a periodic update transaction, T; periodically updates a specific sensor
data object O; in a dedicated manner. Also, a user can submit an aperiodic
user transaction to the RTDB to read temporal data and read/write non-
temporal data to derive real-time information from raw sensor data [Lam and
Kuo(2006)]. If T; is a user transaction, it can read and process sensor data
periodically refreshed by the update transactions to support, for example,
transportation management or surveillance.

In general, a real-time transaction 7; reads and processes a set of data
R; and writes a set of data W, as illustrated in Figure 1. If T; is an update
transaction for O;, the read set R; = () and the write set W; = {O;}. On the
other hand, if T is a user transaction, R; consists of one or more temporal /non-
temporal data. W; consists of zero or more non-temporal data. (If T; is a query,
W; =10.)

If T; is an update transaction, its relative deadline is equal to its period, i.e.,
D; = P;. In contrast, the relative deadlines of user transactions are determined
by a specific RTDB application of interest, e.g., transportation management
or surveillance. If an update or user transaction T; with a relative deadline
D; is released or arrives at time ¢, its absolute deadline is ¢t + D;. In this
paper, real-time transactions are assigned firm deadlines. If all the required
operations to read, process, and write data are completed by t + D;, T; is
committed successfully. Otherwise, it is aborted upon the deadline miss to
avoid cascading deadline misses due to intensified data/resource contention.

3.2 Background for Dynamic Power Management

For RTDB power management, we consider the advanced configuration and
power interface (ACPI) standard that is widely adopted. In ACPI, P states are
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performance states. The PO state supports the highest frequency and voltage.
A higher numbered P state spends less power, but provides a lower computa-
tional speed due to the reduced frequency and voltage.

In addition, ACPT has C states. In the C0 state (active mode), the processor
executes instructions normally. However, no instruction is executed in a low-
power idle state, e.g., the C1, C2, or C3 state in Table 1, or during a state
transition.? In this paper, we assume that the operating system provides an
application programming interface (API) to let the RTDB leverage the low-
power states to support timely, power-efficient real-time data services using
ACPI when one or more core becomes idle.

Table 1 C-states used in this paper (source: [Legout et al(2015)Legout, Jan, and Pautet])

State (C}) | Power (p;) [ Latency (4;) | Energy (E;)
CO (Run) IWwW 0 0

C1 (Standby) 0.5 W 0.1 ms 0.025 mJ

C2 (Dormant) 0.1W 2 ms 0.9 mJ

C3 (Shutdown) | 0.00001 W 10 ms 5 mJ

As shown in Table 1, a transition between the CO state and C1 state takes
relatively negligible time and energy. More power is saved in a higher C state;
however, the state transition takes more time and energy. In the table, the
power consumption p; in the state C; where j > 0 is normalized to that in
the CO state.

To effectively exploit the C-states, we define the transition latency of C;
as: 0; = do—; + 6j—0 where do_; is the state transition latency from CO to C}
and d;_,0 is that from C; to CO. Also, we define the energy overhead for C}
as: By = Fg_,; + Ej_o where Ey_,; indicates the energy consumed to switch
from CO to C; and Ej_,¢ is the energy spent to shift back from C; to CO. In
this paper, we define the break-even time B; = 0; for a low-power state j;
that is, an idle interval must be at least as long as ¢; to effectively leverage C;
[Legout et al(2015)Legout, Jan, and Pautet, Bambagini et al(2016)Bambagini,
Marinoni, Aydin, and Buttazzo.

In this paper, we assume that the same amount of power is consumed, if the
same RTDB workload is executed in two different cores and no power saving
technique is applied in any of the cores. In addition, we make the following
assumptions:

— Different cores can be in different C-states or P-states at the same time.

2 We have adopted Table 1 from a novel work on energy-efficient real-time scheduling
[Legout et al(2015)Legout, Jan, and Pautet], which has derived the low-power state model
summarized in the table by analyzing the ARM Cortex-A family processors and FreeScale
Power architecture.
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Block queue )
Blocked Transaction Handler Committed
TS | FM | CC | PM
User GEDF queues
transactions Preempted
- Aborted/restarted
Update
streams Dispatched

Fig. 2 Power-Aware Multicore RTDB Architecture

— There are a fixed number of discrete clock frequencies that range between
[fmin; fmax]~3

— An idle core consumes more power in the highest P-state using the lowest
frequency and voltage than it does in the C1 state that is the shallowest
low-power mode.

Further, to model power saving due to real-time query aggregation and
DPM, let us suppose that a core becomes idle after processing aggregated
real-time queries assigned to it by TS in Figure 2. Also, suppose that PM in
Figure 2 allows the idle core to switch to and stay in the C; (j > 0) state for
T time units. In such a case, we estimate the average normalized power saving
with respect to pg due to real-time query aggregation and DPM as follows:

1. We compute ps[t] = (po — p;)W at each time instant ¢ while the core is in
the C; state.

2. We then calculate the average normalized power saving considering E; that
is the energy overhead of the C; state in Table 1:

Zps —~

(%) (1)

1
poT

3.3 Power-Aware RTDB Architecture

The transaction handler in Figure 2 consists of the transaction scheduler (TS),
freshness manager (FM), concurrency controller (CC), and power manager
(PM). TS schedules real-time user transactions and data updates. In this pa-
per, we apply the global earliest deadline first (GEDF) algorithm, because
GEDF supports bounded tardiness in a multiprocessor real-time system with
m processors, if the total utilization does not exceed m and the utilization of
each processor is not higher than 1 [Devi and Anderson(2008)]. In our RTDB
architecture, when m = 1, GEDF reduces to EDF as discussed before. Our

3 The dynamic power consumption when the CPU is in the active mode is proportional
to the clock frequency f and the square of the supply voltage V: Py, o fV? [Bambagini
et al(2016)Bambagini, Marinoni, Aydin, and Buttazzo].
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approach aggregates real-time user queries by scanning the EDF queue back-
wards and applies DPM to decrease the miss ratio and power consumption.

It is known that the runtime overhead due to task migration in GEDF is
negligible for relatively small m [Bastoni et al(2010)Bastoni, Brandenburg, and
Anderson|. Further, most existing embedded RTDBs run on uniprocessor or
multicore platforms with a few cores [mcobject(2017), Kang and Chung(2017),
Kang and Son(2012),Kang and Chung(2015),Gustafsson et al(2005)Gustafsson,
Hallgvist, and Hansson, Lam and Kuo(2006)]. Similarly, we assume that the
RTDB depicted in Figure 2 runs on a platform with m > 1 homogeneous
core(s) that can be in different C-states. Further, we assume that a user or
update transaction is processed sequentially in one of the cores (no intra-
transaction parallelism).

avi(0;) avi(0;)
| [ . [ |
t t+ P t+2p t t+P t+ 2P

Fig. 3 One-One Principle: O; becomes Fig, 4 Half-Half Principle: O; is main-
stale after ¢t + P;. tained fresh.

Maintaining the freshness of temporal data is important, because real-time
user transactions may make wrong decisions, e.g., traffic control, HVAC, or
emergency building evacuation decisions, based on stale data. A common mis-
conception is that the freshness of a temporal data object O; is supported by
setting P; = avi(O;) and meeting all update transaction deadlines [Stankovic
et al(1999)Stankovic, Son, and Hansson]. In fact, this principle, called the
one-one principle, may fail to ensure the data freshness even when all update
transactions commit within their deadlines. For example, in Figure 3, two peri-
odic jobs for updating O; are scheduled. Although the second job is preempted
by some higher priority transactions, both of them meet their deadlines. In this
example, however, O; becomes stale after ¢t 4+ P;. In contrast, the half-half prin-
ciple, which requires P; = 0.5 x avi(O;), guarantees the data freshness as long
as the update transaction deadlines are met [Stankovic et al(1999)Stankovic,
Son, and Hansson| as illustrated in Figure 4. Thus, we apply the half-half
principle to meet the data freshness requirements in this paper.

In Figure 2, TS uses two separate GEDF queues to schedule user and up-
date transactions, respectively. Higher priority is given to update transactions,
similar to [Lam and Kuo(2006),Xiong et al(2008)Xiong, Han, Lam, and Chen,
Han et al(2014)Han, Chen, Xiong, Lam, Mok, and Ramamritham, Stankovic
et al(1999)Stankovic, Son, and Hansson, Han et al(2014)Han, Chen, Xiong,
Lam, Mok, and Ramamritham, Kang and Son(2012), Kang and Chung(2015),
Kang and Chung(2017)]. In this paper, we take this approach and make the fol-
lowing assumptions to maintain the data freshness in multiprocessor RTDBs,
because processing real-time user transactions using stale data could be mean-
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ingless or even harmful in data-intensive real-time embedded applications, e.g.,
traffic control or surveillance:

— When there are N temporal data items in the RTDB, we assume that
the period, P;, and worst-case execution time, E;, of the update task that
periodically updates the temporal data object O; (1 <+i < N) are known
a priori and the relative deadline D; = P; (implicit deadline).

— We assume that the set of all the update transactions in the RTDB meets
the following properties:

— Property 1. Usym = Zi\il % <(m+1)/2

— Property 2. Unqe = mazl, () <1/2

Under this assumption, the RTDB can meet all update transaction dead-
lines and the data freshness requirements enforced by FM in Figure 2, since
GEDF can meet all deadlines of any implicit-deadline sporadic task sys-
tem that satisfies the two properties on m processors (page 78 in [Baruah
et al(2014)Baruah, Bertogna, and Buttazzo]). (In Section 5, Ugyy, and
Unae of our update transactions for performance evaluation are approxi-
mately m/2 and 6%, respectively.)

However, supporting the timeliness of user transactions is challenging, be-
cause they are given lower priority and their arrival rate may vary significantly
due to, for example, unpredictable traffic incidents or HVAC component fail-
ures. Also, they can get aborted/restarted due to unpredictable data/resource
contention [Stankovic et al(1999)Stankovic, Son, and Hansson, Ramamritham
et al(2004)Ramamritham, Son, and DiPippo, Lam and Kuo(2006), Kang and
Son(2012),Kang and Chung(2015),Kang and Chung(2017),Kang(2016)]. Thus,
in this paper, we mainly focus on reducing the deadline miss ratio of user trans-
actions, while decreasing the power consumption in RTDBs via real-time query
aggregation and DPM performed by TS and PM, respectively.

CC supports the serializability of concurrent transactions. For concurrency
control, we support the two phase locking with high priority (2PL-HP) scheme
[Lam and Kuo(2006)]. A data conflict arises in a database system, if two
transactions access the same data item and at least one of them needs to write
it. Under 2PL-HP, a low priority transaction is aborted and restarted upon a
data conflict. However, it gets blocked, if it is requesting a data item already
locked by a higher priority transaction in an incompatible manner. A restarted
or blocked transaction is moved to the block queue. It is inserted back into
the GEDF ready queue when the conflicting higher priority transaction(s)
commit(s) as illustrated in Figure 2.

4 Decreasing Deadline Misses and Power Consumption in RTDBs

Our approach begins to run when the RTDB is initialized. It continues to
run until either the DBA explicitly turns it off or shuts the system down. In
this section, we give an overview and detailed descriptions of our approaches
for real-time query aggregation and DPM to reduce the miss ratio and power
consumption in RTDBs.
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4.1 Overall Approach

Algorithm 1: Power-Aware Real-Time Data Services

1 while true do

2 if a user transaction T; arrives at time t then

3 insert(7;, GEDF_QUEUE);

a L call RTQA(T;) /*Algorithm 2: Real-Time Query Aggregation*/ ;

5 Schedule real-time transactions;
6 for j =1;5 <m;j++ do
7 if core j is idle then
8 L switch core j to a lower-power mode /*Algorithm 3: DPM */;

Algorithm 1 gives an overview of our approach. When a user transaction
arrives, it is inserted into a specific position in the GEDF queue for user trans-
actions in Figure 2 based on its deadline. In this paper, the user transaction
at the 7" position in the GEDF queue is referred to as 7. Thus, Ty is the user
transaction with the earliest deadline.

In Lines 2—4 of Algorithm 1, we support lightweight, incremental aggrega-
tion of real-time user transactions. Our real-time query aggregation method,
Algorithm 2 (Section 4.2), attempts to aggregate T; with the transaction(s)
in front of it when it is inserted into the i** (> 1) place in the GEDF queue
as illustrated in Figure 5. Thus, a user transaction with a longer deadline is
likely to be aggregated with more user transactions with shorter deadlines. By
doing this, we intend to reduce the user transaction load without disrupting
transactions with imminent deadlines.

In Line 5, TS in Figure 2 assigns a series of real-time user transactions
aggregated in the GEDF queue to one of the available cores in an EDF order.
TS first assigns the user transaction with the earliest deadline in the group,
e.g., the first red transaction in Figure 5, to an available core (if any). The
first transaction in the group accesses and processes the common data plus
any other data that it needs to commit. The following user transactions in the
group, e.g., the second and third red ones in Figure 5, run in the same core
in an EDF order to share the common data and processing results as much as
possible. If some of the queries with later deadlines in the series are preempted
or aborted/restarted by a higher priority transaction and reinserted into the
GEDF queue, Algorithm 2 merges them with the adjacent real-time queries
(if any) in the queue depending on their data access needs to reduce repeated
data accesses and processing.

In Lines 6—8, PM switches each core that is idle after T'S schedules all
user and update transactions to an appropriate low-power mode selected by
Algorithm 3 (Section 4.3). In our RTDB architecture in Figure 2, TS needs
to wake up an idle core in a low-power mode to schedule the next highest
priority transaction, if all the other cores are busy executing higher priority
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Fig. 5 Real-Time Query Aggregation in the GEDF Queue for User Transactions

transactions. If multiple cores are idle in such a case, it wakes up the idle
core in the shallowest low-power mode to schedule the transaction, because it
usually takes more time and energy to wake up a core in a deeper low-power
mode. A tie is broken arbitrarily.

Ideally, it is desirable to process real-time transactions in a timely fash-
ion using the minimum number of cores rather than waking up a core in a
low-power mode; however, this is a challenging problem beyond the scope of
this paper. A thorough investigation of workload consolidation in RTDBs is
reserved for future work as discussed in Section 6.

Our approaches for real-time query aggregation and power management
designed to reduce deadline misses and power usage are discussed in detail in
the following subsections.

4.2 Aggregating Real-Time Queries

In this paper, we only merge read operations of multiple user transactions.
We do not merge update transactions, because each update transaction in
an RTDB periodically updates a specific temporal data object in a dedicated
manner to maintain the freshness [Lam and Kuo(2006)].

When a user transaction T; is inserted into the GEDF queue, Algorithm 2
is executed for real-time query aggregation. First, R; and R; of T; and T}
where j = i — 1 in the GEDF queue are identified as shown in Figure 5. If
|R; N R;| > 0 where 6 is the specified threshold, the common data in their
read sets are: R;; = R; N ;. In general, a query optimizer in a database
system analyzes queries’ data accesses for performance optimization. Thus, we
exploit the read set information provided by the query optimizer for real-time
query aggregation, incurring little additional overhead. Alternatively, real-time
transactions are often canned, i.e., predefined, to access and process specific
data elements to enhance the timeliness [Lam and Kuo(2006)]. In such a case,
R; and R; are known a priori. In both cases, we express R; and R; as bit strings
of length p that is the maximum transaction size in terms of the total number
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Algorithm 2: RTQA(T;)  /* Real-Time Query Aggregation */

input : T; (it" user transaction in the GEDF queue)

1 j=1i—1;
2 cnt =0;
3 while j > 0 and ecnt < MaxScan do
a R; = Read Set(T});
5 R; = Read Set(Tj);
6 if ‘Rzﬂle ZGthen
7 Rij =R;N Rj;
8 if R; is merged already then
9 L return;
10 else
11 i =J;
12 L J—=;
13 else
14 | i——;
15 cnt++;

of data accessed by an arbitrary transaction in the RTDB.* We compute R;;
by doing a bitwise AND operation between R; and R;, which is an O(1) time
operation.

If T; and T are merged because |R; N R;| > 6 as specified in Line 6 of
Algorithm 2, we check whether R; has already been merged with the real-
time queries ahead of 7} in the GEDF queue in Line 8. For example, T} in
Figure 5 may have already been aggregated with the green queries in the GEDF
queue. If this is true, no more aggregation is needed. Hence, the algorithm
returns in Line 9. Otherwise, the loop is iterated to further aggregate the user
transactions ahead of T; (if any) for at most MaxzScan times where MazScan
is a pre-defined constant to bound the overhead for real-time query aggregation
(Lines 10—12 in Algorithm 2).

On the other hand, if 7; and 7 cannot be merged (ie., |R; N R;| < 6),
T; is compared to the transactions in front of T; for MaxzScan times (Lines
13 and 14). When the user transaction at the head of the GEDF queue is
executed, the data read and processed by the transaction are shared by the
other transactions, e.g., driving route requests or surveillance queries, with
later deadlines that need to access and analyze common data, e.g., traffic data
or surveillance images. When a later transaction runs, it uses the common data
previously accessed and processed by an earlier deadline transaction as long as
they are still fresh. This is another reason to bound the GEDF queue scanning
for real-time query aggregation by MaxScan. Entire GEDF queue scanning
incurs large overhead. Also, data accessed by earlier transactions may become
stale.

Notably, we do not actually rewrite or translate multiple real-time queries
into a single query, but simply compute the intersection of their read sets

4 If a certain data item is accessed by Tj, the corresponding bit in R; is set to 1.
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and execute the group of aggregated queries, e.g., the red queries in Figure 5,
in the same core in the EDF order to minimize repeated data retrievals and
analyses as discussed before. We take this approach to avoid the overhead for
rewriting queries. Also, it is unclear how to assign a single deadline to a real-
time query that actually combines multiple real-time queries with originally
different deadlines into one, avoiding priority inversion.

4.3 Dynamic Power Management

A core in a multicore RTDB may become idle when the workload is relatively
low. For example, there could be few user transactions/queries during the off-
peak time in a transportation management system. Also, a core may become
idle due to our real-time query aggregation method. Thus, in our approach,
a core can enter a low-power mode for power saving when it becomes idle. In
this section, a description of our approach for RTDB power saving is given.

Algorithm 3: RTDB Dynamic Power Management in an Idle Core

1 while true do

2 if busy at time t then

3 L Process transactions at the highest speed;

4 else

5 7(t) = release time of the next earliest update — ¢;

6 ' (i) = estimated length of the i*" idle interval;

7 (i) = min(n(t), ' (1));

8 for j =1;j < Ne¢s; j++ do

9 if k6; > £(i) then
10 Jj—=;
11 break;

12 if 0 < j < N¢s then

13 Switch to the C; state;

14 while idle do

15 L Stay in the C; state;

16 else if j == 0 then

17 while idle do

18 L Use the lowest voltage and frequency /*highest P state*/;
19 Compute ¥’ (i + 1);
20 Switch to the PO state if this core is in the shallowest C state;

In Algorithm 3, our power saving method used by PM (Figure 2) for each
core, in which N, stands for the number of the C-states, is summarized. In
our approach, the RTDB runs in the PO state using the highest frequency and
voltage, if there is any update or user transaction to execute. In this way, the
RTDB processes update and user transactions as fast as possible.



16 Kyoung-Don Kang

If the RTDB with N temporal data has no update or user transaction to
execute at time ¢, our DPM scheme computes the remaining time to the next
temporal data update, n(t) = minl_, (r — t), where rj is the release time
of the next periodic instance of the update task k that periodically updates
temporal data object O. Thus, n(t) is found in O(N).

Let us assume that the i** idle interval since the RTDB system initializa-
tion, due to no user transaction arrival, begins at time ¢. For DPM, we estimate
the expected length of the i*" idle interval at ¢. To this end, we use an ex-
ponentially weighted moving average (EWMA), which is effective to smooth
out short-term fluctuations of the trend in a time series [Arce(2005)] (e.g., the
lengths of idle intervals observed in time) and subject to much less overhead
than machine learning techniques (e.g., [Zhang et al(2015)Zhang, Liu, Zhuang,
Liu, Zhao, and Li]) are.

Specifically, let us define 1’(i — 1) and (i — 1) as the length of the (i —1)*"
idle interval estimated at the beginning of the (i — 1) interval for DPM and
the actual length measured when the (i — 1) idle interval ended because of a
user transaction arrival, respectively. Given them, at the beginning of the i‘"
idle interval, we estimate its length by taking an EWMA based on the history:

W) = ax /(i - 1)+ (1 a) x (i — 1) (2)

where /(1) is initialized as a small value less than By, i.e., the break-even
time of the shallowest low-power idle state, when the RTDB system starts
to run. (¢(1) is measured when the first idle interval ends due to the first
arrival of a user transaction since the system initialization). In Eq 2, a is the
forgetting factor (0 < a < 1). For example, a DBA can set a = 0.6 to ensure
that the impact of (i — 1) is 1% on the smoothed value after 5 idle intervals
by recursively solving Eq 2.

The expected length of the it" idle interval, which will be used for RTDB
power saving via DPM, is then:

£(i) = min(n(t), ¢' (i) 3)

If the RTDB has no update or user transaction to execute at time ¢, Algo-
rithm 3 finds | Jnax {Kd; < €(i)} where k (> 1) is a headroom constant used
<J<Nes

to compensate for possible errors in estimating 1(7) and the overhead of exe-
cuting Algorithm 3.5 Each idle core then switches to the C; state that is the
estimated deepest low-power state to save power without increasing deadline
misses. Since there are a constant number of the C states in a processor, the
selection of C; takes O(1) time.

When the transition to the C; state completes at time t;, (> ¢), the actual
idle interval begins. A core stays in the C; state as long as it is idle. If TS picks
the idle core to process an imminent periodic update job release or a new user
transaction arrival at time ¢7(> t;), the idle core transitions back to the PO

5 Generally, a large x value provides a lower miss ratio for saving less power or vice versa.
In Section 5, k = 1.5.
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state. Thus, the actual length of the i*” idle interval that excludes any state
transition latency is: (i) =ty — ;. Algorithm 3 derives ¢/(i + 1) using Eq 2
based on ¢’(¢) and v (i). Using 9'(i 4+ 1), Algorithm 3 is re-executed when a
core becomes idle again in the future.

Notably, we compute Eq 2 for all incoming user transactions instead of
a subset of them assigned to a specific core. Also, we consider 7(t) in Eq 3,
although the release time of the next update to be assigned to a specific core
could be longer than n(t) if m > 1. We take this approach, because 1) it is
hard to predict which user or update transaction will run in which core under
GEDF; 2) overly optimistic idle interval length estimates may result in many
deadline misses and power inefficiency when the actual idle interval lengths
are shorter than the break-even times of the selected low-power modes; and 3)
multiple cores may become idle simultaneously, in which considering all user
transactions rather than individual ones assigned to a specific core may lead to
fewer /smaller overestimates. Thus, our approach saves power when the system
is underutilized, while reducing the miss ratio for higher workloads via careful
real-time transaction scheduling, query aggregation, and DPM.

However, if PM observes that the actual length of the 7** idle interval, 1 (i),
turns out to be shorter than the transition latency of C;, d;, we consider that
the previous state transition to C; has been ineffective. Thus, we compute the
normalized estimation error with respect to 6; as follows:

(4)

0 otherwise

(i) = {@- —0(@)/8; i (i) <4

To measure the estimation accuracy, we define the estimation error ratio:
P, =100 x No/Nay (%) (5)

where N, and N,;; represent the total number of the occurred estimation errors
and that of all the transitions to low-power states, respectively.
Also, we measure the average size of the normalized estimation errors:

Ne

M, =100 x » _e(i)/N, (%) (6)

=1

Note that no estimation error occurs due to periodic updates, because the
periods of temporal data updates in the RTDB are known a priori. In Section 5,
Table 1, Eq 5, and Eq 6 are used for performance evaluation.

On the other hand, if the idle interval is too short for a core to switch to
any C; state where j > 1, it switches to the highest P state with the lowest
voltage and frequency and stays in that state until it has to switch back to the
PO state to process a user or update transaction (Lines 16—18). This method
also with O(1) time complexity is viable, since the DVFS latency is tens of
microseconds only [Mazouz et al(2014)Mazouz, Laurent, Pradelle, and Jalby].
Hence, we do not consider any estimation error in this case.
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The time complexity of executing Algorithm 3 for m cores is O(mN) where
m is a constant in an RTDB system. Thus, the total time complexity of our ap-
proach, which consists of the real-time query aggregation and DPM techniques
described in Algorithms 1 — 3, is O(NN). It is linear in terms of the number of
the temporal data in the RTDB but independent of the number of real-time
queries. Thus, our approach is applicable to different RTDB applications with
various user transaction arrival rates and data access patterns.

5 Performance Evaluation

In this section, the performance of our approach and baseline is compared
thoroughly. In Section 5.1, a description of the simulation set-up and baselines
is given. In Section 5.2 the performance evaluation results are discussed. Also,
the accuracy of estimating idle interval lengths is analyzed in Section 5.3.

5.1 Simulation Set-Up and Baselines

In this subsection, our simulation models and baselines are described.

5.1.1 Uniprocessor RTDB Settings

Our simulation settings summarized in Tables 2 and 3 are similar to the ones
used in other RTDB research modeled after data-intensive real-time appli-
cations, e.g., air traffic control, fire detection, and engine diagnosis [Xiong
et al(2008)Xiong, Han, Lam, and Chen, Han et al(2014)Han, Chen, Xiong,
Lam, Mok, and Ramamritham,Kang and Son(2012),Gustafsson et al(2005)Gustafsson,
Hallgvist, and Hansson].

Our simulation settings for temporal data updates are summarized in Ta-
ble 2. As shown in the table, there are 1000 temporal data objects in our
(simulated) uniprocessor RTDB (m = 1). Each data object O; (1 <4 < 1000)
is periodically updated by an update stream Stream; associated with an es-
timated execution time EFET; and an update period P;. FET; is uniformly
distributed in a range [3ms, 6ms]. When a periodic update job is generated,
the actual update execution time AFET; is derived by applying a normal distri-
bution Normal(EET;,/EET;) to Stream; to model potential variations in
update execution times.

For m = 1, the total update workload, W,,, requires approximately 50%
CPU utilization. Also, higher priority is given to updates to maintain the data
freshness. Thus, all deadlines of update transactions are met. In the rest of
this paper, we only consider the miss ratio of user transactions.

The total load applied to the RTDB is W, (= 50%) + user transaction
load. In our uniprocessor experiments, 60% — 160% total loads are applied to
evaluate the deadline miss ratio and power consumption of our approach and
the baselines for different workloads.
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Table 2 Simulation Settings for Data and Updates

Parameter [ Value

m (number of cores) | 1, 2, 4, 8

#Data Objects 1000, 2000, 4000, 8000 for m = 1, 2, 4, 8, respectively
Update Period Uni form[100ms, 50s]
EET; Uniform[3ms, 6ms]

Update Load (Wy,) ~ 50%, 100%, 200%, 400% for m = 1, 2, 4, 8, respectively

Table 3 Simulation Settings for User Transactions

Parameter [ Value

EET; Uni form[5ms, 20ms]

Actual Exec. Time Normal[EET;,/EET;]

Npara, EET; x Data Access Factor = [5, 20]
#Actual Data Accesses | Normal(Npara,,/Npara,)

Slack Factor [10, 20]

Table 3 summarizes the simulation set-up for user transactions. In this
paper, a source, Source;, generates a series of real-time user transactions
whose inter-arrival time is distributed exponentially. Source; is associated
with EET;. In this paper, EET; = Uniform[5ms,20ms]. Using multiple
sources, we statistically generate transaction groups with different average
execution times and numbers of data accesses. To increase the workload ap-
plied to the RTDB, we increase the number of sources. As a result, more user
transactions arrive per unit time. When a user transaction is generated, the
actual execution time AET; is generated by applying the normal distribution
Normal(EET;,/EET;) to introduce execution time variations in a series of
user transactions produced by Source;.

We derive the average number of data accesses for Source; in proportion to
EET;; that is, Npara, = data access factor x EET; = [5,20] as summarized
in Table 3. Thus, a longer transaction generally accesses (and processes) more
data. When generating a user transaction, the actual number of data for the
transactions generated by Source; to access and process is varied by applying
Nm“mal(NDATAi, \/NDATAi)-

For a user transaction, deadline = arrival time + estimated execution time
x slack factor in this paper. A slack factor is uniformly distributed in a range
(10, 20). For an update transaction, however, deadline = next update period.

5.1.2 Multiprocessor RTDB Settings

Related work on multiprocessor RTDB is relatively scarce [Li et al(2011)Li,
Chen, Xiong, and Li, Kang and Chung(2015), Kang and Chung(2017)]. In this
paper, we evaluate the performance of our approach and the baselines using the
simulation parameters in Tables 2 and 3 for m = 2,4, and 8 as well. For m = 2,
we consider 2,000 temporal data objects as shown in Table 2 to approximately
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double the update workload to 100%, while generating more user transaction
loads. Thus, the total load applied to the RTDB is 100% -+ user transaction
load. Specifically, 150%, 200%, 250%, 300%, and 350% (1.75m) total workloads
are applied to evaluate the miss ratio and power consumption.

For m = 4, we consider 4,000 temporal data objects to increase the update
workload to 200% (approximately). Hence, the total workload applied to the
RTDB is 200% + user transaction load. Especially, 250%, 300%, 350%, 400%,
450%, 500%, 550%, 600%, 650%, and 700% (1.75m) workloads are applied to
evaluate the miss ratio and power consumption.

For m = 8, we use 8,000 temporal data objects to increase W, to 400%.
Hence, the total workload applied to the RTDB is 400% + user transaction
load. Specifically, 600%, 700%, 800%, 900%, 1000%, 1100%, 1200%, 1300%,
and 1400% (1.75m) workloads are applied to evaluate the miss ratio and power
consumption.

5.1.3 Baselines

In this paper, we simulate the RTDB system architecture depicted in Figure 2.
For performance evaluation, we consider a baseline, called the Power-Unaware
RTDB (PU-RTDB). In PU-RTDB, GEDF scheduling and 2PL-HP are sup-
ported to process real-time transactions as discussed in Section 3. Thus, the
baseline and our approach apply the same scheduling and concurrency con-
trol techniques for fair performance comparisons. However, no query aggre-
gation or power saving is considered in PU-RTDB, similar to most existing
RTDBs. Thus, PU-RTDB represents state-of-the-art RTDBs. In contrast, our
approach, called Query Aggregation (QA), supports real-time query aggrega-
tion and DPM.

In fact, we have directly applied a well-known query aggregation technique
effective for non-RTDBs [Lang and Patel(2009)] as another baseline. However,
we have observed more than 90% of user transactions miss their deadlines
even when the total workload is only 60% (m = 1) and user transactions
are delayed only until the length of the EDF queue becomes 5. This result
illustrates the need for real-time query aggregation in RTDBs. In the rest of
this paper, we compare the performance of our approach to that of PU-RTDB
without considering the query aggregation scheme for non-RTDBs [Lang and
Patel(2009)] any further.

In this paper, we omit the performance results of QA with the DVFS op-
tion (Lines 16—18 in Algorithm 3) and let the idle core remain in the CO0 state,
if the estimated idle interval is shorter than By (the break-even time for C1).
This is because the DVFS method achieves less than 2% additional power sav-
ing in our experiments when we assume that a core using the lowest voltage
and frequency consumes 0.75W, which is the average of the C0O and C1 power
consumption in Table 1. We have observed that a core usually switches to the
C1 state instead of doing DVFS, since the transition delay of C1 (0.1ms in
Table 1) is negligible in terms of real-time transaction arrivals and executions.
However, the DVFS option could be still useful when the system normally has
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short idle intervals, for example, during the peak time in transportation man-
agement. A thorough investigation is reserved for future work and discussed
in Section 6.

In the rest of this paper, QAxzx indicates QA with query aggregation prob-
ability of zz%. For example, two arbitrary queries can be merged into one
query with 10% probability in QA10. We consider a broad spectrum of query
aggregation probabilities, 10%—70%, for extensive performance evaluation, be-
cause data access patterns may vary from RTDB application to application.
The data access pattern in one RTDB application may also vary based on the
real-world status, e.g., traffic or weather conditions.

5.2 Performance Evaluation Results

In this subsection, the deadline miss ratio and utilization of PU-RTDB and
QA as well as the power saving achieved by QA for m = 1, 2, 4, and 8 are
discussed.

5.2.1 Experiment Set 1: m = 1 and W,, = 50%

In Figure 6(a), the miss ratio of the PU-RTDB ranges between 0.33 +0.3% —
72.72 + 0.62% as the load is increased from 60% to 160%. QA10’s miss ratio
ranges between 0.06 & 0.04 — 62.97 4+ 0.92%. Thus, compared to PU-RTDB,
QA10 reduces the miss ratio by up to approximately 17% when 120% load is
applied to the RTDB.

As shown in Figure 6(a), QA70 supports the lowest miss ratio among the
tested approaches. Its miss ratio is near zero (0.059 £ 0.04%) even when the
load is 160%; it decreases the miss ratio by roughly 72% compared to PU-
RTDB. Although the miss ratio generally grows as the load increases, the
growth rate is decreased substantially, if more real-time query aggregation is
possible. Note that the miss ratio of the tested approaches is non-zero even
when the total load is much below 100%, since some transactions may get
aborted and restarted due to data/resource conflicts. This indicates the diffi-
culty of processing real-time transactions in RTDBs.

By aggregating real-time queries, QA reduces the workload and switches
to a low-power mode when the RTDB becomes idle. In Figure 6(b), QA10 and
QA70 decrease the total dynamic power consumption by up to 37% and 44%
for the 60% load, respectively. In Figure 6(c), QA10 and QAT70 reduce the
utilization by up to approximately 6% and 37% compared to PU-RTDB for
the 100% and 120% load, respectively. Notably, the magnitude of power saving
by QA10—QATO0 is bigger than that of the utilization decrease, because QA
switches to a low-power state when the RTDB is idle. Being power-unaware,
however, PU-RTDB cannot decrease the power consumption even when the
system is underutilized. QA considerably decreases the power consumption
especially when the load is relatively low as shown in Figure 6(b). The achieved
power saving generally decreases as the load increases, because the RTDB
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should run in the PO state longer to process more real-time transactions as
the load increases.

In summary, we observe that QA and DPM are effective in terms of man-
aging the timeliness and power consumption in uniprocessor RTDBs.

5.2.2 Experiment Set 2: m = 2 and W, ~ 100%

Figure 7(a) shows the miss ratio of the tested approaches when the total
workload is increased from 150% to 350% for m = 2 and update workload ~
100%. The miss ratio of PU-RTDB increases to 80.86 + 0.42% as the load is
increased to 350%. Compared to PU-RTDB, QA10 and QA70 reduce the miss
ratio by up to 22% and 80% for 250% and 350% load, respectively.

As shown in Figure 7(b), QA10 and QA70 save power by more than 22%
and 33% compared to PU-RTDB for the 150% load. The power conservation
and miss ratio of QA70 for the 350% load are still more than 15% and near zero
as shown in Figure 7(b) and Figure 7(a), respectively. QAT70 is most effective
in terms of miss ratio and power saving, because QA reduces more utilization
and saves more power via DPM, if the probability of query aggregation is
higher as shown in Figure 7(c).

From these results, we observe that QA is effective for m = 2 as well. It
saves power when the system is underutilized (Figure 7(b)), while decreasing
the miss ratio as the workload is increased (Figure 7(a)). We observe perfor-
mance patterns similar to these results for m = 4 and m = 8 as follows.

5.2.3 Experiment Set 3: m = 4 and W,, =~ 200%

In Figure 8(a), the miss ratio of every approach is near zero for 250% — 400%
loads. For the 700% (1.75m) load, however, PU-RTDB misses more than 83%
of the deadlines. Compared to PU-RTDB, QA10 decreases the miss ratio by
up to approximately 24 % when the load is 500%. Further, QA70 reduces the
miss ratio by more than 83% for 700% load. As shown in Figure 8(b), QA10
and QAT0 save power by more than 21% and 26%, respectively, when the load
is 250%. When the load is 700%, QA70 still saves power by more than 11%,
while supporting the near zero miss ratio as shown in Figure 8(a). Similar
to the previous experiments, QA-FA reduces the utilization compared to PU-
RTDB as shown in Figure 8(c). As a result, they save power when the system
is underutilized, while decreasing the miss ratio for higher workloads.

5.2.4 Experiment Set 4: m = 8 and W,, =~ 400%

In Figure 9(a), the miss ratio of PU-RTDB increases fast as the workload is
increased. Its miss ratio is over 85% for the 1400% load. Compared to PU-
RTDB, QA10 reduces the miss ratio by up to approximately 26% when the
load is 1000%. QAT70 reduces the miss ratio by up to roughly 85% when the
workload is 1400%. In Figure 9(b), QA10 and QA70 save power by up to more
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than 15% and 18%, respectively, when the load is 500%. In general, QA also
reduces the utilization as shown in Figure 9(c).

Overall, our approach decreases the workload by aggregating real-time
queries in the EDF and GEDF queue for m = 1 and m > 1, respectively.
Also, it saves power by switching to an appropriate low-power mode when
each core becomes idle. In summary, our approach effectively alleviates the
tension between the competing requirements for the user transaction timeli-
ness and power conservation in RTDBs. As a result, it considerably reduces
the miss ratio and power consumption, while supporting the data freshness
requirements in RTDBs.

5.3 Idle Interval Length Estimation Errors

Table 4 Estimation Error Rate and Magnitude

Exp. Set [ Error Rate (P.) [ Error Size (M.)
1 0.21 +0.02% — 0.78 = 0.71% 0.63 + 0.09% — 6.35 + 3.71%
2 0.0004 + 0.0001% — 2.16 £ 0.17% | 0.081 4+ 0.013% — 1.23 + 0.54%
3 0.014 £ 0.001% — 4.01 £ 0.18% 0.013 4+ 0.002% — 2.16 + 1.03%
4 0.001 £ 0.0003 — 5.27 + 0.15% 0.007 £ 0.001 — 2.45 £+ 2.53%

We observe that the accuracy of our approach in terms of estimating the
next idle interval length is acceptable as summarized in Table 4. In Experiment
Set 1, the estimation error ratio P, (Eq 5) ranges between 0.21+0.02% —0.78 +
0.71%. Our estimation accuracy is high in terms of P, because: 1) the EWMA
is effective to track the trend in a time series [Arce(2005)] and 2) the periods of
temporal data updates used together with /() in Eq 3 are known in advance.
Although M, (Eq 6) ranges between 0.63 £ 0.09% — 6.35 & 3.71%, it has little
impact on the miss ratio and power consumption because: 1) P, is low, 2) a
6.35% estimation error is much smaller than the user transaction execution
times and relative deadlines, and 3) the CPU spends only a small amount of
time (less than 2% of the time) in the C3 state due to d3 that is 100 and 5
times longer than §; and ds, respectively. In this paper, we observe that the
amount of the time spent by QA in the C-states generally decreases in CO,
C2, C1, and C3 order.

In Table 4, our approach shows acceptable M, and P, for m = 2,4, and 8 as
well. From the table, we observe that M, is significantly reduced compared to
that of Experiment Set 1 where m = 1, but the highest P, in Experiment Sets
2 — 4 is higher than that measured in Experiment Set 1. In our experiments,
as m is increased, higher workloads are used for performance evaluation as
discussed before. As a result, the inter-arrival time between user transactions
may decrease and idle interval lengths could be overestimated more often for
a bigger m, potentially increasing P, (Eq 5). However, if the actual length
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of the (i — 1)*" idle interval, (i — 1) in Eq 2, becomes shorter due to the
decreased inter-arrival time, M, (Eq 6) may decrease. This is because 9’(7) in
Eq 2 decreases if (i — 1) becomes shorter. Consequently, £(i) in Eq 3 used for
DPM could be decreased, possibly reducing e(i) in Eq 4 and the average size
of the normalized estimation errors, M,.

6 Open Research Issues

Research on power-aware RTDBs has received relatively little attention despite
the importance. There are several relevant research directions including the
ones outlined in the following:

— Improving the accuracy of idle interval length estimation: Enhancing the
accuracy in estimating the next idle interval is a key issue for DPM in RT-
DBs. Although machine learning techniques could be applied to enhance
the accuracy, they are relatively heavy in terms of computation. More-
over, a supervised learning method may perform poorly when the training
set used to develop a model does not represent unforeseen idle interval
lengths, which may vary in time, well. On the other hand, an unsuper-
vised learning algorithm may take a long time or even fail to derive (learn)
unknown parameters necessary for a prediction. In general, the applicabil-
ity of machine learning to timeliness and power management in RTDBs is
largely unknown. Alternatively, feedback control techniques [Phillips and
Nagle(1995)] could be applied to manage estimation errors by adapting the
RTDB behavior in the closed-loop system.

— Integrating race-to-idle and never-idle methods: In this paper, we mainly
consider the race-to-idle approach.5 On the other hand, in [Kang and
Chung(2015), Kang and Chung(2017)], only the never idle method is con-
sidered in embedded RTDBs. However, in certain RTDB applications, e.g.,
transportation management, workloads could be diurnal and/or seasonal.
In such applications, the RTDB could apply a never-idle method, e.g.,
DVEFES, to reduce deadline misses and power consumption when the load is
usually high (e.g., rush hours), while applying a race-to-idle method during
the off-peak time. Generally, this is a largely open problem.

— Transaction scheduling and concurrency control in multicore/many-core
RTDBs: Although our real-time query aggregation scheme based on GEDF
is effective for RTDBs running on a platform with a relatively small number
of cores, it is unknown how to design power-aware RTDBs for many-core
platforms with significant migration costs. Novel techniques are needed
to address this problem. For example, it could be effective to partition
certain update and user transactions together into clusters of cores such
that user and update transactions that update the data accessed by the
user transactions are scheduled in the same cluster, while supporting real-
time query aggregation via global scheduling within a cluster. However,

6 Our DVFS scheme, which switches to the lowest frequency when the idle interval is too
short for the C1 state, saves power by less than 2% as discussed in Section 5.
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this is challenging as partitioned scheduling is NP-hard and data access
patterns may vary in time. Li et al. [Li et al(2011)Li, Chen, Xiong, and Li]
investigated how to partition temporal data updates to m > 2 processors
under EDF, maintaining the temporal consistency; however they do not
consider power efficiency or data access patterns of user transactions.
Moreover, multi-version concurrency control could be supported to allow
user transactions to access an old version of temporal data in a controlled
manner rather than waiting for temporal data updates. A challenge is
how to avoid unbounded data staleness, while minimizing data/resource
contention, which may adversely affect the data freshness and timeliness
in RTDBs, respectively. Although transaction scheduling and concurrency
control in RTDBs have been studied extensively [Lam and Kuo(2006)],
related work on power-aware multiprocessor RTDBs is scarce.

— Workload Consolidation: In cloud computing, workloads can be consoli-
dated and idle resources, e.g., idle CPU cores or servers, can be turned
off to reduce energy consumption. However, care should be taken, be-
cause workload consolidation often incurs substantial overhead in terms
of potential performance penalty and resource/energy wastage to turn
on/off resources and migrate virtual machines [Nguyen et al(2015)Nguyen,
Francesco, and Yla-Jaaski, Srikantaiah et al(2008)Srikantaiah, Kansal, and
Zhao|. Although workload consolidation could be applicable to long-term,
non-real-time data storage and analytics using abundant resources and
time, RTDBs may miss many deadlines and waste power/energy if such
techniques are directly applied. Essentially, the problem of consolidating
real-time transactions requires the RTDB to minimize the number of the
cores used to process real-time transactions in a timely manner, which can
be reduced to a bin packing problem that is NP-hard. To aggravate the
problem, it should be solved efficiently at runtime to consolidate real-time
transactions with little overhead. Further, it could be hard to predict real-
time user transaction workloads. For example, many real-time data service
requests may arrive simultaneously upon unexpected traffic incidents or
abnormal situations in a smart building. In such a case, the RTDB may
miss many deadlines due to the overhead to turn on the cores previously
turned off for power saving to assign or migrate real-time transactions to
them. Also, energy could be wasted considerably, if the time interval be-
tween turning the cores off and on is not long enough. In this paper, we
take a safer approach that aggregates real-time queries and schedules them
together in one core to reuse the data accessed and processed by earlier
deadline transactions to decrease the miss ratio, while opportunistically
saving power via DPM. In sum, workload consolidation could have poten-
tial to further save power/energy in RTDBs; however, it is an open problem
with significant challenges. An in-depth investigation is reserved for future
work.

Although this list is neither exhaustive nor complete, a key lesson we
learned from this work is that it is possible to reduce both deadline misses and



power consumption in RTDBs with one or more processors, while meeting the
data freshness requirements. This approach could be extended to further en-
hance the timeliness and power efficiency of RTDBs by exploring more effective
real-time query optimization, transaction scheduling, concurrency control, and
RTDB system design techniques that consider inherent RTDB characteristics,
real-time data semantics, or advanced hardware/operating system features.

7 Conclusions

In data-intensive real-time embedded and cyber-physical system applications,
e.g., traffic control and surveillance, it is desirable yet challenging to pro-
cess real-time transactions in a timely manner using fresh data in real-time
databases, while consuming less power. To address the challenge, we devise
a cost-effective approach for real-time query aggregation and dynamic power
management to reduce both deadline misses and power consumption in real-
time databases rather than improving one of them by potentially degrading the
other via trade-offs. Further, our approach does not require complex system
modeling, tuning, or constrained real-time transaction models different from
most existing work on power-aware real-time databases (as discussed in Sec-
tion 2). The deadline miss ratio and power consumption of our approach are
thoroughly compared to those of modern power-unaware real-time databases.
Our approach decreases the deadline miss ratio and power consumption by
up to approximately 86% and 45%. Despite the importance, relatively little
work has been done on power-aware real-time databases. In the future, we
will continue to explore open issues for power-efficient real-time data services
including the ones discussed in Section 6 to promote further research.
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