
A Federated Approach for Increasing the Timely Throughput of Real-Time Data

Services

Yan Zhou and Kyoung-Don Kang

Department of Computer Science

State University of New York at Binghamton

{yzhou,kang}@cs.binghamton.edu

Abstract

As the demand for real-time data services (e.g., e-

commerce or online auctions) increases, it is desired for a

real-time database to increase the timely throughput−the

amount of data processed in a timely manner. As the timely

throughput of a centralized real-time database is limited,

it is desired to federate a set of real-time databases to in-

creases the timely throughput. However, related work on

distributed real-time databases is scarce. Most existing ap-

proaches are highly complex, incurring non-trivial over-

heads. Neither are they implemented in a real database

system. To address the problem, we design a new system ar-

chitecture for federated real-time data services and develop

efficient approaches for load sharing among a set of clus-

tered databases. To support the desired data service delay

even in the presence of dynamic workloads, each individ-

ual database employs a single-input single-output (SISO)

feedback admission control scheme. Based on the admis-

sion control signals collected from the individual databases,

cluster-wide load sharing is performed to enhance the total

timely throughput by fully utilizing the federated databases,

while avoiding to overload them. We have implemented and

evaluated the performance of our approach by extending

the Oracle Berkeley DB. Our system significantly enhances

the timely data throughput compared to a single centralized

system, while effectively dealing with emulated partial un-

availability of a set of federated databases.

1 Introduction

Soft real-time data services are needed in various ap-

plications such as e-commerce, online auction, and traffic

monitoring to process data service requests in a timely man-

ner. In these applications, it is essential to process transac-

tions and queries (i.e., read-only transactions) in a timely

manner using fresh data that capture the current market

or traffic status. The effectiveness of real-time data ser-

vices depends not only on the logical results of data ser-

vice requests but also on the time within which the re-

sults are produced. As the demands for real-time data ser-

vices grow beyond the processing capacity of stand-alone

database system, either the service delay increases or the

system throughput drops considerably due to overloads. Al-

though real-time data management has been studied exten-

sively, most existing work focuses on a centralized single

real-time database (RTDB) system, which limits the timely

throughput of real-time data services [17]. To support the

timeliness, a single RTDB may reject an excessive num-

ber of data service requests under overload. As a result,

the timely throughput−the total amount of data processed

within a specified average response time bound such as

1s−may decrease significantly.

A possible approach to addressing this problem is to

cluster a set of RTDBs. However, this seemingly simple

approach creates complex issues. In a distributed database,

a transaction can be processed in any database node as data

are replicated. At the same time, the distributed database

should support 1-copy serializability that requires the result

of executing distributed transactions is equal to the result

of executing the transactions in some sequence using single

(non-replicated) data instances. To support 1-copy serial-

izability, a distributed database has to employ a computa-

tionally expensive mechanism such as the two phase com-

mit (2PC) protocol and complex data consistency model

[16]. Although previous work has been done to reduce

the overhead for executing distributed real-time transactions

[17, 24], most existing work focuses on developing com-

plex real-time concurrency control protocols, potentially in-

curring large overheads. Also, none of them has actually

been implemented in a real database system. Wei et al.

[22] have designed a fully replicated distributed RTDB, in

which the system-wide load balancer distributes incoming

data service requests to the database nodes in a local area

network (LAN) and each node applies feedback-based ad-

mission control. However, their work is not implemented in

1

a real database either.

To address the problem, we design a new RTDB archi-

tecture to leverage a federated RTDBs clustered together

via network switch (e.g., an Ethernet or Infiniband switch)

to process transactions and queries in a timely, coordinated

fashion. More specifically, we extend the distributed RTDB

model developed by Wei et al. [22] to enhance the efficiency

of real-time data services via integrated cluster-wide load

balancing and feedback-based admission control at each

individual node. Although load balancing has extensively

been studied, surprisingly little work has been done on load

sharing in a federated RTDBs [17, 22]. In fact, it is chal-

lenging to systematically distribute data service requests to

a clustered RTDB nodes. Coarse-grained load distribution

policies could easily lead to uneven load distribution. For

example, if only the number of data service requests are

balanced among the nodes, some nodes may have to pro-

cess bigger transactions that access larger amounts of data.

As a result, they can be overloaded. To support the desired

data service delay bound such as 1s, they may have to un-

necessarily reject incoming data service requests even if the

other nodes are underutilized, substantially decreasing the

total timely throughput of the federated RTDBs. In addi-

tion, the workload distribution algorithm may considerably

affect the data locality of the transaction/query processing

in the clustered databases. For this reason, we take data

access patterns into account during the design of load dis-

tribution algorithm would further benefit the system timely

throughput. Specifically, we design and develop a new clus-

tered QoS-aware database system, called Chronos-C that

extends Chronos [8]−a centralized QoS-aware database−to

enhance the timely throughput of online data services such

as e-commerce or online auctions. The key contributions

of this paper are to (1) design a new system architecture

for clustered real-time data services, (2) develop a cost-

effective load balancing scheme specific to federated RT-

DBs, and (3) thoroughly evaluate the performance of our

approaches by extending Oracle Berkeley DB [2]−a popu-

lar open source database.

Chronos-C is a logical unification of independent

database servers connected by a high-speed network switch.

We extend the single-master-multiple-slave architecture [3]

for real-time data services: transactions are processed by

a designated master database that replicates the result of

database updates, if any, to every slave database to sup-

port data consistency based on the notion of 1-copy seri-

alizability [16]. In this way, we ensure that all the clus-

tered databases share a consistent view of the data. As

most existing databases support an efficient data replication

scheme in the master-slave mode, our approach supports 1-

copy serializability with less complexity and overhead than

a distributed database counterpart does. In our clustered

system, slave databases only process queries. They share

no resources with each other and, therefore, run indepen-

dently. At the same time, to support data freshness, tempo-

ral data such as stock prices are simultaneously multicast,

i.e., replicated, to the master and the slave nodes. Thus, a

query can be processed by any database node for load shar-

ing and timely throughput enhancement. It is known that

most online data service requests are queries and transac-

tions are only a small fraction of the requests [19, 3]. Thus,

a single-master-multiple-slave architecture is suitable for

online real-time data services. Given a large number of data

service requests, our approach can significantly improve the

timely throughput with little overhead compared to a single,

centralized real-time database system model mainly con-

sidered in the RTDB research [17, 14].1 In Chronos-C,

clustered databases share query processing workloads us-

ing fresh data to reduce the data service delay, while en-

hancing the timely throughput. Moreover, a slave database

unavailability due to, for example, a physical node reallo-

cation to different applications in a utility computing envi-

ronment or an unexpected slave node failure simply reduces

the timely throughput of the clustered database system with-

out compromising data consistency. Since slaves only pro-

cess queries, a removal of a slave node simply eliminates a

database replica.

In this paper, we develop database-specific load shar-

ing scheme. Each database node applies feedback-based

admission control to incoming real-time data service re-

quests to closely support the average data service delay.

As the amount of data to process increases, the timeliness

decreases and vice versa. Based on this observation, we

design a single-input single-output (SISO) admission con-

troller, similar to [9]. The SISO controller in each node

dynamically adjusts the database load bound expressed as

the amount of data to process, if necessary, to closely sup-

port a specified average response time, e.g., 1s, in the in-

dividual node. An incoming data service request is admit-

ted, if the load bound is not exceeded by adding the esti-

mated amount of data to be accessed by the incoming re-

quest. The cluster-wide load balancer periodically collects

the load bound from each RTDB node in the cluster. In pro-

portion to the load bounds received from the RTDB nodes,

the load balancer adjusts the workload distribution among

the nodes for the next sampling period. At the same time,

it forwards data service requests accessing similar data to

the same nodes such that cached data can be used to process

data service requests. Note that we do not choose to develop

a centralized multiple-input, multiple-output (MIMO) con-

troller running in the load balancer using the performance

data collected from the slaves. If the slave servers are mod-

1In this paper, we assume that the master node is not a bottleneck, since

it only processes transactions, e.g., sell/buy transactions for stock trading,

and it can be configured to run on a node with abundant resources. Thus,

the master node accepts and processes all incoming transactions with no

admission control.

2

eled in an inter-dependent manner in a MIMO model, an ad-

dition (join) and removal (leave/failure) of a database node

may adversely affect the accuracy of overall system model.

By running an independent SISO control loop in each node,

we avoid any potential impact of partial unavailability of

the slaves on the model accuracy. The general database

operation and data consistency is not affected in our single-

master-multi-slave architecture. As temporal data updates

as well as the results of the transactions committed at the

master are efficiently replicated to every slave, a failover of

the master is straightforward and efficient; that is, any slave

node can take over the role of the master when the mas-

ter fails. Furthermore, our load balancer is stateless. For

load balancing, it only needs the load bounds computed by

the slave nodes for the next sampling period. Thus, any

node can take the load balancing role, if the load balancer

fails. According to [3], little work has been done to sup-

port load balancing and replication, while considering the

failover of the load balancer. To the best of our knowledge,

the work presented in this paper is the first to support im-

mediate failover of the master, slaves, and load balancer,

while supporting the desired delay for real-time data ser-

vices. This is a desirable feature for real-time data services

in that recovering a replicated database often takes hours or

even days [3].

We compare our approach to to two baseline approaches

also implemented in Berkeley DB. To evaluate the effective-

ness of our approaches, we increase the workload and the

number of slave database nodes from 1 to 5. Our approach

closely supports the desired average and transient delay for

data services. In contrast, the data service delays of the

baselines largely exceed the desired set-point, e.g., 1s. Fur-

ther, our approach show the largest timely throughput. Also,

our timely throughput increases faster than the baselines do

for the increasing number of slaves. The timely through-

put of the closed-loop approach up to 3.37 (and 2.28) times

the timely throughput of the baseline approach that shows

the lowest (and second lowest) timely throughput. In addi-

tion, we evaluate the performance of the tested approaches

when a subset of the slave nodes are intentionally removed

from the cluster. In this scenario, our approaches signif-

icantly outperform the tested baselines. They process ap-

proximately 10 − 16 million more data items in a timely

fashion than the tested baselines do in a 10 minute experi-

ment. Our approach is lightweight. Feedback-based admis-

sion control running at each slave node only consumes ap-

proximately 1% CPU utilization. Our basic load balancing

scheme that distributes workloads to the clustered databases

consumes approximately 5% CPU utilization in the load

balancer when 7500 client threads concurrently submit data

service requests to the load balancer that distribute work-

loads among the clustered databases.

The remainder of this paper is organized as follows. The

overall structure of our clustered database system and the

overview of our approach are described in §2. A descrip-

tion of feedback control design is given in §3. Our load

balancing scheme is discussed in §4. Performance evalua-

tion results are described in §5. §6 discusses related work.

Finally, §7 concludes the paper and discusses future work.

2 Database Model and System Overview

In this section, our database model and overall system

architecture for federated real-time data services, a high-

level description of our closed-loop approach to supporting

the desired data service delay in a cluster of databases, and

an example real-time data service level agreement in terms

of the average and transient delay are discussed.

In this paper, we consider a federated database system

that consists of a group of databases connected by a network

switch. Each database node hosts a set of temporal data ob-

jects and non-temporal data objects. Temporal data updated

periodically by dedicated update transactions to maintain

the temporal consistency between the real-world state and

data in the database [17]. In contrast, non-temporal data

values do not change dynamically with time. For instance,

in stock trading applications, temporal data include stock

prices and volumes. Non-temporal data include stock IDs

and company names.

In our approach, only the master node executes transac-

tions. When a user transaction commits, it replicates the

result to the slaves to support 1-copy serializability [16]. In

our testbed, this is implemented using the data replication

library provided by Berkeley DB. For concurrency control,

we apply the two phase locking (2PL) algorithm in each

local database node. Note that no distributed lock manage-

ment or data conflict resolution is needed because transac-

tions are only executed in the master. Transactions are not

associated with deadlines since most online trade transac-

tions do not have explicit deadlines. Also, they are sched-

uled in a FCFS manner as common in online data services.

However, a transaction is required to be processed within a

specified response time bound. Otherwise, online users may

simply leave. As 2PL and FCFS are supported by most ex-

isting database systems, our model is easy to deploy.

Figure 1 shows the architecture of Chronos-C. The

databases are clustered in a single-master-multiple-slave

fashion. The master server processes all transactions, while

the slaves process queries as discussed before. When

a transaction commits, the master node replicates the

database status updates caused by the transaction to the

slave databases to maintain the data consistency. The user

service requests, i.e., transactions and queries, are first sent

to the load balancer that forwards transactions to the mas-

ter node, while distributing queries among the slave nodes.

Each slave database process queries and periodically reports

3

. ..

. .

.

Master

Slave

N

1

Slave

Replication

Queries

Queries

Control
Signal

Control Signal
Requests

Stock

Stock

Updates

Updates

Transactions

Service

Balancer

Load
Stock
Updates

Generator

Data

Figure 1. Federated RTDB Architecture

its load bound computed in its feedback control loop to sup-

port the desired service delay to the load balancer at each

sampling point. Based on the feedback control signals re-

ceived from the slave nodes, the load balancer makes load

sharing decisions, which determines the fractions of incom-

ing queries to be distributed to the slave database nodes.

We consider periodic temporal data updates, since peri-

odic updates are commonly used in RTDBs to support the

temporal data consistency [17, 23]. In our testbed, the up-

date period of each temporal data is in a range of [0.5s, 5s]

to mimic frequent updates of stock prices, sensor data, etc.

In our federated RTDB architecture, the network switch re-

ceiving temporal data updates from the real world, e.g., a

stock market or roadside sensors for traffic monitoring, is

configured to periodically multicast incoming temporal data

to the slaves. An alternative approach is updating temporal

data in one node and sharing them with the other nodes. In

this paper, we take the first approach, because the network

bandwidth for periodic temporal data updates can be pre-

allocated. In the second approach, however, the network

may become congested due to aperiodic, bursty accesses of

shared temporal data across the network by user requests

for online data services, which often arrive in a bursty man-

ner. Upon receiving new temporal data, each database node

immediately runs its dedicated threads for periodic updates.

Admission control is only applied to user requests, if neces-

sary, to closely support the desired delay for real-time data

services by avoiding overload. In our approach, transac-

tions are processed by the master node using fresh data. A

user query can be processed in any slave node using the lo-

cally available fresh temporal data and non-temporal data

whose consistency with the master is guaranteed via 1-copy

serializability.

3 Feedback Control Design

In each slave node, we apply feedback control tech-

niques [7] to support the desired data service delay even

in the presence of dynamic workloads. For feedback con-

trol, the kth (≥ 1) sampling period is the time interval

+ _

Slave
DBController

Delay
i

e (k)S t
δ d i(k)

(k)s
i

Queries

i

Figure 2. Delay Control at Slave i

[(k − 1)P, kP) and the kth sampling point is equal to time

kP where P is the sampling period. In this paper, we set

P = 1s. As hundreds of queries finish in 1s in each slave

server, performance measurement for P = 1s is reliable.

All the tested approaches use the same sampling period for

performance evaluation in Section 5. By applying feedback

control in each slave node, we aim to support timely data

services. In this paper, we consider an example service level

agreement (SLA): SLA = {St = 1s, Sv ≤ 1.1s, Tv = 10s
}. The average service delay is desired to be shorter than

or equal to St = 1s. An overshoot Sv , if any, is a transient

service delay longer than St. In this paper, it is desired that

Sv ≤ 1.1s. Also, an overshoot, if any, is desired to reduce

to be equal to or less than St within the settling time Tv =

10s.

The delay for servicing a request, si, is the sum of the

TCP connection delay, queuing delay, and processing de-

lay inside the database. Let us assume that N ≥ 1 RTDB

nodes are clustered together. At the kth sampling point,

the feedback controller running in each node shown in Fig-

ure 2 computes the service delay si(k) =
∑n(k)

j=1 sj/n(k)
and delay error ei(k) = St−si(k) where ni(k) denotes the

number of queries finished in node i during the kth sam-

pling period. Based on ei(k), the feedback controller in

node i (1 ≤ i ≤ N) computes the control signal, i.e., the

required load bound adjustment δdi(k), at the the kth sam-

pling point. Also, it computes the backlog bound for the

next sampling period: di(k + 1) = di(k) + δdi(k). Thus,

the backlog bound is decreased (i.e., δdi(k) < 0) to admit

fewer queries, if the service delay is longer than St specified

in the SLA or vice versa.

During the (k + 1)th sampling period, node i parses an

incoming data service request to estimate how many data

items the request will access by leveraging the database

schema and semantics of queries. (For more details about

parsing, refer to [9].) If the sum of the estimated number of

data items to be accessed by the request and the total num-

ber of the data to be accessed by the user requests already

in node i does not exceed di(k + 1), node i admits the re-

quest. Otherwise, the request is rejected. To enhance the

total timely throughput of the federated RTDBs, at the kth

sampling point, the load balancer uses the backlog bounds

collected from the slave nodes for load balancing in the

4

(k + 1)th sampling period.

3.1 Admission Control in A Slave Database Node

In each slave database node, we model the database sys-

tem dynamics in terms of the relation between the service

delay and the database backlog, i.e., the amount of data

for the database to process, in a SISO manner. By using

multiple, independent SISO controllers rather than a sin-

gle, centralized controller for load balancing, we aim to en-

hance the robustness of real-time data services as discussed

before. As the database backlog increases, the service de-

lay increases and vice versa. Based on this observation, we

model the RTDB behavior via the following four-step pro-

cedure.

1. System Modeling. We aim to construct a system model

whose input is the database backlog and the measured out-

put is the service delay. We derive a RTDB model in the

discrete time domain using the ARX (Auto Regressive eX-

ternal) model [7, 15]. Specifically, to model the relation

between the database backlog and delay, we model the data

service delay at the kth sampling point via the service de-

lays and database backlogs measured at the previous p sam-

pling points. We express the relation in slave node i as a

difference equation in the discrete time domain:

si(k) =

p∑

j=1

{ajs(k − j) + bjd(k − j)} (1)

where p (≥ 1) is the system order [15]. s(k−j) and d(k−j)
are the service delay and backlog measured during the time

interval of [(k − j)P, (k − j + 1)P). Using this difference

equation, we model database dynamics by considering in-

dividual queries that potentially access different amounts of

data.

2. System Identification. The unknown model parameters

aj’s and bj’s in Eq 1 are derived via system identification

(SYSID) [15] to construct the system model. The objec-

tive of our SYSID is to minimize the sum of the squared

errors of data service delay estimations based on database

backlogs. In our SYSID procedure, we use the load bal-

ancer, the master node, and only one slave node. Since the

slave nodes are homogeneous in terms of system capacity

in our testbed, this approach saves the effort for conducting

SYSID individually for each slave. If a federated database

cluster consists of heterogeneous groups of nodes, SYSID

is needed for only one server in each group of homogeneous

nodes. This modeling approach is relatively simple and ro-

bust to changes in node availability compared to a MIMO

approach tied to a specific cluster configuration.

For SYSID, 1500 client threads concurrently send data

service requests to the load balancer for one hour. The

load balancer forwards transactions to the master node and

queries to the slave node. The master node replicates all

the database updates caused by committed transactions to

the slave node to support 1-copy serializability. Each client

thread sends a service request and waits for the response

from the database server. After receiving the transaction

or query result, it waits for an inter-request time randomly

selected in a range before sending the next data service re-

quest. A data service request accesses 60-100 data items.

As SYSID aims to identify the behavior of the controlled

database system, the master and slave nodes accepts all in-

coming data service requests without applying admission

control.

For SYSID, we choose the inter-request time range [1s,

3.5s], since the service delay shows a near linear pattern in

this area. In this way, we can model high performance real-

time data services dealing with widely varying workloads.

Our control modeling and tuning is valid in this operating

range. Beyond the operating range, a feedback controller in

each node may or may not support the desired performance

[7]. By employing multiple slave databases, we can support

the desired data service delay for a considerably extended

operating range as long as the load distributed to each indi-

vidual node does not largely exceed the operating range.

3. Model Evaluation. We use the R2 metric computed by

Eq 2 to analyze the accuracy of SYSID [15]:

R2 =
variance(service delay prediction error)

variance(measured service delay)
(2)

A control model is acceptable, if its R2 ≥ 0.8. We have

performed SYSID for the first order to fourth order system

models. We reject the first order model due to its poor R2

value. We choose the second order model since its R2 =
0.872:

s(k) = −0.0228s(k− 1)− 0.1371s(k − 2) +

0.0179d(k− 1) + 0.0084d(k− 2). (3)

The third and fourth order model show slightly better R2

value compared to the second order one. However, we

choose the second model, since a higher order increases the

complexity of the system model.

4. Controller Design and Tuning. To design the service

delay controller, we derive the transfer function of the open-

loop RTDB that models the relation between the backlog

and service delay. Especially, we take the z-transform [7]

of Eq 3 to algebraically manipulate the equation in the fre-

quency domain rather than solving partial differential equa-

tions in the time domain. From this, we get the following

transfer function that shows the relation between the service

delay and backlog:

Pi(z) =
Si(z)

Di(z)
=

0.0179z + 0.0084

z2 + 0.0228z + 0.1371
(4)

5

where Si(z) is the z-transform of si(k) and Di(z) is the

z-transform of di(k) in Eq 3.

To closely support the SLA, we apply an efficient PI

(proportional and integral) control law, which combines the

advantages of integral control (zero steady-state error) with

that of proportional control (increasing the speed of the tran-

sient response) [7]. We do not use a D (derivative) controller

sensitive to noise such as bursty arrivals of data service re-

quests and data conflicts. At the kth sampling point, the PI

controller in node i computes the control signal δdi(k), i.e.,

the database backlog adjustment required to support St:

δdi(k) = δdi(k−1)+KP [(KI+1)ei(k)−ei(k−1)] (5)

where the error ei(k) = St−si(k) at the kth sampling point

as shown in Figure 2. The z-transform of Eq 5, is:

Fi(z) =
∆Di(z)

Ei(z)
=

KP (KI + 1)[z − 1/(KI + 1)]

z − 1
(6)

where ∆D(z) and E(z) are the z-transform of δd(k) and

e(k), respectively. Using Eq 4 and Eq 5, one can derive

a transfer function for the closed-loop system in Figure 2

and tune the control gains, i.e., KP and KI , via well estab-

lished control theoretic techniques [7, 15]. We have derived

the closed-loop transfer function and tuned KP and KI to

support the stability of the closed loop system and SLA con-

sidered in this paper. Details of these standard procedures

are omitted due to space limitations.

4 Load Balancing among Slave Databases

In this section, two approaches for load balancing among

slave RTDBs are described.

FC-Prop: Proportional Load Balancing Our first ap-

proach, called FC-Prop, distributes incoming queries in pro-

portion to the backlog bounds computed by the individ-

ual slave nodes via feedback control. At the kth sampling

point, the load balance computes the fraction of the incom-

ing query workload to be assigned to slave node i during the

(k + 1)th sampling period:

fi(k + 1) = di(k + 1)/

n∑

i=1

di(k + 1) (7)

where
∑n

i=1 fi(k + 1) = 1. Note that FC-Prop distributes

the load in a fine-grained manner, considering the potential

heterogeneity of data service requests. The database back-

log bound computed in each individual slave indicates the

number of data accesses (rather than the number of data re-

quest) allowed to meet a specified average delay bound for

data services in the next sampling period based on the obser-

vation that different data service requests may access differ-

ent numbers of data. Also, FC-Prop efficiently handles po-

tential node heterogeneity. For example, assume both nodes

DB1−1

DB2−1

DB1−2

DB1−3

DB2−2

Query−1

Query−2

Hash

Circle

Figure 3. Consistent Hashing Example

A and B closely support a specified average delay bound in

a sampling period. However, node A can process 10,000

data/s while B process 30,000 data/s to support the desired

average delay due to the difference in terms of their hard-

ware resources. A gross-grained approach may assign the

same number of data service requests to nodes A and B in

the next sampling period, overloading node A. Since Eq 7

is computed based on the fine-grained backlog bounds com-

puted by all the individual slave nodes active at the kth sam-

pling point, FC-Prop can effectively deal with the potential

heterogeneity of data service requests and slave nodes, en-

hancing the total timely throughput of the federated RTDBs.

FC-Hash: Load Balancing Considering Data Access

Patterns. We further enhance the effectiveness of load shar-

ing for federated real-time data services by taking advantage

of the locality in transaction processing. This new approach

is called FC-Hash, in which we extend consistent hashing

[10] and integrate it with FC-Prop. Figure 3 shows an ex-

ample of how our extended consistent hashing distributes

incoming queries between two slave servers, DB1 and DB2

in a cluster. In consistent hashing, an output of the hash

function is mapped to a point on a circle; therefore, the

largest hash value wraps around to the smallest hash value

as shown in Figure 3. For hashing, we use MD5 hash func-

tion. We use the least significant 32-bits of the 128-bit MD5

hash value and map it to one of the H = 232−1 points on a

hash circle. At the kth sampling point, FC-Hash computes

the number of hash points assigned on the hash circle to

active slave node i that indicates the number of imaginary

database nodes run by slave node i:

Hi(k + 1) = fi(k + 1)H (8)

Thus, more imaginary nodes will be assigned to physical

slave node i on the hash circle, if di(k + 1) is larger than

that of the other slaves or vice versa. If a query arrives in

the (k + 1)th sampling period, it is hashed to an initial po-

sition on the hash circle. Starting from the initial location,

the ring is searched clockwise to find the first available hash

point, i.e., imaginary server. For example, suppose Query 1

is hashed between DB1-2 and DB1-3 in Figure 3, which are

imaginary instances of node 1 on the hash circle. FC-Hash

6

searches clockwise around the circle until it finds an imagi-

nary server DB1-3. Therefore, the load balancer sends this

query to physical DB1. Notably, Hi varies as the data ser-

vice delay and corresponding load bound provided by node

i change dynamically from a sampling point to another.

In addition to integrating feedback-based load balancing

with consistent hashing, we leverage data access patterns

to improve the performance by exploiting database caching.

Specifically, data identifiers, e.g., online stock price or prod-

uct IDs, are used as the input to consistent hashing. Thus,

queries accessing the same data will be hashed to the same

imaginary server and same physical database node accord-

ingly. Since the recently accessed data is cached for direct

access, the query processing delay can be reduced by using

our extended approach for consistent hashing, which effec-

tively integrates load balancing, feedback control, consis-

tent hashing, and database caching altogether to enhance the

timeliness of data services. Also, note that load sharing by

FC-Prop or FC-Hash only directs the way the load balancer

distributes workloads. Thus, it does not affect the system

model based on the relation between the service delay and

backlog in each individual slave described in Section 3.

5 Performance Evaluation

In this section, the federated real-time data service archi-

tecture and load balancing schemes presented in this paper

are implemented and evaluated.

5.1 Experimental Settings

For performance evaluation, we use a stock trading

testbed that provides four types of transactions: view-stock,

view-portfolio, purchase, and sale for seven tables [9], sim-

ilar to the TPC-W benchmark [19]. Different from TPC-W,

our testbed also supports periodic updates of 3,000 stock

prices (i.e., temporal data) for real-time data services. All

the machines used in the experiments have the dual core

1.6GHz CPU, 1GB memory and the 2.6.23 Linux kernel.

One database server runs on one dedicated physical ma-

chine and each server has 500MB database cache. Database

nodes are connected by a 1Gbps Ethernet switch. One ex-

periment runs for 600s. Each performance data is the av-

erage of 10 runs with 90% confidence intervals. We show

the performance results observed between 100s and 600s
to exclude the database initialization phase, involving ini-

tial housekeeping chores, e.g., database schema and data

structure initialization.

For 90% of time, a client thread issues a query (read-

only transaction) about stock prices or portfolio browsing,

similar to real world e-commerce workloads [3, 19]. For

the remaining 10% of time, a client sends a purchase or

sale transaction. We model bursty workloads to observe

the performance of tested approaches when the workload

changes dramatically. At the beginning of one experiment,

the inter-request time (IRT) is randomly distributed in [3.5s,

4s]. In all the experiments presented in this paper, at 200s,

the range of the IRT is suddenly reduced to [1s, 1.5s] to

model bursty workload changes and stays in the new range

until the end of each experiment. The sudden decrease of

the IRT at 200s increases the workload by approximately

2.33− 4 times. Note that we only show the performance of

the slave database nodes. The desired 1s delay is always

supported for transactions processed in the master node,

since only 10% of the service requests are transactions in

our experiments. Also, the master node is always up and

running in our experiments.

For performance comparisons, we consider the follow-

ing baseline approaches commonly used for load balancing

in addition to FC-Prop and FC-Hash described in §4:

• RR: In this approach, service requests will be dis-

tributed to the database servers in a round robin man-

ner without considering the sizes of individual data ser-

vice requests measured in terms of the number of data

accesses. Neither feedback control is applied to sup-

port the desired delay bound in each node.

• Prop: The load balancer distributes workloads in pro-

portion to the inverse of the service delays measured in

the slaves. Essentially, this is an ad hoc feedback con-

trol in that load distribution among the slave databases

considers dynamically changing status of the slaves

without applying formal control theoretic techniques.

Note that RR and Prop are built based on the same single-

master-multi-slave architecture shown in Figure 1. Thus,

they share the advantage of high availability with FC-Prop

and FC-Hash even in the presence of RTDB node failures

or reassignments to different applications.

In this paper, we perform two major groups of experi-

ments. The first group of experiments evaluates the perfor-

mance when the number of slave databases increases. The

second group evaluates the performance when the number

of slave databases decreases to mimic partial system un-

availability. In the first group of experiments, we start with

one slave to which 1500 client threads send service requests.

We conduct 5 sets of experiments by increasing the num-

ber of slave databases from 1 to 5. In one experimental

run, the number of slaves is fixed. Each time we increase

the number of slaves by 1, we add 1500 client threads to

stress the clustered databases. Thus, for the case of a clus-

ter with 5 slaves, 7500 client threads submit data service re-

quests to the cluster. In the second group of experiments, we

start experiments with 1 master and 5 slaves to which 7500

clients simultaneously send service requests. To mimic par-

tial cluster unavailability, we remove 1 or 2 slaves out of 5

slaves at 400s, while keeping the same number of clients.

7

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 1 2 3 4 5

T
im

e
ly

 T
h

ro
u

g
h

p
u

t
(#

d
a

ta
/s

)

Number of Slave DBs

Linear Scalability
FC-Hash
FC-Prop

Prop
RR

Figure 4. Average Timely Throughput

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

A
v
e
ra

g
e
 S

e
rv

ic
e

 D
e

la
y
 (

S
e

c
)

 RR Prop FC-Prop FC-Hash

Figure 5. Average Delay (5 Slaves)

In this way, we support a failover fault model (assuming

that there is no Byzantine failure). Hence, from 400s to the

end of experiments, all service requests are processed by the

remaining database servers. Although we have done exten-

sive performance evaluation, due to space limitations, we

only present a subset of key results next.

Performance for an Increasing Number of Slaves. Fig-

ure 4 shows the the timely throughput, i.e., the total number

of data processed by timely queries that finish within the

desired delay bound. In general, as the number of slaves

increases from 1 to 5, the total and timely throughput in-

crease for all the tested approaches. FC-Hash and FC-Prop

consistency support higher timely throughput Notably, the

throughput gap between our approaches and Prop/RR in

Figure 4 increases as more slave databases are employed. In

the 5 slave server case, the timely throughput of FC-Hash is

3.37 and 2.28 times the timely throughput of RR and Prop

as shown in Figure 4. By applying formal control theo-

retic techniques to manage the database backlog, FC-Prop

and FC-Hash avoid severe database overload. In addition,

FC-Hash is aware of data access patterns and takes advan-

tage of database caching to further improve the performance

compared to FC-Prop. Its timely throughput in Figure 4 is

higher than FC-Prop’s by roughly 4000 date items/s in the

5 slave case. The linear line in Figure 4 indicates the ideal

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 100 200 300 400 500 600

Se
rv

ic
e

D
el

ay
 (s

ec
)

Time (sec)

(a) FC-Prop (5 slaves)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 100 200 300 400 500 600

Se
rv

ic
e

D
el

ay
 (s

ec
)

Time (sec)

(b) FC-Hash (5 slaves)

Figure 6. Transient Service Delay

linear increase of the timely throughput for the increasing

number of slave databases. In the future, we will explore

more efficient load balancing and RTDB clustering tech-

niques to further reduce the gap between the timely through-

put of our approaches and the ideal linear line.

Figure 5 shows the average of service delays observed

for 10 runs across 5 slave nodes with 90% confidence inter-

val bars. As shown in the figure, RR and Prop support the

average service delay of 2.41± 0.27s and 1.59± 0.19s, re-

spectively, violating the 1s average delay bound specified in

the example SLA considered in this paper (§3). In contrast,

FC-Prop and FC-Hash support 1± 0.03s and 0.97± 0.02s,

closely supporting the 1s bound. Also, their confidence in-

tervals are an order of magnitude smaller than that of RR

and Prop. Due to the space limitation, we only discuss the 5

slave database case. Other cases with 1− 4 slave databases

have shown similar results.

In addition, Figure 6 shows the transient service delay

of FC-Hash and FC-Prop. As RR and Prop cannot support

even the average service delay bound, St = 1s, we do not

plot their transient delay. In Figure 6, we only show the

transient service delay of one slave database, DB-1, because

FC-Hash and FC-Prop closely support the desired average

and transient delay in every slave. Also, the delay varia-

tions across the clustered database nodes are negligible in

FC-Hash and FC-Prop. As shown in Figure 6, FC-Hash and

FC-Prop closely support the desired 1s delay bound after

the abrupt workload change at 200s, while cancelling tran-

sient delay overshoots. Generally, the transient delay of FC-

Prop and FC-Hash in Figure 6 ranges between 0.8s and 1.1s.

8

They have closely supported the desired average/transient

delay bound specified in the SLA for the 1 − 4 slaves too.

We omit the results due to space limitations. FC-Hash pro-

vides similar transient delays to FC-Prop, while supporting

a higher total timely throughput than FC-Prop does as dis-

cussed before.

Performance for Removing Slaves. After the number of

slaves is decreased from 5 to 4 by removing one node at

400s, the timely throughput of FC-Hash and FC-Prop is at

least twice the timely throughput of RR and Prop both be-

fore and after the removal of a slave as summarized in Ta-

ble 1. From Table 1, we observe that a large fraction of

data accesses in RR and Prop are tardy. As a result, RR

and Prop suffer the significantly lower timely throughput.

Similar performance results are observed when two slave

nodes are abruptly removed from the cluster at 400s. These

results emphasize the importance of real-time data services

via systematic performance management.

6 Related Work

Although feedback control has been applied to manage

the performance of a stand-alone RTDB [1, 8, 9], little

work has been done to manage the performance of clus-

tered RTDBs. Wei et al. [22] developed a closed-loop

scheme to provide QoS-aware data services in a distributed

RTDB working in a local area network environment with

full data replication. In their work, the local deadline miss

ratio and utilization controllers apply admission control to

incoming transactions. The global load balancer collects the

performance data from the database nodes and balances the

system-wide workload. However, their work is based on

heuristics rather than formal control theory, providing no

stability analysis. Further, it is not implemented and evalu-

ated in a real database system.

A feedback-based CPU utilization control algorithm

for distributed soft real-time applications is presented in

[20, 6]. However, real-time data management issues such

as database-specific load balancing based on the notion of

database backlog, consistent hashing, and data freshness is-

sues are not considered in their work. Another work [5] de-

signed a MIMO-control-based load balancing algorithm for

optimizing the system response time through memory pool

allocations to multiple disk storages in one database server.

They focus on the trade-off between the performance cost of

transient imbalance and the cost of control actions such as

adjusting memory pools. Their approach aims to optimize

the performance of multiple disks in one database server,

while our work focuses on timely data services by clustered

RTDBs.

Distributed real-time data management issues have been

studied [13, 18]. MIRROR [24] is a concurrency control

protocol developed for distributed RTDBs where data are

replicated. Efficient algorithms to maintain the consistency

of replicas in a distributed RTDB have been studied in [21].

In this paper, we take a different system design choice. By

clustering independent databases based on the master slave

architecture, we develop a new clustered RTDB architec-

ture to significantly reduce the complexity and overhead of

supporting the consistency of temporal and non-temporal

data based on the notion of 1-copy serializability. Also, we

are not aware of any prior work on distributed RTDBs im-

plemented and evaluated in a real database system. As the

database architecture is one of many possible factors that af-

fect the timely throughput of real-time data services, a fur-

ther study for more efficient system and algorithm design

remains an open issue.

Consistent hashing has been applied to balance the load

in web applications and data storage systems [12, 4, 11];

however, most existing approaches do not consider real-

time data service issues such as supporting the desired av-

erage and transient data service delay in the presence of dy-

namic workloads, while enhancing the timely throughput

by considering specific needs for real-time data services.

7 Conclusions and Future Work

In this paper, we develop a new architecture for clus-

tered real-time data services as well as a load balancing

scheme to enhance the timely throughput of real-time data

services. Also, we implement our approach and evaluate the

performance in a real database system. We present a closed-

loop load balancing algorithm where the load distribution is

based on the feedbacks from the service delay controllers

running on the individual slave database servers. To fur-

ther enhance the timely throughput via database caching,

we also exploit data access patterns for load distribution.

In sum, our federated real-time database system shows the

largest timely throughput increase compared to baseline ap-

proaches as more slave nodes are added. Further, partial

unavailability of the clustered database system only reduces

the timely throughput without introducing complex data

consistency issues. The performance of our approach is

implemented and thoroughly evaluated in a real-time data

service testbed. The performance results show that our ap-

proaches support the desired data service delay even in the

presence of dynamic workloads and abrupt unavailability

of a subset of the slave databases, while significantly im-

proving the timely throughput compared to the tested base-

lines. In the future, we will perform more extensive experi-

ments to evaluate the availability of the federated real-time

database system using more slave nodes as well as more

node additions or removals. Also, we will explore more ad-

vanced architecture of clustered real-time databases, while

investigating more effective load sharing scheme.

9

Table 1. Throughput before and after removing a slave RTDB node

Metrics/Approaches RR Prop FC-Prop FC-Hash

#timely accesses/s before a removal 10,309 18,437 37,990 39,032

#timely accesses/s after a removal 9,024 15,526 33,128 35,627

#total accesses/s before a removal 41,647 43,499 50,197 54,821

#total accesses/s after a removal 35,379 38,251 46,068 50,946

total timely throughput over 600s 5,928,400 10,480,000 21,821,600 22,738,200

References

[1] M. Amirijoo, J. Hansson, and S. H. Son. Specification and

Management of QoS in Real-Time Databases Supporting

Imprecise Computations. IEEE Transactions on Computers,

55(3):304–319, 2006.

[2] Oracle Berkeley DB Product Family. Available at

http://www.oracle.com/database/berkeley-db/index.html.

[3] E. Cecchet, G. Candea, and A. Ailamaki. Middleware-based

Database Replication: The Gaps Between Theory and Prac-

tice. In ACM SIGMOD International Conference on Man-

agement of Data, 2008.

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,

and W. Vogels. Dynamo: Amazon’s Highly Available Key-

value Store. In Symposium on Operating Systems Principles,

2007.

[5] Y. Diao, J. Hellerstein, A.Storm, and M. Surendra. Incorpo-

rating Cost of Control into the Design of a Load Balancing

Controller. In IEEE Real-Time and Embedded Technology

and Applications Symposium, 2004.

[6] Y. Fu, H. Wang, C. Lu, and R. Chandra. Distributed Utiliza-

tion Control for Real-Time Clusters with Load Balancing.

In IEEE International Real-Time Systems Symposium, 2006.

[7] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury.

Feedback Control of Computing Systems. A John Wiley and

Sons, Inc., Publication, 2004.

[8] K. D. Kang, J. Oh, and S. H. Son. Chronos: Feedback Con-

trol of a Real Database System Performance. In IEEE Real-

Time Systems Symposium, 2007.

[9] K. D. Kang, J. Oh, and Y. Zhou. Backlog Estimation and

Management for Real-Time Data Services. In Euromicro

Conference on Real-Time Systems, 2008.

[10] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,

and R. Panigrahy. Consistent Hashing and Random Trees:

Distributed Caching Protocols for Relieving Hot Spots on

the World Wide Web. In ACM Symposium on Theory of

computing, 1997.

[11] D. Karger and M. Ruhl. Simple Efficient Load Balancing

Algorithms for Peer-to-Peer Systems. In ACM Symposium

on Parallelism in Algorithms and Architectures, 2004.

[12] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad,

R. Dhanidina, K. Iwamoto, B. Kim, L. Matkins, and

Y. Yerushalmi. Web Caching with Consistent Hashing. In

International Conference on World Wide Web, 1999.

[13] K.-W. Lam, V. C. S. Lee, K.-Y. Lam, and S.-L. Hung. Dis-

tributed Real-time Optimistic Concurrency Control Proto-

col. In International Workshop on Parallel and Distributed

Real-Time Systems, 1996.

[14] K. Y. Lam and T. W. Kuo, editors. Real-Time Database Sys-

tems. Kluwer Academic Publishers, 2006.

[15] C. L. Phillips and H. T. Nagle. Digital Control System Anal-

ysis and Design (3rd edition). Prentice Hall, 1995.

[16] R. Ramakrishnan and J. Gehrke. Database Management

Systems. McGraw-Hill, 3rd edition, 2003.

[17] K. Ramamritham, S. H. Son, and L. C. Dipippo. Real-

time databases and data services. Real-Time System Journal,

28:179–215, November 2004.

[18] J. Stankovic and S. H. Son. An Architecture and

Object Model for Distributed Object-Oriented Real-Time

Databases. Journal on Computer Systems Science and En-

gineering, 14(4):251–259, July 1999.

[19] Transaction processing performance council.

http://www.tpc.org/.

[20] X. Wang, D. Jia, C. Lu, and X. Koutsoukos. DEUCON: De-

centralized End-to-End Utilization Control for Distributed

Real-Time Systems. IEEE Transactions on Parallel and Dis-

tributed Systems, 18(7):996–1009, 2007.

[21] Y. Wei, A. A. Aslinger, S. H. Son, and J. A. Stankovic. OR-

DER: A Dynamic Replication Algorithm for Periodic Trans-

actions in Distributed Real-Time Databases. In International

Conference on Real-Time and Embedded Computing Sys-

tems and Applications, 2004.

[22] Y. Wei, S. H. Son, J. A. Stankovic, and K. D. Kang. QoS

Management in Distributed Real-Time Databases. In IEEE

International Real-Time Systems Symposium, Dec. 2003.

[23] M. Xiong and K. Ramamritham. Deriving Deadlines and

Periods for Real-Time Update Transactions. IEEE Transac-

tions on Computers, 53(5):567–583, 2004.

[24] M. Xiong, K. Ramamrithm, and J. Haritsa. MIRROR: A

State-Conscious Concurrency Control Protocol for Repli-

cated Real-Time Databases. In IEEE Real-Time Technology

and Applications Symposium, 1999.

10

