A Federated Approach for Increasing the Timely Throughput of Real-Time Data
Services

Yan Zhou and Kyoung-Don Kang
Department of Computer Science

State University of New York at Binghamton
{yzhou,kang} @cs.binghamton.edu

Abstract

As the demand for real-time data services (e.g., e-
commerce or online auctions) increases, it is desired for a
real-time database to increase the timely throughput—the
amount of data processed in a timely manner. As the timely
throughput of a centralized real-time database is limited,
it is desired to federate a set of real-time databases to in-
creases the timely throughput. However, related work on
distributed real-time databases is scarce. Most existing ap-
proaches are highly complex, incurring non-trivial over-
heads. Neither are they implemented in a real database
system. To address the problem, we design a new system ar-
chitecture for federated real-time data services and develop
efficient approaches for load sharing among a set of clus-
tered databases. To support the desired data service delay
even in the presence of dynamic workloads, each individ-
ual database employs a single-input single-output (SISO)
feedback admission control scheme. Based on the admis-
sion control signals collected from the individual databases,
cluster-wide load sharing is performed to enhance the total
timely throughput by fully utilizing the federated databases,
while avoiding to overload them. We have implemented and
evaluated the performance of our approach by extending
the Oracle Berkeley DB. Our system significantly enhances
the timely data throughput compared to a single centralized
system, while effectively dealing with emulated partial un-
availability of a set of federated databases.

1 Introduction

Soft real-time data services are needed in various ap-
plications such as e-commerce, online auction, and traffic
monitoring to process data service requests in a timely man-
ner. In these applications, it is essential to process transac-
tions and queries (i.e., read-only transactions) in a timely
manner using fresh data that capture the current market

or traffic status. The effectiveness of real-time data ser-
vices depends not only on the logical results of data ser-
vice requests but also on the time within which the re-
sults are produced. As the demands for real-time data ser-
vices grow beyond the processing capacity of stand-alone
database system, either the service delay increases or the
system throughput drops considerably due to overloads. Al-
though real-time data management has been studied exten-
sively, most existing work focuses on a centralized single
real-time database (RTDB) system, which limits the timely
throughput of real-time data services [17]. To support the
timeliness, a single RTDB may reject an excessive num-
ber of data service requests under overload. As a result,
the timely throughput—the total amount of data processed
within a specified average response time bound such as
Is—may decrease significantly.

A possible approach to addressing this problem is to
cluster a set of RTDBs. However, this seemingly simple
approach creates complex issues. In a distributed database,
a transaction can be processed in any database node as data
are replicated. At the same time, the distributed database
should support 1-copy serializability that requires the result
of executing distributed transactions is equal to the result
of executing the transactions in some sequence using single
(non-replicated) data instances. To support 1-copy serial-
izability, a distributed database has to employ a computa-
tionally expensive mechanism such as the two phase com-
mit (2PC) protocol and complex data consistency model
[16]. Although previous work has been done to reduce
the overhead for executing distributed real-time transactions
[17, 24], most existing work focuses on developing com-
plex real-time concurrency control protocols, potentially in-
curring large overheads. Also, none of them has actually
been implemented in a real database system. Wei et al.
[22] have designed a fully replicated distributed RTDB, in
which the system-wide load balancer distributes incoming
data service requests to the database nodes in a local area
network (LAN) and each node applies feedback-based ad-
mission control. However, their work is not implemented in

a real database either.

To address the problem, we design a new RTDB archi-
tecture to leverage a federated RTDBs clustered together
via network switch (e.g., an Ethernet or Infiniband switch)
to process transactions and queries in a timely, coordinated
fashion. More specifically, we extend the distributed RTDB
model developed by Wei et al. [22] to enhance the efficiency
of real-time data services via integrated cluster-wide load
balancing and feedback-based admission control at each
individual node. Although load balancing has extensively
been studied, surprisingly little work has been done on load
sharing in a federated RTDBs [17, 22]. In fact, it is chal-
lenging to systematically distribute data service requests to
a clustered RTDB nodes. Coarse-grained load distribution
policies could easily lead to uneven load distribution. For
example, if only the number of data service requests are
balanced among the nodes, some nodes may have to pro-
cess bigger transactions that access larger amounts of data.
As a result, they can be overloaded. To support the desired
data service delay bound such as 1s, they may have to un-
necessarily reject incoming data service requests even if the
other nodes are underutilized, substantially decreasing the
total timely throughput of the federated RTDBs. In addi-
tion, the workload distribution algorithm may considerably
affect the data locality of the transaction/query processing
in the clustered databases. For this reason, we take data
access patterns into account during the design of load dis-
tribution algorithm would further benefit the system timely
throughput. Specifically, we design and develop a new clus-
tered QoS-aware database system, called Chronos-C that
extends Chronos [8]—a centralized QoS-aware database—to
enhance the timely throughput of online data services such
as e-commerce or online auctions. The key contributions
of this paper are to (1) design a new system architecture
for clustered real-time data services, (2) develop a cost-
effective load balancing scheme specific to federated RT-
DBs, and (3) thoroughly evaluate the performance of our
approaches by extending Oracle Berkeley DB [2]—a popu-
lar open source database.

Chronos-C is a logical unification of independent
database servers connected by a high-speed network switch.
We extend the single-master-multiple-slave architecture [3]
for real-time data services: transactions are processed by
a designated master database that replicates the result of
database updates, if any, to every slave database to sup-
port data consistency based on the notion of 1-copy seri-
alizability [16]. In this way, we ensure that all the clus-
tered databases share a consistent view of the data. As
most existing databases support an efficient data replication
scheme in the master-slave mode, our approach supports 1-
copy serializability with less complexity and overhead than
a distributed database counterpart does. In our clustered
system, slave databases only process queries. They share

no resources with each other and, therefore, run indepen-
dently. At the same time, to support data freshness, tempo-
ral data such as stock prices are simultaneously multicast,
i.e., replicated, to the master and the slave nodes. Thus, a
query can be processed by any database node for load shar-
ing and timely throughput enhancement. It is known that
most online data service requests are queries and transac-
tions are only a small fraction of the requests [19, 3]. Thus,
a single-master-multiple-slave architecture is suitable for
online real-time data services. Given a large number of data
service requests, our approach can significantly improve the
timely throughput with little overhead compared to a single,
centralized real-time database system model mainly con-
sidered in the RTDB research [17, 14].! In Chronos-C,
clustered databases share query processing workloads us-
ing fresh data to reduce the data service delay, while en-
hancing the timely throughput. Moreover, a slave database
unavailability due to, for example, a physical node reallo-
cation to different applications in a utility computing envi-
ronment or an unexpected slave node failure simply reduces
the timely throughput of the clustered database system with-
out compromising data consistency. Since slaves only pro-
cess queries, a removal of a slave node simply eliminates a
database replica.

In this paper, we develop database-specific load shar-
ing scheme. Each database node applies feedback-based
admission control to incoming real-time data service re-
quests to closely support the average data service delay.
As the amount of data to process increases, the timeliness
decreases and vice versa. Based on this observation, we
design a single-input single-output (SISO) admission con-
troller, similar to [9]. The SISO controller in each node
dynamically adjusts the database load bound expressed as
the amount of data to process, if necessary, to closely sup-
port a specified average response time, e.g., ls, in the in-
dividual node. An incoming data service request is admit-
ted, if the load bound is not exceeded by adding the esti-
mated amount of data to be accessed by the incoming re-
quest. The cluster-wide load balancer periodically collects
the load bound from each RTDB node in the cluster. In pro-
portion to the load bounds received from the RTDB nodes,
the load balancer adjusts the workload distribution among
the nodes for the next sampling period. At the same time,
it forwards data service requests accessing similar data to
the same nodes such that cached data can be used to process
data service requests. Note that we do not choose to develop
a centralized multiple-input, multiple-output (MIMO) con-
troller running in the load balancer using the performance
data collected from the slaves. If the slave servers are mod-

'In this paper, we assume that the master node is not a bottleneck, since
it only processes transactions, e.g., sell/buy transactions for stock trading,
and it can be configured to run on a node with abundant resources. Thus,
the master node accepts and processes all incoming transactions with no
admission control.

eled in an inter-dependent manner in a MIMO model, an ad-
dition (join) and removal (leave/failure) of a database node
may adversely affect the accuracy of overall system model.
By running an independent SISO control loop in each node,
we avoid any potential impact of partial unavailability of
the slaves on the model accuracy. The general database
operation and data consistency is not affected in our single-
master-multi-slave architecture. As temporal data updates
as well as the results of the transactions committed at the
master are efficiently replicated to every slave, a failover of
the master is straightforward and efficient; that is, any slave
node can take over the role of the master when the mas-
ter fails. Furthermore, our load balancer is stateless. For
load balancing, it only needs the load bounds computed by
the slave nodes for the next sampling period. Thus, any
node can take the load balancing role, if the load balancer
fails. According to [3], little work has been done to sup-
port load balancing and replication, while considering the
failover of the load balancer. To the best of our knowledge,
the work presented in this paper is the first to support im-
mediate failover of the master, slaves, and load balancer,
while supporting the desired delay for real-time data ser-
vices. This is a desirable feature for real-time data services
in that recovering a replicated database often takes hours or
even days [3].

We compare our approach to to two baseline approaches
also implemented in Berkeley DB. To evaluate the effective-
ness of our approaches, we increase the workload and the
number of slave database nodes from 1 to 5. Our approach
closely supports the desired average and transient delay for
data services. In contrast, the data service delays of the
baselines largely exceed the desired set-point, e.g., 1s. Fur-
ther, our approach show the largest timely throughput. Also,
our timely throughput increases faster than the baselines do
for the increasing number of slaves. The timely through-
put of the closed-loop approach up to 3.37 (and 2.28) times
the timely throughput of the baseline approach that shows
the lowest (and second lowest) timely throughput. In addi-
tion, we evaluate the performance of the tested approaches
when a subset of the slave nodes are intentionally removed
from the cluster. In this scenario, our approaches signif-
icantly outperform the tested baselines. They process ap-
proximately 10 — 16 million more data items in a timely
fashion than the tested baselines do in a 10 minute experi-
ment. Our approach is lightweight. Feedback-based admis-
sion control running at each slave node only consumes ap-
proximately 1% CPU utilization. Our basic load balancing
scheme that distributes workloads to the clustered databases
consumes approximately 5% CPU utilization in the load
balancer when 7500 client threads concurrently submit data
service requests to the load balancer that distribute work-
loads among the clustered databases.

The remainder of this paper is organized as follows. The

overall structure of our clustered database system and the
overview of our approach are described in §2. A descrip-
tion of feedback control design is given in §3. Our load
balancing scheme is discussed in §4. Performance evalua-
tion results are described in §5. §6 discusses related work.
Finally, §7 concludes the paper and discusses future work.

2 Database Model and System Overview

In this section, our database model and overall system
architecture for federated real-time data services, a high-
level description of our closed-loop approach to supporting
the desired data service delay in a cluster of databases, and
an example real-time data service level agreement in terms
of the average and transient delay are discussed.

In this paper, we consider a federated database system
that consists of a group of databases connected by a network
switch. Each database node hosts a set of temporal data ob-
jects and non-temporal data objects. Temporal data updated
periodically by dedicated update transactions to maintain
the temporal consistency between the real-world state and
data in the database [17]. In contrast, non-temporal data
values do not change dynamically with time. For instance,
in stock trading applications, temporal data include stock
prices and volumes. Non-temporal data include stock IDs
and company names.

In our approach, only the master node executes transac-
tions. When a user transaction commits, it replicates the
result to the slaves to support 1-copy serializability [16]. In
our testbed, this is implemented using the data replication
library provided by Berkeley DB. For concurrency control,
we apply the two phase locking (2PL) algorithm in each
local database node. Note that no distributed lock manage-
ment or data conflict resolution is needed because transac-
tions are only executed in the master. Transactions are not
associated with deadlines since most online trade transac-
tions do not have explicit deadlines. Also, they are sched-
uled in a FCFS manner as common in online data services.
However, a transaction is required to be processed within a
specified response time bound. Otherwise, online users may
simply leave. As 2PL and FCFS are supported by most ex-
isting database systems, our model is easy to deploy.

Figure 1 shows the architecture of Chronos-C. The
databases are clustered in a single-master-multiple-slave
fashion. The master server processes all transactions, while
the slaves process queries as discussed before. When
a transaction commits, the master node replicates the
database status updates caused by the transaction to the
slave databases to maintain the data consistency. The user
service requests, i.e., transactions and queries, are first sent
to the load balancer that forwards transactions to the mas-
ter node, while distributing queries among the slave nodes.
Each slave database process queries and periodically reports

Stock

w - xﬂmes
l Replication

S —— ﬂ, Stock Data
Service Load Control Signal | Slave | Updates | Generator
- feavests | Balancer /< |

W -
Control Stock
Signal Slave Updates

N

Figure 1. Federated RTDB Architecture

its load bound computed in its feedback control loop to sup-
port the desired service delay to the load balancer at each
sampling point. Based on the feedback control signals re-
ceived from the slave nodes, the load balancer makes load
sharing decisions, which determines the fractions of incom-
ing queries to be distributed to the slave database nodes.

We consider periodic temporal data updates, since peri-
odic updates are commonly used in RTDBs to support the
temporal data consistency [17, 23]. In our testbed, the up-
date period of each temporal data is in a range of [0.5s, 5s]
to mimic frequent updates of stock prices, sensor data, etc.
In our federated RTDB architecture, the network switch re-
ceiving temporal data updates from the real world, e.g., a
stock market or roadside sensors for traffic monitoring, is
configured to periodically multicast incoming temporal data
to the slaves. An alternative approach is updating temporal
data in one node and sharing them with the other nodes. In
this paper, we take the first approach, because the network
bandwidth for periodic temporal data updates can be pre-
allocated. In the second approach, however, the network
may become congested due to aperiodic, bursty accesses of
shared temporal data across the network by user requests
for online data services, which often arrive in a bursty man-
ner. Upon receiving new temporal data, each database node
immediately runs its dedicated threads for periodic updates.
Admission control is only applied to user requests, if neces-
sary, to closely support the desired delay for real-time data
services by avoiding overload. In our approach, transac-
tions are processed by the master node using fresh data. A
user query can be processed in any slave node using the lo-
cally available fresh temporal data and non-temporal data
whose consistency with the master is guaranteed via 1-copy
serializability.

3 Feedback Control Design

In each slave node, we apply feedback control tech-
niques [7] to support the desired data service delay even
in the presence of dynamic workloads. For feedback con-
trol, the k" (> 1) sampling period is the time interval

Queries

Delay
Controller

Figure 2. Delay Control at Slave i

[(k — 1)P, kP) and the k" sampling point is equal to time
kP where P is the sampling period. In this paper, we set
P =1s. As hundreds of queries finish in 1s in each slave
server, performance measurement for P = 1s is reliable.
All the tested approaches use the same sampling period for
performance evaluation in Section 5. By applying feedback
control in each slave node, we aim to support timely data
services. In this paper, we consider an example service level
agreement (SLA): SLA = {S, = 1s, S, < 1.1s, T, = 10s
+. The average service delay is desired to be shorter than
or equal to S; = 1s. An overshoot S,, if any, is a transient
service delay longer than S;. In this paper, it is desired that
S, < 1.1s. Also, an overshoot, if any, is desired to reduce
to be equal to or less than S; within the settling time 7, =
10s.

The delay for servicing a request, s;, is the sum of the
TCP connection delay, queuing delay, and processing de-
lay inside the database. Let us assume that N > 1 RTDB
nodes are clustered together. At the k' sampling point,
the feedback controller running in each node shown in Fig-
ure 2 computes the service delay s;(k) = Zﬁiﬁ) s;j/n(k)
and delay error e;(k) = S — s;(k) where nz(kzg denotes the
number of queries finished in node i during the k*" sam-
pling period. Based on e;(k), the feedback controller in
node ¢ (1 < 7 < N) computes the control signal, i.e., the
required load bound adjustment 6d; (k), at the the k" sam-
pling point. Also, it computes the backlog bound for the
next sampling period: d;(k + 1) = d;(k) + dd;(k). Thus,
the backlog bound is decreased (i.e., dd;(k) < 0) to admit
fewer queries, if the service delay is longer than \S; specified
in the SLA or vice versa.

During the (k + 1)*" sampling period, node i parses an
incoming data service request to estimate how many data
items the request will access by leveraging the database
schema and semantics of queries. (For more details about
parsing, refer to [9].) If the sum of the estimated number of
data items to be accessed by the request and the total num-
ber of the data to be accessed by the user requests already
in node ¢ does not exceed d;(k + 1), node ¢ admits the re-
quest. Otherwise, the request is rejected. To enhance the
total timely throughput of the federated RTDBs, at the k"
sampling point, the load balancer uses the backlog bounds
collected from the slave nodes for load balancing in the

(k + 1)t sampling period.
3.1 Admission Control in A Slave Database Node

In each slave database node, we model the database sys-

tem dynamics in terms of the relation between the service
delay and the database backlog, i.e., the amount of data
for the database to process, in a SISO manner. By using
multiple, independent SISO controllers rather than a sin-
gle, centralized controller for load balancing, we aim to en-
hance the robustness of real-time data services as discussed
before. As the database backlog increases, the service de-
lay increases and vice versa. Based on this observation, we
model the RTDB behavior via the following four-step pro-
cedure.
1. System Modeling. We aim to construct a system model
whose input is the database backlog and the measured out-
put is the service delay. We derive a RTDB model in the
discrete time domain using the ARX (Auto Regressive eX-
ternal) model [7, 15]. Specifically, to model the relation
between the database backlog and delay, we model the data
service delay at the k' sampling point via the service de-
lays and database backlogs measured at the previous p sam-
pling points. We express the relation in slave node 7 as a
difference equation in the discrete time domain:

si(k) = Z{ajS(/f—j)+bjd(/f—j)} (1

where p (> 1) is the system order [15]. s(k—j) and d(k—j)
are the service delay and backlog measured during the time
interval of [(k —)P, (k — j + 1)P). Using this difference
equation, we model database dynamics by considering in-
dividual queries that potentially access different amounts of
data.
2. System Identification. The unknown model parameters
a;’s and b;’s in Eq 1 are derived via system identification
(SYSID) [15] to construct the system model. The objec-
tive of our SYSID is to minimize the sum of the squared
errors of data service delay estimations based on database
backlogs. In our SYSID procedure, we use the load bal-
ancer, the master node, and only one slave node. Since the
slave nodes are homogeneous in terms of system capacity
in our testbed, this approach saves the effort for conducting
SYSID individually for each slave. If a federated database
cluster consists of heterogeneous groups of nodes, SYSID
is needed for only one server in each group of homogeneous
nodes. This modeling approach is relatively simple and ro-
bust to changes in node availability compared to a MIMO
approach tied to a specific cluster configuration.

For SYSID, 1500 client threads concurrently send data
service requests to the load balancer for one hour. The
load balancer forwards transactions to the master node and

queries to the slave node. The master node replicates all
the database updates caused by committed transactions to
the slave node to support 1-copy serializability. Each client
thread sends a service request and waits for the response
from the database server. After receiving the transaction
or query result, it waits for an inter-request time randomly
selected in a range before sending the next data service re-
quest. A data service request accesses 60-100 data items.
As SYSID aims to identify the behavior of the controlled
database system, the master and slave nodes accepts all in-
coming data service requests without applying admission
control.

For SYSID, we choose the inter-request time range [1s,
3.5s], since the service delay shows a near linear pattern in
this area. In this way, we can model high performance real-
time data services dealing with widely varying workloads.
Our control modeling and tuning is valid in this operating
range. Beyond the operating range, a feedback controller in
each node may or may not support the desired performance
[7]. By employing multiple slave databases, we can support
the desired data service delay for a considerably extended
operating range as long as the load distributed to each indi-
vidual node does not largely exceed the operating range.

3. Model Evaluation. We use the R? metric computed by
Eq 2 to analyze the accuracy of SYSID [15]:

R?_ variance(service delay prediction error)

@)

variance(measured service delay)

A control model is acceptable, if its R? > 0.8. We have
performed SYSID for the first order to fourth order system
models. We reject the first order model due to its poor R?
value. We choose the second order model since its R? =
0.872:

s(k) = —0.0228s(k — 1) — 0.1371s(k — 2) +
0.0179d(k — 1) + 0.0084d(k — 2). (3

The third and fourth order model show slightly better R>
value compared to the second order one. However, we
choose the second model, since a higher order increases the
complexity of the system model.

4. Controller Design and Tuning. To design the service
delay controller, we derive the transfer function of the open-
loop RTDB that models the relation between the backlog
and service delay. Especially, we take the z-transform [7]
of Eq 3 to algebraically manipulate the equation in the fre-
quency domain rather than solving partial differential equa-
tions in the time domain. From this, we get the following
transfer function that shows the relation between the service
delay and backlog:

Pi(z) = Si(z) 0.0179z 4 0.0084 @
T T 22 40.02282 + 0.1371

where S;(z) is the z-transform of s;(k) and D;(z) is the
z-transform of d; (k) in Eq 3.

To closely support the SLA, we apply an efficient PI
(proportional and integral) control law, which combines the
advantages of integral control (zero steady-state error) with
that of proportional control (increasing the speed of the tran-
sient response) [7]. We do not use a D (derivative) controller
sensitive to noise such as bursty arrivals of data service re-
quests and data conflicts. At the k' sampling point, the PI
controller in node ¢ computes the control signal éd;(k), i.e.,
the database backlog adjustment required to support S;:

6di(k) = ddi(k—1)+ Kp[(K1+1)ei(k) —ei(k—1)] (5)

where the error e; (k) = S; —s;(k) at the k** sampling point
as shown in Figure 2. The z-transform of Eq 5, is:

- Ei(z) z—1

where AD(z) and F(z) are the z-transform of §d(k) and
e(k), respectively. Using Eq 4 and Eq 5, one can derive
a transfer function for the closed-loop system in Figure 2
and tune the control gains, i.e., Kp and K7, via well estab-
lished control theoretic techniques [7, 15]. We have derived
the closed-loop transfer function and tuned Kp and K; to
support the stability of the closed loop system and SLA con-
sidered in this paper. Details of these standard procedures
are omitted due to space limitations.

Fi(z) (6)

4 Load Balancing among Slave Databases

In this section, two approaches for load balancing among

slave RTDBs are described.
FC-Prop: Proportional Load Balancing Our first ap-
proach, called FC-Prop, distributes incoming queries in pro-
portion to the backlog bounds computed by the individ-
ual slave nodes via feedback control. At the k*" sampling
point, the load balance computes the fraction of the incom-
ing query workload to be assigned to slave node ¢ during the

(k + 1)t sampling period:
filk +1) =di(k + 1)/ di(k +1) (7)

i=1

where > | fi(k + 1) = 1. Note that FC-Prop distributes
the load in a fine-grained manner, considering the potential
heterogeneity of data service requests. The database back-
log bound computed in each individual slave indicates the
number of data accesses (rather than the number of data re-
quest) allowed to meet a specified average delay bound for
data services in the next sampling period based on the obser-
vation that different data service requests may access differ-
ent numbers of data. Also, FC-Prop efficiently handles po-
tential node heterogeneity. For example, assume both nodes

DB1-1
DB2-2
J

DB2-1

“—
Query-2
/ DB1-2

Query-1

DB1-3

Figure 3. Consistent Hashing Example

A and B closely support a specified average delay bound in
a sampling period. However, node A can process 10,000
data/s while B process 30,000 data/s to support the desired
average delay due to the difference in terms of their hard-
ware resources. A gross-grained approach may assign the
same number of data service requests to nodes A and B in
the next sampling period, overloading node A. Since Eq 7
is computed based on the fine-grained backlog bounds com-
puted by all the individual slave nodes active at the k*" sam-
pling point, FC-Prop can effectively deal with the potential
heterogeneity of data service requests and slave nodes, en-
hancing the total timely throughput of the federated RTDBs.
FC-Hash: Load Balancing Considering Data Access
Patterns. We further enhance the effectiveness of load shar-
ing for federated real-time data services by taking advantage
of the locality in transaction processing. This new approach
is called FC-Hash, in which we extend consistent hashing
[10] and integrate it with FC-Prop. Figure 3 shows an ex-
ample of how our extended consistent hashing distributes
incoming queries between two slave servers, DB1 and DB2
in a cluster. In consistent hashing, an output of the hash
function is mapped to a point on a circle; therefore, the
largest hash value wraps around to the smallest hash value
as shown in Figure 3. For hashing, we use MDS5 hash func-
tion. We use the least significant 32-bits of the 128-bit MD5
hash value and map it to one of the H = 232 — 1 points on a
hash circle. At the k" sampling point, FC-Hash computes
the number of hash points assigned on the hash circle to
active slave node ¢ that indicates the number of imaginary
database nodes run by slave node i:

Hi(k+1)=fi(k+1)H ®)

Thus, more imaginary nodes will be assigned to physical
slave node i on the hash circle, if d;(k + 1) is larger than
that of the other slaves or vice versa. If a query arrives in
the (k + 1)*" sampling period, it is hashed to an initial po-
sition on the hash circle. Starting from the initial location,
the ring is searched clockwise to find the first available hash
point, i.e., imaginary server. For example, suppose Query 1
is hashed between DB1-2 and DB1-3 in Figure 3, which are
imaginary instances of node 1 on the hash circle. FC-Hash

searches clockwise around the circle until it finds an imagi-
nary server DB1-3. Therefore, the load balancer sends this
query to physical DB1. Notably, H; varies as the data ser-
vice delay and corresponding load bound provided by node
1 change dynamically from a sampling point to another.

In addition to integrating feedback-based load balancing
with consistent hashing, we leverage data access patterns
to improve the performance by exploiting database caching.
Specifically, data identifiers, e.g., online stock price or prod-
uct IDs, are used as the input to consistent hashing. Thus,
queries accessing the same data will be hashed to the same
imaginary server and same physical database node accord-
ingly. Since the recently accessed data is cached for direct
access, the query processing delay can be reduced by using
our extended approach for consistent hashing, which effec-
tively integrates load balancing, feedback control, consis-
tent hashing, and database caching altogether to enhance the
timeliness of data services. Also, note that load sharing by
FC-Prop or FC-Hash only directs the way the load balancer
distributes workloads. Thus, it does not affect the system
model based on the relation between the service delay and
backlog in each individual slave described in Section 3.

5 Performance Evaluation

In this section, the federated real-time data service archi-
tecture and load balancing schemes presented in this paper
are implemented and evaluated.

5.1 Experimental Settings

For performance evaluation, we use a stock trading
testbed that provides four types of transactions: view-stock,
view-portfolio, purchase, and sale for seven tables [9], sim-
ilar to the TPC-W benchmark [19]. Different from TPC-W,
our testbed also supports periodic updates of 3,000 stock
prices (i.e., temporal data) for real-time data services. All
the machines used in the experiments have the dual core
1.6GHz CPU, 1GB memory and the 2.6.23 Linux kernel.
One database server runs on one dedicated physical ma-
chine and each server has S00MB database cache. Database
nodes are connected by a 1Gbps Ethernet switch. One ex-
periment runs for 600s. Each performance data is the av-
erage of 10 runs with 90% confidence intervals. We show
the performance results observed between 100s and 600s
to exclude the database initialization phase, involving ini-
tial housekeeping chores, e.g., database schema and data
structure initialization.

For 90% of time, a client thread issues a query (read-
only transaction) about stock prices or portfolio browsing,
similar to real world e-commerce workloads [3, 19]. For
the remaining 10% of time, a client sends a purchase or
sale transaction. We model bursty workloads to observe

the performance of tested approaches when the workload
changes dramatically. At the beginning of one experiment,
the inter-request time (IRT) is randomly distributed in [3.5s,
4s]. In all the experiments presented in this paper, at 200s,
the range of the IRT is suddenly reduced to [1s, 1.5s] to
model bursty workload changes and stays in the new range
until the end of each experiment. The sudden decrease of
the IRT at 200s increases the workload by approximately
2.33 — 4 times. Note that we only show the performance of
the slave database nodes. The desired 1s delay is always
supported for transactions processed in the master node,
since only 10% of the service requests are transactions in
our experiments. Also, the master node is always up and
running in our experiments.

For performance comparisons, we consider the follow-
ing baseline approaches commonly used for load balancing
in addition to FC-Prop and FC-Hash described in §4:

e RR: In this approach, service requests will be dis-
tributed to the database servers in a round robin man-
ner without considering the sizes of individual data ser-
vice requests measured in terms of the number of data
accesses. Neither feedback control is applied to sup-
port the desired delay bound in each node.

e Prop: The load balancer distributes workloads in pro-
portion to the inverse of the service delays measured in
the slaves. Essentially, this is an ad hoc feedback con-
trol in that load distribution among the slave databases
considers dynamically changing status of the slaves
without applying formal control theoretic techniques.

Note that RR and Prop are built based on the same single-
master-multi-slave architecture shown in Figure 1. Thus,
they share the advantage of high availability with FC-Prop
and FC-Hash even in the presence of RTDB node failures
or reassignments to different applications.

In this paper, we perform two major groups of experi-
ments. The first group of experiments evaluates the perfor-
mance when the number of slave databases increases. The
second group evaluates the performance when the number
of slave databases decreases to mimic partial system un-
availability. In the first group of experiments, we start with
one slave to which 1500 client threads send service requests.
We conduct 5 sets of experiments by increasing the num-
ber of slave databases from 1 to 5. In one experimental
run, the number of slaves is fixed. Each time we increase
the number of slaves by 1, we add 1500 client threads to
stress the clustered databases. Thus, for the case of a clus-
ter with 5 slaves, 7500 client threads submit data service re-
quests to the cluster. In the second group of experiments, we
start experiments with 1 master and 5 slaves to which 7500
clients simultaneously send service requests. To mimic par-
tial cluster unavailability, we remove 1 or 2 slaves out of 5
slaves at 400s, while keeping the same number of clients.

55000

T T
Linear Scalabilit +

50000 |- i SV
Q L FC-Prop -—--%---
ﬁ 45000 P;gg T
§ 40000 RR —-m-
= 35000
>
2 30000
g 25000
£ 20000
2 15000 |--p B A
£ 10000 E T e S L

- R Ty
5000 gpsznsrisr e Wi
0
1 2 3 4 5

Number of Slave DBs

Figure 4. Average Timely Throughput

2.8
2.6

2.2

1.8

1.6

1.4

1.2
1 5

0'8 % @

RR Prop FC-Prop FC-Hash

Average Service Delay (Sec)

Figure 5. Average Delay (5 Slaves)

In this way, we support a failover fault model (assuming
that there is no Byzantine failure). Hence, from 400s to the
end of experiments, all service requests are processed by the
remaining database servers. Although we have done exten-
sive performance evaluation, due to space limitations, we
only present a subset of key results next.

Performance for an Increasing Number of Slaves. Fig-
ure 4 shows the the timely throughput, i.e., the total number
of data processed by timely queries that finish within the
desired delay bound. In general, as the number of slaves
increases from 1 to 5, the total and timely throughput in-
crease for all the tested approaches. FC-Hash and FC-Prop
consistency support higher timely throughput Notably, the
throughput gap between our approaches and Prop/RR in
Figure 4 increases as more slave databases are employed. In
the 5 slave server case, the timely throughput of FC-Hash is
3.37 and 2.28 times the timely throughput of RR and Prop
as shown in Figure 4. By applying formal control theo-
retic techniques to manage the database backlog, FC-Prop
and FC-Hash avoid severe database overload. In addition,
FC-Hash is aware of data access patterns and takes advan-
tage of database caching to further improve the performance
compared to FC-Prop. Its timely throughput in Figure 4 is
higher than FC-Prop’s by roughly 4000 date items/s in the
5 slave case. The linear line in Figure 4 indicates the ideal

1
=
8 os
=
=)
& o6
@
L2
S 0.4
w
- @
o T i
100 200 300 400 500 600
Time (sec)
(a) FC-Prop (5 slaves)
1.2
1k
=
8 os8
=
)
2 o6
@
L2
§ 0.4
- ig%
o g%i
100 200 300 400 500 600

Time (sec)

(b) FC-Hash (5 slaves)

Figure 6. Transient Service Delay

linear increase of the timely throughput for the increasing
number of slave databases. In the future, we will explore
more efficient load balancing and RTDB clustering tech-
niques to further reduce the gap between the timely through-
put of our approaches and the ideal linear line.

Figure 5 shows the average of service delays observed
for 10 runs across 5 slave nodes with 90% confidence inter-
val bars. As shown in the figure, RR and Prop support the
average service delay of 2.41 £ 0.27s and 1.59 & 0.19s, re-
spectively, violating the 1s average delay bound specified in
the example SLA considered in this paper (§3). In contrast,
FC-Prop and FC-Hash support 1 + 0.03s and 0.97 4- 0.02s,
closely supporting the 1s bound. Also, their confidence in-
tervals are an order of magnitude smaller than that of RR
and Prop. Due to the space limitation, we only discuss the 5
slave database case. Other cases with 1 — 4 slave databases
have shown similar results.

In addition, Figure 6 shows the transient service delay
of FC-Hash and FC-Prop. As RR and Prop cannot support
even the average service delay bound, S; = 1s, we do not
plot their transient delay. In Figure 6, we only show the
transient service delay of one slave database, DB-1, because
FC-Hash and FC-Prop closely support the desired average
and transient delay in every slave. Also, the delay varia-
tions across the clustered database nodes are negligible in
FC-Hash and FC-Prop. As shown in Figure 6, FC-Hash and
FC-Prop closely support the desired 1s delay bound after
the abrupt workload change at 200s, while cancelling tran-
sient delay overshoots. Generally, the transient delay of FC-
Prop and FC-Hash in Figure 6 ranges between 0.8s and 1.1s.

They have closely supported the desired average/transient
delay bound specified in the SLA for the 1 — 4 slaves too.
We omit the results due to space limitations. FC-Hash pro-
vides similar transient delays to FC-Prop, while supporting
a higher total timely throughput than FC-Prop does as dis-
cussed before.

Performance for Removing Slaves. After the number of
slaves is decreased from 5 to 4 by removing one node at
400s, the timely throughput of FC-Hash and FC-Prop is at
least twice the timely throughput of RR and Prop both be-
fore and after the removal of a slave as summarized in Ta-
ble 1. From Table 1, we observe that a large fraction of
data accesses in RR and Prop are tardy. As a result, RR
and Prop suffer the significantly lower timely throughput.
Similar performance results are observed when two slave
nodes are abruptly removed from the cluster at 400s. These
results emphasize the importance of real-time data services
via systematic performance management.

6 Related Work

Although feedback control has been applied to manage
the performance of a stand-alone RTDB [1, 8, 9], little
work has been done to manage the performance of clus-
tered RTDBs. Wei et al. [22] developed a closed-loop
scheme to provide QoS-aware data services in a distributed
RTDB working in a local area network environment with
full data replication. In their work, the local deadline miss
ratio and utilization controllers apply admission control to
incoming transactions. The global load balancer collects the
performance data from the database nodes and balances the
system-wide workload. However, their work is based on
heuristics rather than formal control theory, providing no
stability analysis. Further, it is not implemented and evalu-
ated in a real database system.

A feedback-based CPU utilization control algorithm
for distributed soft real-time applications is presented in
[20, 6]. However, real-time data management issues such
as database-specific load balancing based on the notion of
database backlog, consistent hashing, and data freshness is-
sues are not considered in their work. Another work [5] de-
signed a MIMO-control-based load balancing algorithm for
optimizing the system response time through memory pool
allocations to multiple disk storages in one database server.
They focus on the trade-off between the performance cost of
transient imbalance and the cost of control actions such as
adjusting memory pools. Their approach aims to optimize
the performance of multiple disks in one database server,
while our work focuses on timely data services by clustered
RTDB:s.

Distributed real-time data management issues have been
studied [13, 18]. MIRROR [24] is a concurrency control
protocol developed for distributed RTDBs where data are

replicated. Efficient algorithms to maintain the consistency
of replicas in a distributed RTDB have been studied in [21].
In this paper, we take a different system design choice. By
clustering independent databases based on the master slave
architecture, we develop a new clustered RTDB architec-
ture to significantly reduce the complexity and overhead of
supporting the consistency of temporal and non-temporal
data based on the notion of 1-copy serializability. Also, we
are not aware of any prior work on distributed RTDBs im-
plemented and evaluated in a real database system. As the
database architecture is one of many possible factors that af-
fect the timely throughput of real-time data services, a fur-
ther study for more efficient system and algorithm design
remains an open issue.

Consistent hashing has been applied to balance the load
in web applications and data storage systems [12, 4, 11];
however, most existing approaches do not consider real-
time data service issues such as supporting the desired av-
erage and transient data service delay in the presence of dy-
namic workloads, while enhancing the timely throughput
by considering specific needs for real-time data services.

7 Conclusions and Future Work

In this paper, we develop a new architecture for clus-
tered real-time data services as well as a load balancing
scheme to enhance the timely throughput of real-time data
services. Also, we implement our approach and evaluate the
performance in a real database system. We present a closed-
loop load balancing algorithm where the load distribution is
based on the feedbacks from the service delay controllers
running on the individual slave database servers. To fur-
ther enhance the timely throughput via database caching,
we also exploit data access patterns for load distribution.
In sum, our federated real-time database system shows the
largest timely throughput increase compared to baseline ap-
proaches as more slave nodes are added. Further, partial
unavailability of the clustered database system only reduces
the timely throughput without introducing complex data
consistency issues. The performance of our approach is
implemented and thoroughly evaluated in a real-time data
service testbed. The performance results show that our ap-
proaches support the desired data service delay even in the
presence of dynamic workloads and abrupt unavailability
of a subset of the slave databases, while significantly im-
proving the timely throughput compared to the tested base-
lines. In the future, we will perform more extensive experi-
ments to evaluate the availability of the federated real-time
database system using more slave nodes as well as more
node additions or removals. Also, we will explore more ad-
vanced architecture of clustered real-time databases, while
investigating more effective load sharing scheme.

Table 1. Throughput before and after removing a slave RTDB node

Metrics/Approaches RR Prop FC-Prop FC-Hash

#timely accesses/s before a removal 10,309 18,437 37,990 39,032

#timely accesses/s after a removal 9,024 15,526 33,128 35,627

#total accesses/s before a removal 41,647 43,499 50,197 54,821

#total accesses/s after a removal 35,379 38,251 46,068 50,946

total timely throughput over 600s 5,928,400 | 10,480,000 | 21,821,600 | 22,738,200
References [13] K.-W. Lam, V. C. S. Lee, K.-Y. Lam, and S.-L. Hung. Dis-
tributed Real-time Optimistic Concurrency Control Proto-

[1] M. Amirijoo, J. Hansson, and S. H. Son. Specification and col. In_lnternational Workshop on Parallel and Distributed
Management of QoS in Real-Time Databases Supporting Real-Time Systems, 1996. . .

Imprecise Computations. IEEE Transactions on Computers, (14] K.Y.Lamand T. W. K,u 0, eleors. Real-Time Database Sys-
55(3):304-319. 2006. tems. Kl.uv‘ver Academic Publlshgrg, 2006.
. . [15] C.L.Phillips and H. T. Nagle. Digital Control System Anal-

[2] Oracle Berkeley DB Product Family. Available at
http://www.oracle.com/database/berkeley-db/index.html ysis and Dgszgn (3rd edition). Prentice Hall, 1993.

) ’ ’ . R ’ ’ [16] R. Ramakrishnan and J. Gehrke. Database Management

[3] E. Cecchet, G.‘Car‘ldea, and A. Ailamaki. Middleware-based Systems. McGraw-Hill, 3rd edition, 2003.

I?atabase Replication: The Gaps Between Theory and Prac- [17] K. Ramamritham, S. H. Son, and L. C. Dipippo. Real-
tice. In ACM SIGMOD International Conference on Man- time databases and data services. Real-Time System Journal,
agement of Data, 2008. 28:179-215, November 2004,

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, [18] J. Stankovic and S. H. Son. An Architecture and
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, Object Model for Distributed Object-Oriented Real-Time
and W. Vogels. Dynamo: Amazon’s Highly Available Key- Databases. Journal on Computer Systems Science and En-
value Store. In Symposium on Operating Systems Principles, gineering, 14(4):251-259, July 1999.

2007. [19] Transaction processing performance council.

[5] Y. Diao, J. Hellerstein, A.Storm, and M. Surendra. Incorpo- http://www.tpc.org/.
rating Cost of Control into the Design of a Load Balancing [20] X.Wang, D. Jia, C. Lu, and X. Koutsoukos. DEUCON: De-
Controller. In IEEE Real-Time and Embedded Technology centralized End-to-End Utilization Control for Distributed
and Applications Symposium, 2004. Real-Time Systems. IEEE Transactions on Parallel and Dis-

[6] Y. Fu, H. Wang, C. Lu, and R. Chandra. Distributed Utiliza- tributed Systems, 18(7):996-1009, 2007.
tion Control for Real-Time Clusters with Load Balancing. [21] Y. Wei, A. A. Aslinger, S. H. Son, and J. A. Stankovic. OR-
In IEEE International Real-Time Systems Symposium, 2006. DER: A Dynamic Replication Algorithm for Periodic Trans-

[7] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. actions in Distributed Real-Time Databases. In International
Feedback Control of Computing Systems. A John Wiley and Conference on Real-Time and Embedded Computing Sys-
Sons, Inc., Publication, 2004. tems and Applications, 2004.

[8] K. D. Kang, J. Oh, and S. H. Son. Chronos: Feedback Con- [22] Y. Wei, S. H. Son, J. A. Stankovic, and K. D. Kang. QoS
trol of a Real Database System Performance. In IEEE Real- Management in Distributed Real-Time Databases. In IEEE
Time Systems Symposium, 2007. International Real-Time Systems Symposium, Dec. 2003.

[9] K. D. Kang, J. Oh, and Y. Zhou. Backlog Estimation and [23] M. Xiong and K. Ramamritham. Deriving Deadlines and
Management for Real-Time Data Services. In Euromicro Periods for Real-Time Update Transactions. IEEE Transac-
Conference on Real-Time Systems, 2008. tions on Computers, 53(5):567-583, 2004.

[10] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, [24] M. Xiong, K. Ramamrithm, and J. Haritsa. MIRROR: A

[11]

[12]

and R. Panigrahy. Consistent Hashing and Random Trees:
Distributed Caching Protocols for Relieving Hot Spots on
the World Wide Web. In ACM Symposium on Theory of
computing, 1997.

D. Karger and M. Ruhl. Simple Efficient Load Balancing
Algorithms for Peer-to-Peer Systems. In ACM Symposium
on Parallelism in Algorithms and Architectures, 2004.

D. Karger, A. Sherman, A. Berkheimer, B. Bogstad,
R. Dhanidina, K. Iwamoto, B. Kim, L. Matkins, and
Y. Yerushalmi. Web Caching with Consistent Hashing. In
International Conference on World Wide Web, 1999.

10

State-Conscious Concurrency Control Protocol for Repli-
cated Real-Time Databases. In IEEE Real-Time Technology
and Applications Symposium, 1999.

