
Systematic Security and Timeliness Tradeoffs in Real-Time Embedded Systems∗

Kyoung-Don Kang
Department of Computer Science

State University of New York at Binghamton
kang@cs.binghamton.edu

Sang H. Son
Department of Computer Science

University of Virginia
son@cs.virginia.edu

Abstract

Real-time embedded systems are increasingly being net-
worked. In distributed real-time embedded applications,
e.g., electric grid management and command and control
applications, it is required to not only meet real-time con-
straints but also support the data confidentiality,integrity,
and authenticity. Unfortunately, in general, cryptographic
functions are computationally expensive, possibly causing
deadline misses in real-time embedded systems with limited
resources. As a basis for cost-effective security support in
real-time embedded systems, we define a quantitative notion
of Strength of Defense (SoD). Based on the SoD concept, we
propose a novel adaptive security policy in which the SoD
can be degraded by decreasing the cryptographic key length
for certain tasks, if necessary, to improve the success ratio
under overload conditions. Our approach is lightweight.
The time complexity of our approach is linear and its amor-
tized version has the constant overhead per SoD adaptation
period. Moreover, our approach supports desirable security
features requiring an attacker to do extra work to find the
cryptographic key. In the performance evaluation, we show
that our approach can considerably improve the success ra-
tio due to controlled SoD degradation under overload.

1 Introduction

Real-time embedded systems, which used to be isolated,
are increasingly being networked due to distributed real-
time embedded (DRE) applications including, e.g., electric
grid management, agile manufacturing, and defense appli-
cations. In these applications, DRE systems need to report
the real world status, e.g., the battlefield or electric gridsta-
tus, to the control center (CC) that prepares overall battle
tactics or energy supply plans. It is important for DRE sys-
tems to report the real world status in a timely manner. At

∗This work was supported, in part, by NSF grants IIS-0208758 and
CCR-0329609.

the same time, DRE systems need to ensure that an adver-
sary cannot read the data, modify it, or claim a false identify
by supporting the confidentiality, integrity, and authenticity
requirements via cryptographic means.

Unfortunately, most cryptographic algorithms are com-
putationally expensive, possibly causing many deadline
misses in real-time embedded systems (RTESs) with lim-
ited resources. Note that resource over-provisioning may
not be a viable solution due to the stringent cost, size,
weight, and power constraints prevalent in these systems.
On the other hand, it is not desirable to ignore security re-
quirements or simply use a weak security scheme all the
time. Thus, it is necessary to balance timing and security
requirements. Despite the importance of the problem, rela-
tively little work has been done.

To shed light on the problem, we present a novel ap-
proach called SSTT (Systematic Security and Timeliness
Tradeoffs) in real-time embedded systems. More specifi-
cally, we aim to maximize the success ratio, while meet-
ing the cryptographic security requirements insoft real-time
applications such as battlefield monitoring and target track-
ing. To this end, we define aquantitative metricto measure
the Strength of Defense (SoD) based on the cryptographic
key length. Based on the SoD concept, we present a new
adaptive security policyin which the SoD is degraded by
decreasing the cryptographic key length for certain tasks,
if necessary, to improve the success ratio under overload
conditions. Although adaptive security support in real-time
systems has previously been studied [1, 18, 5], very little
work has been done to provide a quantitative SoD metric
and adapt the cryptographic key length to improve the suc-
cess ratio under overload. Moreover, SSTT incurs very lit-
tle overhead, while providing desirable security and system
features. (More details are given in Sections 2 and 3.)

To evaluate the performance, we compare our approach,
via a simulation study, to a baseline approach that ap-
plies the EDF (Earliest Deadline First) scheduling algo-
rithm [10], while always using the longest key for cryp-
tographic security regardless of the current system status.
SSTT always supports at least the minimum required SoD

and considerably improves the success ratio by systemati-
cally adapting the SoD, if necessary, to improve the success
ratio when overloaded.

The remainder of this paper is organized as follows. In
Section 2, an application scenario is discussed to motivate
our work. Further, the scope of the work is described by
discussing our security model. Our approach for systematic
security and timeliness tradeoffs is discussed in Section 3.
In Section 4, the performance of SSTT is evaluated via sim-
ulation. Related work is discussed in Section 5. Finally,
Section 6 concludes the paper and discusses future work.

2 Scope of the Work

In this section, a (simplified) application scenario and
the security model are discussed to specify the scope of the
work.

2.1 Application Scenario

In time-critical target tracking [11], for example, UAVs
(Unmanned Aerial Vehicles) are required to perform soft
real-time reconnaissance tasks for monitoring and trans-
mitting the battle field status to the command and control
center (CC). Similarly, DRE systems embedded to electric
grids are required to report the local grid status to the CC
across the network. In these applications, it is important for
a RTES to support the security constraints, while meeting
as many deadlines as possible. RTESs in these applications
can be overloaded due to dynamic workloads. For exam-
ple, when a UAV enters the current area of interest (AOI),
it may be required to increase the frequency of the surveil-
lance data transmission. In addition, a new target may enter
the AOI, possibly overloading a RTES in a UAV. As another
example, the CC of an electric grid may request the RTESs
in the AOI showing abnormal electricity supply patterns re-
port the status more frequently. Since real-time monitoring
and cryptographic computations may compete for compu-
tational resources, it is important to effectively balancebe-
tween the two conflicting requirements. When an individ-
ual RTES is under transient overload, our approach aims
to improve the success ratio in a RTES by systematically
adapting the key length. Although we expect our adaptive
security policy can also improve the end to end delay, net-
work QoS management is beyond the scope of this paper. A
thorough investigation is reserved for future work.

2.2 Security Model

The security model considered in this paper is described
as follows.
• We assume that isolated RTESs, e.g., RTESs in a UAV,
are trusted and tamper-proof.

• We focus on cryptographic security issues in this paper.
Other security issues such as denial of service attacks are
reserved for future work.
• We consider a symmetric key system in which a CC and
an individual RTES share a unique secret key, since the en-
cryption/decryption in a public key system takes several or-
ders of magnitude longer than that in a symmetric key sys-
tem [17].
• It is assumed that a RTES uses a trusted cryptosystem,
e.g., AES (Advanced Encryption Standard) [15], which
does not have any known vulnerability. Thus, an adversary
has to attack the cryptosystem in abrute-forcemanner try-
ing to find the secret key via an exhaustive search in the key
space as common in trusted cryptosystems [2, 17, 21].
• We assume that an encryption algorithm, e.g., AES, used
in a RTES can support different key lengths.
• To minimize the overhead for key selection, we assume
that the unique keys shared between the CC and a RTES are
created and safely distributed to RTESsa priori. For ex-
ample, keys of different lengths can be createdofflineand
predistributedto RTESs in UAVs during the regular main-
tenance or before beginning a mission. When the RTES
switches to a short key shared with the CC under overload,
neither the CC nor RTES needs to create a new key. In this
way, unnecessary deadline misses due to online key selec-
tion and exchange can be avoided. Dynamic key generation
and distribution are reserved for future work.

3 Systematic Security and Timeliness Trade-
offs

In this section, the cryptographic security supported by
our approach is described. The notion of the strength of de-
fense is defined. Also, our approach for systematic security
and timeliness tradeoffs is discussed.

3.1 Cryptographic Security Support

In our approach, we mainly consider three security goals:
confidentiality, integrity, and authenticity as discussedbe-
fore. To support theconfidentialityrequirement, when a
RTES wants to send a messageP to the CC, it first encrypts
the plaintextP . Formally, the encrypted ciphertext message
is:

C = E(P){Ke, Cnt} (1)

whereE is the encryption function such as AES [15],Ke

is the unique encryption key shared between the RTES and
CC, andCnt is the current counter value that is incremented
after each message encryption and transmission. By includ-
ing the counter value, one can prevent a replay attack in
which an attacker resends old messages [17]. It is impor-
tant for a RTES to prevent replay attacks. Otherwise, an

adversary can deceive the CC by retransmitting old sensor
data representing, e.g., the old battle field status.

To support theintegrity andauthenticityof the message,
a secure message authentication code (MAC)M is com-
puted over the message includingC:

M = H(S|D|C|Cnt)Km
(2)

whereH is a key-based, secure one way hash function sup-
porting minimal collisions,S|D|C|Cnt is the concatena-
tion of the sourceS and destinationD address, the cipher-
textC (Eq 1), and the counter value.Km is the unique mes-
sage authentication key shared between the RTES and CC.
Note thatKm 6= Ke in our approach, since it is recommend
to use different keys for different cryptographic functions
[17]. Hence, a complete message sent by a RTESS to CC
D (or vice versa) is:

S → D : S, D, C, Cnt, M (3)

where the ciphertextC supports the confidentiality of the
original plaintext and the secure checksumM supports the
integrity and authenticity of the message.

Upon the message reception, the receiver first computes
the MAC M ′ on S|D|C|Cnt. If the computed MACM ′

and the received MACM match, the receiver knows that
the message is not altered during the transmission. Also, it
is confirmed that the message is actually fromS, because an
unauthorized adversary without the keyKm shared between
the RTES and CC cannot generate the correct MACM . In
this way, one can support both the message integrity and au-
thenticity [12, 17]. After successfully verifying the integrity
and authenticity of the message, the receiver decrypts the
ciphertext. Otherwise, it drops the message. Note that the
sender can compute the secure one-way hash value via the
same algorithm used for encryption without affecting secu-
rity [17]. In this paper, we take this approach to reduce the
storage requirements in resource constrained RTESs.

3.2 Strength of Defense

The strength of a scrutinized symmetric key system,
which has no known shortcut to break it, is often estimated
by the difficulty of finding the key via brute-force attacks
as discussed before. The speed of a brute-force attack is
mainly determined by the number of possible key values to
be tested and the speed of a potential attacker. When the
currently used key isl bits long and the adversary can test
m keys per second, it will take him, in average,2l−1/m sec-
onds to find the key. In 2001, Bond et al. showed that their
DES (Digital Encryption Standard) [17] key cracker, which
is one of the fastest, low cost DES key cracking machines,
can test225 keys/second, finding a 56 bit DES key in less

than 5 hours in the best case [3]. A U.S. government or-
ganization NIST (National Institute of Standards and Tech-
nology) presumes that a possible attack might be able to
test255 keys/second, finding a DES key in only one second
[14]. Due to the insecurity of the DES, NIST announced
a new standard algorithm for encryption, i.e., AES [15],
which uses a 128, 192, or 256 bit key. Based on the ob-
servation, we require that:

li ≥ lmin (4)

for the safety of the cryptosystem. For example, a security
officer can setlmin = 128 following the NIST recommen-
dation discussed above. Note that our algorithm is not tied
to a specific encryption algorithm, key length, or speed of a
potential attacker, but it is generally applicable to dynamic
balancing between timing and security requirements as long
as an encryption algorithm supports variable key lengths.

Given that our approach always supports at least the min-
imum strength of the cryptosystem by satisfying Eq 4, we
can define the SoD via the normalized average key length
used by real-time tasks in a RTES:

SoD =
1

N

N∑

i=1

li/lmax (5)

whereN is the number of tasks currently in the system,li
is the length of the key used by an arbitrary taskTi, and
lmax is the maximum key length supported by the RTES.
Note thatlmin/lmax ≤ SoD ≤ 1; that is, the SoD metric in
Eq 5 succinctly indicates the currently supported SoD com-
pared to the maximum possible SoD that can be supported
by a RTES. Although encryption and secure one-way hash-
ing using a longer key are safer, it usually takes more time
[2] incurring deadline misses. For example, the execution
of the AES algorithm using 128, 192, and 256 bit keys in
a low-end microprocessor takes approximately 2ms, 3ms,
and 4ms in average [4]. Therefore, we propose to use a
longer key under light loads, while switching to a shorter
key when the system suffers transient overloads. For ex-
ample, a RTES in a UAV can normally use a 256 bit AES
key to support the strong cryptographic security of mission
critical data, while switching to a 128 bit key when over-
loaded. (Recall that keys are assumed to be generated and
distributed offline to avoid the overhead due to online key
selection and exchange as discussed in Section 2.)

3.3 Security Adaptation under Overload

In our model, a soft real-time taskTi is associated with
a relative deadlineDi. If it is a periodic task, we assume
its deadline is equal to the period. An aperiodic soft real-
time task is also associated with a relative deadline. The
estimated execution time ofTi is: Ci = Ci,c+Ci,e(li) where

Ci,c is the estimated real-time function execution time and
Ci,e(li) is the estimated time for data encryption and secure
one-way hashing when the current key length used byTi is
li. Thus, the estimated utilization of a real-time taskTi is:
Ui = Ci/Di.

We aim to maximize the success ratio:

MaximizeSuccess Ratio = Nt/Ns (6)

whereNt andNs represent the number of the timely tasks
that finish within the soft deadlines and the number of the
tasks submitted to the system, respectively. The success ra-
tio maximization is subject to Eq 4 and:

N∑

i=1

Ui ≤ B (7)

whereB is the utilization bound, e.g., 100% in EDF (Ear-
liest Deadline First) [10]. In our approach, Eq 4 is always
enforced as discussed in Section 3.2. Therefore, via key
length adaptation, we can improve the success ratio under
overload, while always supporting at least the minimum re-
quired SoD as follows.

1. Initialize the step sizeα = 1.

2. Measure the current utilizationU at every sam-
pling period, e.g., 1 second.

3. If U is higher than the specified upper threshold
Uh (e.g., 90% in EDF), decrease the key length
for α tasks that have the earliest deadlines among
the tasks using the key longer thanlmin. Also,
doubleα.

4. Repeat Steps 2 and 3 untilU ≤ Uh or li = lmin

for every taskTi in the system.

Figure 1. Key Length Reduction under Over-
load

In our approach shown in Figure 1, we consider that a
RTES is overloaded if the current utilization is higher than
the specified upper thresholdUh. By requiringUh < B,
e.g., by settingUh = 90% in EDF, SSTT can start adapting
the key length before the system becomes saturated. Specif-
ically, the key length is reduced forα tasks when the current
utilization is higher thanUh. Note that, in SSTT, the key
length is reduced for the earliest deadline tasks first to max-
imize the success ratio under overload. Also, our approach
can quickly react to a transient overload by exponentially
increasingα, if necessary, to handle severe overload.

Our algorithm has little overhead. Since the EDF queue
is already sorted in nondecreasing order of deadlines, find-
ing the firstα tasks incurs no additional overhead for sort-
ing. Specifically, the time complexity of this algorithm is
O(N) in the worst case. To amortize the overhead, SSTT
considers the key length adaptation for only the firstk tasks
in the EDF queue per adaptation period wherek is a pre-
defined constant, e.g., 10. In this way, the overhead of our
approach becomesconstant, i.e., O(1). Under severe over-
load, it is possible thatα > k. In this case, it will take
SSTT more than one adaptation period to switchα tasks to
a shorter key. Hence, there is a tradeoff between the over-
head and speed of overload management. In this paper, we
take the constant overhead approach for the performance
evaluation discussed in Section 4. In addition to improv-
ing the timeliness under transient overload by degrading the
SoD with little overhead, SSTT has several desirable secu-
rity and system features as follows:

• By switching between several independent keys, we
can require an adversary to spend more time to find the
current key. Also, the key may not be used anymore
when the adversary eventually finds it. In this way,
we can further confuse an adversary forcing him spend
more time and resources to break the cryptosystem.

• Storing a constant number of keys with different
lengths in a RTES does not significantly increase the
storage requirement, which is desirable in resource
constrained RTESs. We can further reduce the storage
requirement by using the same algorithm for encryp-
tion and secure one-way hashing. In addition, switch-
ing to a different key incurs little overhead due to the
offline key selection and distribution.

In our approach, a RTESS can request the CCD to use
a shared shorter key by setting the flagF to 1 in a regu-
lar message of the the following format, which extends the
message format described in Section 3.1.

S → D : S, D, C, Cnt, F, Ms (8)

Note thatF is part of a regular message; therefore, a RTES
does not have to transmit a separate message for key length
synchronization. Thus, key length synchronization incurs
little extra communication overhead. To support the in-
tegrity and authenticity of the message, the secure check-
sum Ms is computed forS|D|C|Cnt|F . The CCD re-
turns the following acknowledgment (ACK) message to the
RTESS:

D → S : D, S, ACK, Cnt, F, Md (9)

when it receives the request (Eq 8) and the integrity and
authenticity of the request message are successfully veri-
fied. Md = MAC(D|S|ACK|Cnt|F) to support the in-
tegrity and authenticity of the ACK message. TheCnt is

included in both the messages exchanged between S and D
to avoid replay attacks. The RTES starts using the shorter
key when it receives and successfully verifies the ACK mes-
sage (Eq 9). We assume the underlying networking proto-
col, e.g., TCP (Transmission Control Protocol) [20], reli-
ably delivers each message such that a message from one
node is delivered without error to the destination. Further-
more, we assume that the packet delivery is handled by a
separate network interface card without affecting the suc-
cess ratio of the real-time tasks running in a RTES. Finally,
note that we do not exchange the key. Thus, an adversary
can extract the key from the messages exchanged between
the RTES and CC by no means but brute-force attacks.

4 Performance Evaluation

In this section, we describe our simulation settings and
compare the performance of SSTT to the baseline approach
that applies the EDF scheduling algorithm and always uses
the longest key. Note that we do not consider another ex-
treme in which a RTES always uses the shortest key even
when the system is underutilized. Since RTESs are often
used in mission critical applications, they are required to
support the strong confidentiality, integrity, and authenticity
unless many deadlines are missed. Further, we intentionally
do not apply other overload management techniques such
as admission control to clearly show the performance im-
provement, if any, achieved by SSTT. In our experiments,
a simulation run executes for 10 (simulated) minutes. For
each performance data, we take an average of 10 simulation
runs using different seed numbers.

Table 1. Simulation Settings
Parameter Value
Ci,c Uniform(3ms, 8ms)
Ci,e(li) 1ms, 2ms, or 3ms for a short

key and 4ms for a long key
AppLoad 60%, 70%, 80%, ..., 160%
Slack Factor (8, 12)
#Keys in a RTES 2
|Short Key|/|Long Key| 0.5

Table 1 summarizes the simulation settings. To generate
workloads, we create multiple workload sources that gen-
erate tasks whose inter-arrival times are exponentially dis-
tributed. By increasing the number of the sources, we can
increase the load applied to the simulated RTES. Specif-
ically, we increase the AppLoad from 60% to 160%. A
sourceSi is associated with the estimated execution time
Ci = Ci,c + Ci,e(li). Si is also associated with the rel-
ative deadlineDi = slack × Ci where the slack is uni-
formly distributed between 8 and 12. The total execution

time Ci and slack factor are similar to [22] that models air
traffic control workloads. Without losing the general ap-
plicability of our approach, we assume that a RTES stores
two keys where the length of the short key, e.g., 128 bits
in the AES algorithm, is a half of the length of the long
key, e.g., 256 bits. The encryption timeCi,e(li) is taken
from [4] measured for the AES using a 128 bit and 256 bit
key, respectively. Hence, the task execution time is reduced
by 2ms when the key length is decreased by half. In ad-
dition, we consider the cases in which the execution time
reduces by 1ms and 3ms to show the performance results
given the nominal variances. Note that we do not model the
time for keyed one-way hashing. This omission only favors
the baseline approach that always uses the long key. If the
key length for secure one-way hashing is also reduced under
overload, SSTT can further improve the success ratio.

We set the tunable parameters of our algorithm discussed
in Section 3 as follows:Uh = 90% andk = 10. SSTT
has constant overhead per adaptation period, because it only
considers the 10 earliest deadline tasks for SoD degradation
per adaptation period. In addition, we consider two alter-
native adaptation periods, i.e., 1 second and 5 seconds. We
have observed that the system generally becomes more re-
active to overloads when the short adaptation period is used.
On the other hand, the SoD can be increased by decreasing
the key length less often when the longer adaptation period
is used. Due to space limitations, we only show the perfor-
mance evaluation results for the 1 second adaptation period
in the following. (A more detailed discussion of the perfor-
mance results is given in [6].)

 0

 20

 40

 60

 80

 100

 160 150 140 130 120 110 100 90 80 70 60

S
uc

ce
ss

 R
at

io
 (

%
)

AppLoad (%)

EDF
SSTT1
SSTT2
SSTT3

Figure 2. AppLoad vs. Success Ratio

Figure 2 shows the success ratio of the tested approaches
for different AppLoads. Specifically, SSTT1, SSTT2, and
SSTT3 represent the success ratios when the encryption
time is reduced by 1ms, 2ms, and 3ms due to the key size
reduction. EDF’s success ratio is nearly 100% up to 90%
AppLoad, while it significantly drops to near 0% when Ap-
pLoad = 110% due to the domino effect in EDF schedul-

ing [10]. Note that the success ratio of EDF is below
80% when AppLoad = 100%, because our simulator gen-
erates workload sources in a stochastic manner, stopping
the source generation when the estimated workload is equal
to or higher than the required AppLoad. In fact, when Ap-
pLoad = 100%, the actual stochastic workloads generated
for the 10 simulation runs ranged between approximately
102%−109%. SSTT significantly improves the success ra-
tio as shown in the figure. SSTT1 achieves the near 100%
success ratio up to 100% AppLoad. Its success ratio is over
90% when AppLoad = 110%, while achieving the approxi-
mately 17% success ratio for AppLoad = 120%. Thus, we
observe that SSTT1 is more resilient to overloads than EDF
due to security and timeliness tradeoffs. The success ra-
tio of SSTT2 is over 95% when AppLoad = 120%. Also,
it is over 75% when AppLoad = 130%. SSTT2 achieves
the better success ratio than SSTT1, because it can reduce
more workloads by degrading the SoD for a task. For sim-
ilar reasons, SSTT3 achieves the best performance among
the tested approaches, showing the approximately 90% suc-
cess ratio when AppLoad = 150%, while its success ratio
is over 50% when AppLoad = 160%. Hence, we observe
that SSTT can significantly improve the success ratio under
overload by delaying the occurrence of the domino effect.

 0

 20

 40

 60

 80

 100

 160 150 140 130 120 110 100 90 80 70 60

Lo
ng

 K
ey

(%
)

AppLoad (%)

SSTT1
SSTT2
SSTT3

Figure 3. AppLoad vs. Fraction of Tasks Us-
ing the Long Key

Figure 3 shows the fraction of the tasks executed using
the long key for the tested AppLoads. We do not plot the
fraction for EDF, since it always uses the long key. Every
task executed in SSTT1, SSTT2, and SSTT3 uses the long
key up to AppLoad = 80%. Thus, theSoD = 1 (Eq 5) in
this case. When AppLoad = 90%, SSTT begins to degrade
the SoD: Approximately 60%, 68%, and 72% of the tasks
executed in SSTT1, SSTT2, and SSTT3 use the long key.
This is because SSTT begins to degrade the SoD when the
current utilization is higher than the thresholdUh = 90%.
Further, the actual workloads generated stochastically are

often higher than 90% when AppLoad = 90% as discussed
before. When AppLoad = 100%, approximately 13%, 28%,
and 45% of the executed tasks use the long key in SSTT1,
SSTT2, and SSTT3, respectively. Almost all the tasks ex-
ecuted in the three approaches use the short key when Ap-
pLoad = 130% to improve the success ratio under overload,
achieving theSoD ≈ 0.5. We observe that the key length of
SSTT3 decreases relatively slowly compared to SSTT1 and
SSTT2, because it can reduce more workloads than SSTT1
and SSTT2 by decreasing the key length for a certain num-
ber of tasks.

5 Related Work

Cryptographic security support has rarely been studied in
the context of real-time systems. QRAM [8, 16] selects an
appropriate encryption key length based on the importance
of an application and its resource requirements. However,
the selection of the key length only occurs at the start of an
application, e.g, a video conference, unlike our approach.
Online application of QRAM may incur high overheads due
to the complex QoS optimization procedure. As a result,
many deadline can be missed. In contrast, our amortized
SoD adaptation procedure discussed in Section 3 has the
constant time complexity.

Miyoshi et al. [13] have developed a novel access con-
trol scheme using the resource control lists to protect time-
multiplexed resources such as the CPU and network band-
width against some DoS (Denial of Service) attacks. Their
work is complementary to our work. For example, we can
use the resource control lists to protect real-time embedded
systems against some DoS attacks, while balancing the tim-
ing and cryptographic security requirements.

The access control problem in the multilevel security
model has been studied in the real-time database literature
[1, 18, 5, 7]. A majority of these work including [1, 18] tem-
porarily allow a covert channel, which can be used by an ad-
versary to enable an illegal information flow between differ-
ent security levels, to improve the timeliness under overload
conditions. George et al. [5] propose a secure real-time con-
currency control protocol to avoid a covert channel. Kang
et al. [7] propose an approach to preventing covert chan-
nels similar to [5], while aiming to support the desired aver-
age and transient deadline miss ratio in real-time databases.
However, none of these work considers issues related to
cryptographic security support.

Although the notion of Quality of Protection has been
introduced in [9] to integrate the security and QoS support,
it is not clearly known yet how to measure the quality of
general security service. Generally, the quality of security
service can only be measuredqualitativelyunlike real-time
performance. Spyropoulou et al. [19] have proposed the no-
tion of QoSS (Quality of Security Service). Ideally, a sys-

tem administrator and a security officer can select an appro-
priate security scheme to optimize the cost-benefit relation,
when a quantitative model showing the computational cost
and benefit of a security service is given. However, they
give no specific model that can be used for the cost-benefit
analysis. Also, they do not consider real-time constraints.
In this paper, we suggest to use the key length as thequan-
titative SoD metric in the context of real-time embedded
systems. Generally, real-time system security is a challeng-
ing open problem with many remaining issues to explore.
Our work is an initial attempt to tackle the problem focused
on systematic cryptographic security and timeliness trade-
offs in real-time embedded systems.

6 Conclusions and Future Work

A number of RTESs are employed in important appli-
cations, e.g., electric grid management or defense applica-
tions. In these systems, it is essential to meet deadlines,
while supporting the security requirements considered in
this paper. However, cryptographic security support in RT-
ESs has rarely been explored. To address this problem, we
propose a novel approach for systematic security and time-
liness tradeoffs based on the concept of the strength of de-
fense. Our approach is not only lightweight but also pro-
vides desirable security and system properties in RTESs. In
the simulation study, our approach significantly improves
the success ratio under overload. In the future, we will fur-
ther investigate efficient cryptographic security supportin
RTESs. We will also investigate other security issues such
as detection of (distributed) denial of service attacks.

References

[1] Q. Ahmed and S. Vrbsky. Maintaining Security in Firm
Real-Time Database Systems. In14th Annual Computer Se-
curity Applications Conference, 1998.

[2] M. Blaze, W. Diffe, R. L. Rivest, B. Schneier, T. Shimo-
mura, E. Thompson, and M. Wiener. Minimal Key Lengths
for Symmetric Ciphers to Provide Adequate Commercial
Security, A Report by An Ad Hoc Group of Cryptogra-
phers and Computer Scientists, January 1996. Available at
http://www.crypto.com/papers/.

[3] R. Clayton and M. Bond. Experience using a low-cost FPGA
design to crack DES keys. InCryptographic Hardware and
Embedded System, 2002.

[4] J. Deamen and V. Rijmen. Efficient Block Ciphers for
Smartcards. InUSENIX Workshop on Smartcard Technol-
ogy, 1999.

[5] B. George and J. R. Haritsa. Secure Concurrency Con-
trol in Firm Real-Time Databases.Distributed and Parallel
Databases, 5:275–320, 1997.

[6] K. D. Kang and S. H. Son. Systematic Security and
Timeliness Tradeoffs in Real-Time Embedded Systems.

Technical Report CS-TR-06-KD01, Department of Com-
puter Science, SUNY Binghamton, 2006. Available at
www.cs.binghamton.edu/∼kang.

[7] K. D. Kang, S. H. Son, and J. A. Stankovic. STAR: Secure
Real-Time Transaction Processing with Timeliness Guaran-
tees. InThe 23rd IEEE International Real-Time Systems
Symposium, Dec. 2002.

[8] C. Lee, J. Lehoczky, R. Rajkumar, and D. Siewiorek. On
Quality of Service Optimization with Discrete QoS Options.
In the 4th IEEE Real-Time Technology and Applications
Symposium, 1998.

[9] J. Linn. Generic Security Service Application Program In-
terface. IETF Request for Comments: 1508, 1993.

[10] C. L. Liu and J. W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment.Jour-
nal of the ACM, 20(1):46–61, 1973.

[11] J. Loyall, R. Schantz, D. Corman, and J. P. andS. Fernan-
dez. A Distributed Real-Time Embedded Application for
Surveillance, Detection, and Tracking of Time Critical Tar-
gets. InThe 11th IEEE Real-Time Embedded Technology
and Applications Symposium, 2005.

[12] W. Mao. Modern Cryptography. Prentice Hall, 2004.
[13] A. Miyoshi and R. Rajkumar. Protecting Resources with

Resource Control Lists. InIEEE Real Time Technology and
Applications Symposium, 2001.

[14] National Institute of Standards and Technology. Advanced
Encryption Standard Questions and Answers, 2002. Avail-
able at http://csrc.nist.gov/CryptoToolkit/aes/aesfact.html.

[15] National Institute of Standards and Technology, Federal In-
formation Processing Standards Publication 197: Announc-
ing the Advanced Encryption Standard, Nov. 2001.

[16] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. Practi-
cal Solution for QoS-based Resource Allocation Problems.
In IEEE Real-Time Systems Symposium, December 1998.

[17] B. Schneier. Applied Cryptography. Wiley, 2nd edition,
1996.

[18] S. H. Son, R. Mukkamala, and R. David. Integrating Se-
curity and Real-Time Requirements using Covert Channel
Capacity.IEEE Transactions on Knowledge and Data Engi-
neering, 12(6), Dec 2000.

[19] E. Spyropoulou, T. Levin, and C. Irvine. Calculating Costs
for Quality of Security Service. In15th Computer Security
Applications Conference, 2000.

[20] A. S. Tanenbaum.Computer Networks. Prentice Hall, 1996.
[21] M. J. Wiener. Efficient DES Key Search. Technical Report

TR-244, Carleton University, May 1994.
[22] M. Xiong, K. Ramamritham, J. A. Stankovic, D. Towsley,

and R. Sivasankaran. Scheduling Transactions with Tem-
poral Constraints: Exploiting Data Semantics.IEEE Trans-
actions on Knowledge and Data Engineering, 14(5):1155–
1166, September/October 2002.

