An Adaptive Closed-Loop Approach for Timely
Data Services

Dinuni Fernando, Kyoung-Don Kang

State University of New York at Binghamton

{dfernal5, kang}@binghamton.edu

Abstract—In data-intensive soft real-time applications, e.g., e-
commerece, traffic control, and target tracking, a database system
needs to process transactions in a timely manner. However, user
transactions may suffer from unpredictable large delays when the
database system is overloaded due to flash transaction arrivals
and transaction aborts/restarts. To address the problem, we
design a new adaptive closed-loop method considering database
semantics to control the response time to be below a target set-
point even when dynamic workloads are given. Our approach
continues to update the database model at runtime and re-tunes
the response time controller based on the adjusted model, because
the relation between the workload and response time may vary in
time. Notably, our adaptive control scheme is different from most
existing closed-loop methods for real-time database performance
management that model the database system and design and
tune the controller entirely offline with no online adaptation.
The results of the performance evaluation undertaken in a real-
time database testbed show that our approach maintains the
database response time below the target set-point for most of the
time even under steep workload surges, quickly canceling any
transient delay overshoot that exceeds the set-point. However,
the tested state-of-the-art baselines fail to do it.

I. INTRODUCTION

The demand for timely data services is increasing in a
number of data-intensive soft real-time applications, e.g., e-
commerce and traffic/weather information services. In these
applications, it is desirable for a database system to process
user transactions within a desired average response time
bound, while reducing short-term transient response time
fluctuations.

However, user transactions may suffer from excessive delays
when the database system is overloaded. For example, requests
for online trade transactions or fastest driving routes may
increase in a step-like manner due to unpredictable market
conditions or traffic incidents, incurring severe data and re-
source contention. Due to the excessive database response
time under overload, users may miss business opportunities
or suffer from increased travel delays.

Classical linear time invariant (LTI) feedback control tech-
niques [1]] have been applied to support the desired real-time
database (RTDB) performance by continuously adapting the
database behavior in the closed-loop [2], [31, [4], [Sl, [6], [Z].
In these approaches, the controlled database system is modeled
and the controller is tuned based on the model entirely offline
without any online adaptation. However, an LTI closed-loop
system may fail to control the database response time to be
below the desired target, if the database workload and system
behavior largely deviate from the model derived offline.

Yan Zhou
Rackspace, Inc.
yan.zhou@rackspace.com

To address the limitations, we design a novel adaptive
feedback control approach based on formal adaptive control
theory [8]] to support the desired database response time even
when dynamic workloads are given. We model the database
system characteristics based on the relation between the data
service delay and database backlog that represents not the
queue length but the estimated total amount of data to process,
since different transactions may access different amounts of
data. Further, the database response time generally increases
as the backlog increases or vice versa.

Notably, in our approach, the controlled database system
model is continuously adjusted online to reflect the current
database system dynamics, because database workloads and
the relation between the database backlog and response time
may considerably vary in time due to time-varying data/re-
source conflicts. This approach contrasts to most existing
approaches based on offline modeling, design, and tuning for
closed-loop RTDB performance management, including [2],
(31, (4], [S], 6], [Z], which do not consider any model update
or adjustment at runtime. To the best of our knowledge, no
prior work on database performance management has applied
adaptive control techniques [8].

Based on the database model continuously updated online,
we systematically adapt the database backlog bound to accept
just enough incoming user transactions, if necessary, to control
the response time to be below the target set-point without
underutilizing the system. Notably, our adaptive closed-loop
system is designed to support the stability even in the presence
of dynamic workloads and data/resource contention. Further,
we analyze the robustness of the closed-loop system against
dynamic workloads and approximate modeling of the con-
trolled database system, which is very hard to model precisely
due to the inherent complexity. By doing the stability and
robustness analysis, we analytically ensure that our adaptive
feedback control scheme controls the response time to be
below a specified target response time bound, while canceling
any response time overshoot exceeding the specified bound
within a specified settling time even in the presence of
dynamic workloads.

For performance evaluation, our approach is actually imple-
mented and evaluated in a database testbed modeling online
stock quotes and trades, which contrasts to most existing
RTDB work evaluated via high-level simulations without
any actual implementation [9]. We thoroughly compare the
performance of our approach to those of two state-of-the-art

baselines: 1) an unmodified open-loop database system [10]
and 2) a closed-loop approach designed and tuned offline by
applying non-adaptive (LTI) proportional and integral (PI) con-
trol theoretic techniques [1]], similar to most existing feedback-
based approaches for RTDB performance management [2], [3]],
(41, (50, (el [7].

In our performance evaluation, our adaptive control system
successfully controls the average database response time to
be below the target set-point. Also, it cancels any transient
delay overshoot, which exceeds the response time set-point,
within the settling time specified at the design time of the
adaptive closed-loop system even in the presence of dynamic
workloads. However, the baselines representing the state of
the art largely fail to support the desired response time for
heavy workloads, showing unstable performance. In addition,
our adaptive closed-loop approach is lightweight. It consumes
less than 1% CPU utilization.

The remainder of this paper is organized as follows. The
architecture of our adaptive closed-loop real-time database
system is described in Section Our stock trade database
testbed and backlog estimation method are discussed in Sec-
tion A description of our database modeling and adaptive
control scheme is given in Section [[V] The performance of our
approach and baselines is thoroughly evaluated in Section
Related work is discussed in Section Finally, Section
concludes the paper and discusses future work.

II. SYSTEM ARCHITECTURE

Data Updates
Admitted Ready Queve
requests l—» Dispatch
Client Admission Database
Requests Controller
Backlog response
bound backlog Backlog time
adaptation Estimator
Adaptive error Performance| Rs
Controller Monitor
Fig. 1. QoS-Aware Database Architecture

In this section, an overview of our system architecture is
given. Database response time management is formulated as
an adaptive control problem and the overall structure of our
adaptive control scheme is described. Also, the desired target
performance is discussed as the control objective considered
in this paper.

A. Closed-Loop Database Architecture

Figure (1| shows the adaptive closed-loop database system
architecture built atop Berkeley DB [10]. It consists of the
database server, performance monitor, adaptive controller, ad-
mission controller, and backlog estimator. The database server
processes user transactions and periodic updates of temporal
data, e.g., stock prices or sensor readings, to support the data
freshness.

The performance monitor in Figure [I] measures the average
response time of the transactions that finish in each control
period and computes the difference between the desired target
response time set-point, R, and the measured response time
to compute the error. Based on the error, the adaptive response
time controller adjusts the database backlog bound, if neces-
sary, to support R,. Generally, the backlog bound is decreased
when the system is overloaded or vice versa.

The admission controller admits an arriving user transaction,
if it does not expect the backlog bound will be exceeded
after accepting it. To this end, the backlog estimator estimates
the total amount of data to be accessed by the transactions
already in the system and the arriving one. Note that admission
control is only applied to user transactions. Periodic update
transactions are always scheduled and processed by the system
using the dedicated threads to maintain the freshness of data.

In this paper, transactions are scheduled in a FIFO manner.
For concurrency control, the two phase locking (2PL) scheme
is applied. Since FIFO scheduling and 2PL are supported by
most database systems, our approach is easy to deploy.

B. An Overview of Adaptive Database Response Time Control

Queries &
Transactions

Rs k
b—» Controller /Q(+D) DB —
+
 Update DB model
Fig. 2. Adaptive Control Loop for Database Response Time Management

In this paper, the £*" (k > 1) control point and period
indicate the time k7 and time interval [(k — 1)Ts, kT5),
respectively. At the k" control point, the performance mon-
itor in Figure [I] computes the average response time of the
transactions that committed in the k*" control period:

n(k)

r(k) = Z ri/n(k) (1)

where r; is the response time of transaction ¢ finished in the
k" control period and n(k) represents the total number of the
transactions completed during the control period. Thus, r(k) is
the output of the controlled RTDB system at the k" control
point.

To support the desired response time R even in the
presence of dynamic workloads, the response time error is
calculated at the k*" control point as shown in Figure

e(k) = Ry —r(k) 2)

Based on e(k), the closed-loop system derives the required
backlog bound adaptation, §¢(k), and the new backlog bound:

0k +1) = (k) + 56(k) 3)

TABLE I
TARGET PERFORMANCE

Notation | Description | Desired Value

R, Response time set-point 0.2s
T, Settling time 5s

where ¢(k+1) is the control input provided to the RTDB that
will use it to support R, in the (k+1)*" control period. Thus,
if e(k) > 0, the backlog bound is increased, i.e., 0¢(k) > 0,
or vice versa. (In this paper, ¢(0) is set to a small positive
integer when the system is initialized.)

Accurately modeling a database system with complex char-
acteristics is very hard, if at all possible. Hence, we apply
formal control theoretic techniques very effective to support
the desired performance [8] even when the controlled system
model is approximate. At the same time, the database system
model is adjusted at each control point as illustrated in Figure 2]
to support 2 even in the presence of dynamic workloads and
transient system performance.

When a new user transaction arrives at time ¢ € [kT5, (k +
1)T), the estimated total amount of data to be accessed by the
transactions already in the system is derived by the backlog
estimator in Figure [T}

q(t)
b(t) = ni 4)
=1

where ¢(t) is the number of transactions in the ready queue at
time ¢t and n; is the estimated amount of data to be accessed
by transaction .

The admission controller in Figure [l| admits new user
transaction j to the system, if b(t) +n; < ¢(k+1) where n; is
the estimated number of data to be accessed by the transaction.
Otherwise, the user transaction will be dropped and a system
busy message will be returned to the user who can resubmit
the request later. For an admission test, only the number of
data that will be accessed by the arriving transaction needs to
be newly estimated and added to b(t). Thus, computing Eq 4]
incurs little overhead upon a request arrival.

C. Target Performance

As shown in Table [I, we set the average response time set-
point Ry = 0.2s and the control period T = 0.5s in this paper.
R, is selected to support the lower bound of the optimal trade
interval for U.S. financial markets derived in [[1]. Thus, Ry
is a realistic real-time database performance goal. When there
is a transient delay overshoot that exceeds R, it needs to be
canceled within the specified settling time, T,,, to support the
reliable transient as well as average performance. In this paper,
we require that T;, < 5s.

Selecting an optimal control period is an open problem [8].
In this paper, we set T; = 0.5s for both our adaptive controller
and the PI controller used as a baseline in Section [VI[] We

IThe control period is not applicable to the open-loop database baseline that
does not rely on a closed-loop system to manage the RTDB performance.

pick this T to frequently monitor the database response time
and adapt the backlog bound, if necessary, to closely support
R,. As hundreds of transactions are finished within 0.5s in
our database testbed, reliable response time statistics can be
acquired at every T using Eq [2] too.

III. DATABASE BACKLOG ESTIMATION

Although our approach is not limited to a specific RTDB
application, we build a stock trade database testbed, because
there is neither a publicly available RTDB nor a standard
benchmark for RTDB research. The database schema and
transactions supported by our testbed are similar to the RUBiS
online auction benchmark emulating eBay [12] and TPC-E
database benchmark that models a brokerage firm [[13]].

In addition, we support periodic temporal data updates
necessary for real-time data services but not supported by
RUBIS and TPC-E. In our testbed, there are 3000 temporal
data. Each temporal data item, e.g., a stock price or a sensor
reading, is updated at a fixed period randomly selected in the
range of [0.2s, bs] during the system initialization to support
the data freshness. By doing this, we model frequent updates
of temporal data unlike, for example, many financial web sites
that only provide a small number of stock price quotes with
15 — 20 minute delays [14].

In our stock trade testbed, there are seven tables and four
types of transactions: view stocks, view portfolio, purchase,
and sales, similar to RUBIiS and TPC-E. For each transaction,
the backlog estimator in Figure [I| estimates the number of
data to be accessed based on the metadata, e.g., the database
schema determined at the database design time, as follows.

e View stock: To process this query for stock quotes the
stocks and quotes tables that have the stock symbol, full
company name, company ID attributes, and current stock
prices should be accessed By parsing the query, the
database system finds the number of companies n, spec-
ified in the query. It then computes the estimated amount
of data to access to process request i: n; = n.-{r(stocks)
+ r(quotes)} where r(z) is the average size of a row, i.e.,
the average number of bytes in a row, in table x.

o View portfolio: A user issues this query to look up current
prices of certain stocks in his/her portfolio and compare
them to the purchase prices. For each stock item in the
portfolio, the database system looks up the portfolios
table with the client ID, company ID, purchase price,
and shares attributes to find the company IDs necessary
to look up the gquotes table. Thus, the estimated amount
of data accessed by this query is: n; = |port folio(id)| -
{r(portfolios) + r(quotes)} where |portfolio(id)| is the
number of stock items in the portfolio owned by the
customer whose ID is id.

e Purchase: A user issues this transaction to purchase a
stock item. If the purchased stock item was not in the
portfolio before the purchase, the stock item and its

2In fact, in our testbed, there are more attributes necessary for online stock
quotes and trades. In this paper, we only present the key attributes and tables
for the clarity of presentation.

purchase price looked up in the guotes table, are added
to the portfolio. If it is already in the portfolio, the
database system updates the corresponding shares. Hence,
the estimated amount of data accessed by a purchase
transaction is: n; = r(quotes) + (|portfolio(id)| + 1)
- r(portfolios).

e Sale: To process a sale transaction, the system scans
the portfolios table to find the stock items belonging to
this client’s portfolio. Using the stock IDs found in the
portfolios table, the database searches the guotes table to
look up the corresponding stock prices. After finding the
stock prices, the database updates the customer’s portfolio
in the portfolios table to indicate the sale. Thus, the
estimated amount of data accessed by a sale transaction
is: n; = |portfolio(id)| - r(portfolios) + ngey - r(quotes)
+ nseys r(portfolios), in which ngey is the number of
stock items to sell.

Note that our approach is generally applicable to estimate
the backlog in other real-time database applications, e.g.,
traffic control or target tracking, for the following reasons:

o Usually, the schema is determined at the database design
time. Hence, our backlog estimation method can exploit
the schema information to estimate the backlog at run-
time.

« Transaction semantics for a specific real-time data service
application are well known. For timely data services,
commonly used transactions, e.g., catalog browsing, pur-
chase, and shopping cart management in e-commerce, are
often predefined or canned.

Hence, using these meta data readily available in most
database systems, the amount of data to be accessed by a
transaction can be estimated.

IV. DATABASE MODELING AND ADAPTIVE RESPONSE
TIME CONTROL

In this section, our approach to model the database system
and adjust the model at runtime is discussed. To this end, we
extend [20] unaware of database semantics by considering the
relation between the database backlog and response time as
follows.

A. Database System Modeling

To apply control theoretic techniques, it is necessary to
model the dynamics of the controlled system, e.g., the database
system, in a control theoretic manner. In this paper, the
database response time is the controlled variable (output). The
database backlog bound is the manipulated variable (control
input) adjusted, if necessary, to support the target response
time set-point R. Specifically, we require the convergence
of the database response time to Ry:

r(k) = Ry(1 - c¥) (5)

where 0 < ¢ < 1 to ensure the convergence of the response
time to R, with no oscillation.

In this paper, the controlled database system is modeled via
a difference equation in the discrete time domain:

r(k+1) = a(k)l(k) + w(k) (6)

where «(k) is an unknown model coefficient adapted at
every control point to closely support R even given dynamic
workloads, (k) is the database backlog bound used in the k'"
control period, and w(k) is the disturbance, e.g., unexpected
data/resource contention.

In this paper, we treat (k) in Eq[6]as a constant during the
k" control period, assuming that it varies slower than the con-
trol horizon. Also, accurately predicting w(k) is very hard, if at
all possible. Thus, we assume w(k) = 0 for control modeling
purposes, while continuously adjusting the controlled database
model in the closed-loop system to compensate for possible
modeling errors in terms of the relation between the database
backlog and response time. In Section we analyze the
robustness of our closed-loop system considering the impact
of perturbation to analytically verify the validity of our control
model.

We convert Eq [6] to the frequency domain by taking the
z-transform. In this way, we model the database system
algebraically in the frequency domain rather than solving
complex partial differential equations in the time domain. A
powerful feature of z-transform is that a time delay by ¢ control
periods is represented simply by 2% [I]]. Thus, by taking
z-transform of Eq [6] we get the following equation in the
frequency domain:

zR(z) = A(2)L(2) 7

where R(z), A(z), and L(z) represent z-transformed r(k),
a(k), and ¢(k) in the frequency domain, respectively. As
r(k+ 1) in Eq @ is the projected response time in the next
control period, which is one control period ahead of the other
variables, 2 is multiplied to R(z) in Eq

From Eq |/} we derive the transfer function of the open-loop
database system that models the relation between the output
from and input to the controlled open-loop database, i.e., the
database response time and backlog:

R(z) _ A(z)

P(z) = L(z) =

(®)

We also perform the z-transform of Eq [3] that requires the
convergence of the response time to the desired set-point R:

R(z) = R, L«il_zic} = £ [(Zj(ll)zzcic)

If the transfer functions of the open-loop controlled system,
i.e., the database system in this paper, and the controller are
X (2z) and Y (2), the transfer function of the closed-loop system
is simply % [LL], [8]]. Thus, to support the target data
service delay R,, we form the closed-loop system transfer
function using Eq (8] in the frequency domain:

__P(R)F(2)
H) = 1 pre

} (©))

(10)

where F'(z) is the transfer function of the response time
controller in Figure 2| (F'(z) will be derived shortly.)

If our closed-loop system converges to the set-point s with
zero steady state error, H(z) = Rfj(i = 1 according to the
final value theorem [8]]. Therefore, from Eq[9] and Eq we

derive that:

1—c¢

Z—C

H(z) = (1)
Thus, the closed-loop pole, i.e., the root of the denominator
of H(z), is c¢. To support the stability of the closed-loop
system, ¢ should be located within a unit circle [8]. Due to
the convergence and stability requirements (Eq [5] and Eq [TT),
0<e<l.

We then derive the transfer function of the database response
time controller, F'(z), to compute the required backlog bound
adaptation, 6¢(k), if necessary, to support Ry in the (k+ 1)t
control period. To derive F(z), we substitute Eq (8 and Eq

into Eq [I0; 1o
z2(1—

&= 16—

12)

Finally, we take the inverse z-transform of Eq|12]to convert
it back to the time domain to compute the control input, i.e.,
the backlog bound ¢(k + 1) that will be used by the RTDB to
support R in the (k 4 1)*" control period:

1—c
a(k)

where «(k) is adjusted at runtime, if necessary, to support R
as discussed next.

Uk +1) = 6(k) + 56(k) = £(k) + ——e(k) (13)

B. Control Gain Adjustment at Runtime

It is important to adjust the backlog bound appropriately,
since too high a backlog bound may incur excessive data
service delays. On the other hand, too low a bound may result
in system underutilization. However, the relation between the
database backlog and delay may vary in time. For example,
the database response time may increase, if there are severe
data conflicts, incurring transaction aborts/restarts.

To address the issue, we dynamically adjust the model
coefficient (k) in Eq [f] to maintain the database response
time below R, based on our database model discussed in
Section Note that (k) is also the response time
control gain in Eq [I3] used to control the database backlog,
if necessary, to support the target response time bound Rj.
At the Lkt control point, we estimate the model coefficient as
follows:

r(k)

k) +(1-=X)-
where A is the forgetting factor such that 0 < A < 1. If
A =1, only the current response time to the backlog ratio is
considered to estimate &(k). On the other hand, only &(k—1)
will be used if A = 0. The estimated model parameter a(k),
replaces the unknown model coefficient, a(k) in Eq ., to

a(k) =\ ak — 1) (14)

re-tune the adaptive response time controller that computes
¢(k + 1) using the new control gainf]

In our approach, the estimated model parameter &(k) is
continuously adjusted; therefore, it is not required to find an
optimal model parameter offline. An appropriate value of A can
be derived by solvmg Eq [14] recursively. For example, it can
e&? on the model parameter
to be smaller than 5% after 10 control perlodsl | Note that
our approach for adaptive control of the real-time data service
delay is lightweight, because it only needs to compute Eq
and Eq [14] at each control point.

C. Robustness Analysis

To analyze the robustness, we express the exact value of
a(k), which is unknown, as follows:

a(k) = a(k)y (k)

where (k) is the multiplicative perturbation that indicates the
magnitude of the parameter estimation error.

The transfer function of the closed-loop system is derived
considering the perturbation impact:

Hy(z) = Fy(z)Py(z) (1 =p)(2)
¥ 1+ Fy(2)Py(2) z+v(z)(1—¢) —1

From this equation and the convergence and stability re-
quirement (0 < ¢ < 1), we analyze the robustness of
our adaptive closed-loop system against the database model
inaccuracy as follows:

15)

(16)

2
1—c¢
Thus, choosing a large c close to 1 increases the robustness.

From Eq [5] however, we observe that a large c leads to
slow convergence to Rg. Especially, when there is a delay
overshoot, it is desirable to minimize the settling time taken
to cancel the overshoot and make the response time range
between [(1 — €)Rs, (1 + €)R,] for a small ¢, e.g., 0.01, as
quickly as possible. More specifically, the settling time T, is:

0<o(k) <

a7

T, = log e

T (18)
log c
where T is the control period as described before.

From Eq [I7]and Eq[I8] we observe that there is an inherent
trade-off between the robustness and settling time; that is, a
large ¢ enhances the robustness but increases the settling time
or vice versa. In this paper, we pick a relatively small ¢ value
to promptly cancel any delay overshoot.

In particular, we set ¢ = 0.3. Given that, 0 < (k) < 2.857
and T, = 3.24s. Thus, our closed-loop system can withstand
up to an approximately 285% model coefficient estimation
error. Also, any delay overshoot is theoretically expected to

3Before the database starts processing user data service requests, &(0) is
initialized as a small positive real.

4A more advanced method, e.g., a Kalman filter, could be used to adapt
the model coefficient online by predicting the future database response time
based on the history. A thorough investigation is reserved for future work.

TABLE II
STEP-LIKE WORKLOADS

Workload [Average Arrival Rate
W1 1280 — 1560 requests/s (21% 1)
W2 1280 — 2042 requests/s (60% 1)
w3 1280 — 2526 requests/s (98% 1)
W4 1280 — 3200 requests/s (150% 1)
W5 1280 — 4000 requests/s (213% 1)

get canceled in 3.24s, meeting the settling time requirement
(5s) in Table [I}

Overall, our closed-loop system is self-adaptive in that it
continuously adjusts the database model and control gain, if
necessary, to maintain the response time below Rj.

V. PERFORMANCE EVALUATION

In this section, the performance of our approach and base-

lines is evaluated to observe whether they can support the
desired performance in Table [I}
Experimental Settings. The database system, which processes
user transactions and periodic temporal data updates, runs in a
workstation that has the Intel Core 7 3.6 GHz quad core CPU
and 16 GB memory. Client threads run in a separate system
with the 3.7 GHz AMD dual core CPU and 8 GB memory. In
total, 4800 client threads continuously send user transactions
to the database. Each user transaction or query accesses 5—125
data items. Every machine runs the Linux 3.13.0 kernel. The
clients and database are connected through a 1 Gbps Ethernet
switch using the TCP protocol. The response time of a real-
time data service request sent from a client to the server is the
sum of the delays for the network transmission, queuing, and
transaction processing in the database system.

The performance of our self-adaptive control (SAC) scheme
is compared to that of two baselines. First, Open is the
unmodified Berkeley DB [10] that is a state-of-the-art open
source database system provided by Oracle Corp. It simply
accepts all user transactions regardless of the current system
status. In fact, most database systems do not support admission
control.

Second, PI extends the Berkeley DB by supporting a
feedback-based admission control scheme using a PI controller
designed and tuned offline [1]], similar to [2f], [3], [4], 5],
[15], [16l, [6], [7]. A PI controller may fail to support the
desired performance, if the system behavior largely deviates
from the operating range used for offline modeling. For a
formal discussion of the offline design and tuning of the
closed-loop PI control system, including the operating range
set-up, to support R, readers are referred to [17] due to space
limitations.

To comparatively evaluate the performance of Open, PI,
and SAC, the client threads issue queries about stock prices
for 60% of the time, because a large fraction of requests
are usually quotes in e-commerce, e.g., stock trading, [12],
[13]. For the remaining 40% of time, they issue requests for
purchase/sale transactions or portfolio browsing in a uniform
random manner.

For performance evaluation, we consider several step-like
workloads in Table |llf where the load is abruptly increased at
301s and maintained until the end of the experimental run to
model load surges due to, for example, sudden market status
changes or traffic incidents. Each experimental run is 900s
long. In each run, the average user transaction arrival rate is
1280/s between 0s—300s. At 301s, the arrival rate is increased
suddenly as summarized in the table. For example, for W1
(W5), the average arrival rate is increased from 1280 to 1560
(4000) requests/second at 301s, which is an approximately
21% (213%) increase in the average arrival rate. In this
paper, each performance data is the average of 10 runs. 95%
confidence intervals are derived for the performance results.

Opeh
Pl ==
SAC ===
—~ 08¢} N\ 1
9 N\
z \
3 o6t N g
E \
() W
2 o4t \
(g
< 02 N \
N\ \
\ \
0 \ N
b % %

Workloads
Fig. 3. Average service delay

Average Data Service Delay. In this paper, only the aver-
age service delay is presented due to space limitations. For
transient performance results, interested readers are referred
to [[17].

The average data service delays and confidence interval
bars of the tested approaches are shown in Figure [3] for the
interval [301s, 900s]. Before 301s, the response time of every
approach is near zero and much shorter than Rs due to the
comparatively low workload in the interval. For W1 and W2,
as shown in Figure [3] the average response time of every
approach is shorter than R; = 0.2s. However, Open largely
fails to support R, for W3 — W5, because Open is not reactive
at all; it simply accepts all transactions regardless of the system
status. Generally, PI does a better job than Open does in terms
of managing the average response time. The response time of
PI does not exceed R, for W1 — W3. However, PI fails to
control the response time to be below R; for W4 and W5.
As PI is designed and tuned offline with no online model and
control gain adjustment, it is not adaptive enough to large step
workload changes.

In contrast, SAC successfully controls the average response
time to be below R, as shown in Figure Specifically,
SAC supports the average response times of 0.18 £+ 0.0007s,
0.16 £ 0.0006s, and 0.04 £+ 0.008s for W3, W4, and W5,
respectively. SAC adjusts the database model online and ad-
justs its control gain to make more effective admission control
decisions; therefore, it can control the average response time

to be below R, even when the workload increases sharply. We
observe that the average response time of SAC decreases as
the workload becomes more intense from W3 to W5. This is
because its self-adaptive controller becomes more conservative
(in terms of admission control) to support R, for bigger load
surges.

VI. RELATED WORK

Classical feedback control techniques [[1] have been applied
to support the desired performance for real-time data services
even in the presence of dynamic workloads [2], [3], [4],
(S, [15], [16], (6], [7]. In these approaches, however, the
controlled database system is modeled offline without being
adjusted at runtime. Also, most of them use an LTI PI
controller or linear quadratic regulator designed and tuned
offline based on the fixed database model. Therefore, they may
fail to support the desired performance, if the workload or
system behavior considerably deviates from the offline model.
In this paper, we dynamically adjust the database model at
each control point and accordingly adapt the database backlog
bound, if necessary, to support the desired delay bound for
real-time data services.

Control theoretic techniques have been applied to manage
the performance of various computational systems, such as
real-time systems, web servers, and cloud applications [18],
[19], [20]. In [18], model predictive control theory [21],
[22] is applied to manage the CPU utilization in a clustered
real-time system with no stability analysis. In [20], a novel
adaptive control theoretic method is developed for software
performance management. Also, the stability and robustness
of the adaptive closed-loop system are analyzed. However,
they do not consider real-time data service requirements, e.g.,
transactions, temporal data updates, and database backlog
considered in this paper.

VII. CONCLUSIONS AND FUTURE WORK

In data intensive real-time applications, e.g., e-commerce,
processing user data service requests in a timely manner
is desirable yet challenging due to dynamic workloads and
data/resource contention. To address the problem, we design
a new lightweight adaptive closed-loop approach to support
the desired response time for data service requests even
in the presence of dynamic workloads. In our approach,
the controlled database system model is adjusted at runtime
and the database backlog bound is dynamically adapted, if
necessary, to ensure the database response time does not
exceed the desired set-point. For performance evaluation, we
have actually implemented the state-of-the-art baselines and
our approach in a stock trade testbed in contrast to most
existing RTDB work. Our approach supports robust average
and transient performance in terms of the database response
time even when workloads are increased abruptly, whereas the
state-of-the-art baselines fail to do it. In the future, we will
investigate more advanced approaches to further enhance the
efficiency and robustness of real-time data services.

ACKNOWLEDGMENT

We appreciate anonymous reviewers for their help to im-
prove the paper. This work was supported, in part, by NSF
grant CNS-1526932.

REFERENCES

[1] C. L. Phillips and H. T. Nagle, Digital Control System Analysis and
Design (3rd edition). Prentice Hall, 1995.

[2] M. Amirijoo, N. Chaufette, J. Hansson, S. H. Son, and S. Gunnarsson,
“Generalized Performance Management of Multi Class Real-Time Im-
precise Data Services,” in IEEE Real-Time Systems Symposium, 2005.

[3] K. D. Kang, S. H. Son, and J. A. Stankovic, “Managing Deadline
Miss Ratio and Sensor Data Freshness in Real-Time Databases,” IEEE
Transactions on Knowledge and Data Engineering, vol. 16, no. 10, pp.
1200-1216, 2004.

[4] M. Amirijoo, J. Hansson, S. Gunnarsson, and S. H. Son, “Experimental
Evaluation of Linear Time-Invariant Models for Feedback Performance
Control in Real-Time System,” Real-Time Systems, vol. 35, no. 3, pp.
209-238, 2007.

[5] W. Kang, S. Son, and J. Stankovic, “Design, Implementation, and
Evaluation of a QoS-Aware Real-Time Embedded Database,” In IEEE
Transactions on Computers, 2012.

[6] J. Oh and K. D. Kang, “A Predictive-Reactive Method for Improving
the Robustness of Real-Time Data Services,” IEEE Transactions on
Knowledge and Data Engineering, vol. 25, no. 5, pp. 974 — 986, 2013.

[71 Y. Zhou and K. D. Kang, “Deadline Assignment and Feedback Control
for Differentiated Real-Time Data Services,” IEEE Transactions on
Knowledge and Data Engineering, vol. 27, no. 12, pp. 3245 — 3257,
2015.

[8] K. I. Astrom and B. Wittenmark, Adaptive Control, 2nd ed. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1994.

[9] K.Y.Lam and T. W. Kuo, Eds., Real-Time Database Systems. Kluwer
Academic Publishers, 2006.

[10]
technologies/berkeleydb/overview/index.html.

D. Fricke and A. Gerig, “Too Fast or Too Slow? Determining the
Optimal Speed of Financial Markets,” Social Science Research Network
(SSRN), 2015.

“RUBIS: Rice University Bidding System,” http://rubis.objectweb.org/.
“Transaction Processing Performance Council,” http://www.tpc.org/.
“Real Time Quotes,” http://www.nasdaq.com/quotes/real-time.aspx.

K. D. Kang, J. Oh, and Y. Zhou, “Backlog Estimation and Management
for Real-Time Data Services,” in Euromicro Conference on Real-Time
Systems, 2008.

K. D. Kang, Y. Zhou, and J. Oh, “Estimating and Enhancing Real-Time
Data Service Delays: Control Theoretic Approaches,” IEEE Transactions
on Knowledge and Data Engineering, vol. 23, no. 4, pp. 554 — 567, 2011.
D. Fernando, K. D. Kang, and Y. Zhou, “An Adaptive Closed-Loop
Approach for Timely Data Services,” State University of New York at
Binghamton, Tech. Rep. CS-TR-17-KDO01, 2017.

X. Wang, D. Jia, C. Lu, and X. Koutsoukos, “DEUCON: Decentralized
End-to-End Utilization Control for Distributed Real-Time Systems,”
IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 7,
pp- 996-1009, 2007.

C.Lu, Y. Lu, T. Abdelzaher, J. Stankovic, and S. Son, “Feedback Control
Architecture and Design Methodology for Service Delay Guarantees in
Web Servers,” IEEE Transactions on Parallel and Distributed Systems,
vol. 17, no. 9, pp. 1014-1027, 2006.

C. Klein, M. Maggio, K.-E. Arzén, and F. Hernandez-Rodriguez,
“Brownout: Building More Robust Cloud Applications,” in International
Conference on Software Engineering, 2014.

E. Camacho and C. Bordons, Model Predictive Control. Springer, 1999.
E. Camponogara, D. Jia, B. Krogh, and S. Talukdar, “Distributed Model
Predictive Control,” Control Systems Magazine, vol. 22, no. 1, pp. 44—
52, 2002.

(11]

[12]
[13]
[14]
[15]

[16]

(17]

(18]

[19]

[20]

[21]
[22]

“Oracle Berkeley DB,” http://www.oracle.com/technetwork/database/database-

	Introduction
	System Architecture
	Closed-Loop Database Architecture
	An Overview of Adaptive Database Response Time Control
	Target Performance

	Database Backlog Estimation
	Database Modeling and Adaptive Response Time Control
	Database System Modeling
	Control Gain Adjustment at Runtime
	Robustness Analysis

	Performance Evaluation
	Related Work
	Conclusions and Future Work
	References

