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Abstract

GPGPUs (General Purpose Graphic Processing Units)

provide massive computational power. However, applying

GPGPU technology to real-time computing is challenging

due to the non-preemptive nature of GPGPUs. Especially, a

job running in a GPGPU or a data copy between a GPGPU

and CPU is non-preemptive. As a result, a high priority job

arriving in the middle of a low priority job execution or

memory copy suffers from priority inversion. To address the

problem, we present a new lightweight approach to support-

ing preemptive memory copies and job executions in GPG-

PUs. Moreover, in our approach, a GPGPU job and mem-

ory copy between a GPGPU and the hosting CPU are run

concurrently to enhance the responsiveness. To show the

feasibility of our approach, we have implemented a proto-

type system for preemptive job executions and data copies

in a GPGPU. The experimental results show that our ap-

proach can bound the response times in a reliable manner.

In addition, the response time of our approach is signifi-

cantly shorter than those of the unmodified GPGPU run-

time system that supports no preemption and an advanced

GPGPU model designed to support prioritization and per-

formance isolation via preemptive data copies.

1 Introduction

Processor technology has significantly been advanced.

Especially, GPUs provide massive parallelism for low

costs. For example, an NVIDIA Fermi GPU provides 512

cores [23]. GPUs are increasingly used for general purpose

computations as they are becoming more programmable

and flexible. For example, NVIDIA’s CUDA [15] and ATI’s

OpenCL [12] support general purpose GPU programming.

At the same time, the demand for high performance real-

time computing is increasing in cyber physical systems that

deal with large amounts of real-time sensor data. For exam-
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ple, GPUs provide an order of magnitude speedup over mul-

ticore solutions for computer vision tasks in autonomous

driving [4]. Despite the powerful features, related work on

the application of GPUs to real-time computing is scarce

[5, 10, 14].

Unfortunately, applying GPGPU technology to real-time

computing is not straightforward. In fact, supporting real-

time scheduling for GPUs is a challenging problem that re-

quires significant research efforts. For example, it is largely

unknown how to analyze the schedulability of GPU tasks or

provide a reliable yet not overly pessimistic estimates of the

worst case execution times in GPUs [5, 10]. In this paper,

we focus on a specific piece of the problem, i.e., support-

ing a basic capability for preempting a memory copy, and a

GPU job, called kernel, execution for periodic soft real-time

tasks.

A GPU, called a device, is a coprocessor to the hosting

CPU. Thus, data have to be copied between the CPU and

GPU memory. Since the memory copy operation is per-

formed via non-preemptive DMA (Direct Memory Access),

a high priority task can be blocked due to a memory copy

transaction of a low priority task. In addition, a kernel can-

not be preempted once it starts running in the GPU. There-

fore, a high priority task can suffer from priority inversion.

The resulting real-time performance penalty can be serious

especially when a high priority task is blocked by a large

low priority kernel that does complex computations using

big data. Kato et al. [10] have developed a novel approach

called RGEM (Responsive GPGPU Execution Model) that

divides data into a set of fixed size chunks to allow preemp-

tion between the consecutive chunk copies. In this way,

their approach significantly decreases the response time of

high priority tasks, while supporting enhanced performance

isolation between tasks with different priorities. However,

their approach supports no kernel preemption. As a result, a

high priority kernel may be blocked by a low priority kernel

already running in the GPU.

To address these issues, we present a new approach,

called PKM (Preemptive Kernel Model), which supports

1) preemption of kernels that implement periodic real-time



tasks assigned fixed priorities, 2) efficient preemptive mem-

ory copies between the CPU and GPU memory, and 3)

concurrent processing of memory copies and periodic ker-

nels. In our approach, a job, i.e., a periodic task instance,

is implemented as a GPU kernel. To make a job preemp-

tive, PKM divides one kernel into a set of subkernels where

a subkernel is executed by a specified number of thread

blocks called a subgrid in this paper. In PKM, a job sus-

pends itself after finishing a current subkernel, if a high pri-

ority job is waiting.

PKM supports preemptive memory copies by dividing a

memory copy transaction into a series of copies of smaller

data chunks, similar to [10]. However, different from [10],

PKM allows concurrent executions of memory copies and

kernels. Because a job with the highest priority cannot start

running in the GPU before the data to process is copied to

the GPUmemory, a low priority kernel that already has data

to process in the GPU memory can be executed, while the

memory copy transaction for the highest priority task is be-

ing performed or vice versa. By overlapping data copies

and job executions, we aim to further reduce the response

time and unnecessary blocking between memory copies and

kernel executions. In addition, unlike [10], PKM directly

passes input sensor data from the operating system address

space to the GPU memory via DMA to eliminate unnec-

essary data copies between the operating system and user

address space. In this way, PKM further reduces the de-

lay for memory transactions, while decreasing the memory

consumption.

To show the feasibility of our approach, we have imple-

mented a prototype PKM system in an NVIDIA GeForce

GTX 460 GPU. The experimental results show that our

approach bounds the response times in a reliable manner.

Also, in an experiment, the response time of a high priority

task in PKM is approximately 1

10
and 1

100
of those mea-

sured in RGEM [10] and basic CUDA, which provide pre-

emptive data copies and no preemption respectively. Thus,

we heave experimentally verified that PKM is substantially

more cost-effective than the two methodologies represent-

ing the state of the art.

The rest of the paper is organized as follows. GPU back-

grounds and our preemptive model are discussed in Sec-

tion 2. PKM design and implementation are discussed in

Section 3. Performance evaluation is given in Section 4 and

related work is discussed in Section 5. Finally, Section 6

concludes the paper and discusses future work.

2 Preemptive GPGPU Model

In this section, basic GPGPU model based on the CUDA

architecture is discussed. Based on the model, the ap-

proaches taken by PKM for preemptive kernel executions

and memory copies are described.

2.1 System Model and Backgrounds

PKM aims to improve the performance of periodic soft

real-time GPGPU tasks. In PKM, a task set consists of

n(≥ 1) tasks where a task τi (1 ≤ i ≤ n) is associated

with a period Ti and fixed priority Pi. A task is assumed

to execute the same function to process input data, such

as sensor readings and audio/video data, at every period.

PKM is designed and implemented based on the NVIDIA

CUDA [15] architecture using tools provided by the CUDA

library [17]. Unlike [10], we do not modify underlying

GPU device drivers that could be specific to certain GPU

hardware, and different versions of GPU libraries or toolk-

its. Instead, PKM is designed to run in the user space and,

therefore, applicable to various GPUs as long as the basic

CUDA functionalities used in this paper are supported by

them.

A CUDA application has a non-interruptible entry func-

tion, called a kernel, which invokes other (non-kernel) GPU

device functions. To execute a kernel, data have to be up-

loaded from the CPU to GPU memory. After completing a

kernel, computational results have to be downloaded from

the device to the host memory. It is not allowed to preempt a

running kernel. Neither is it possible for the host to commu-

nicate with a kernel executed in the device. A GPGPU has

a number of SIMT (Single Instruction Multiple Threads)

multiprocessors that host and switch between GPU threads.

Thus, a GPU can accommodate thousands or even more live

threads. The number of processing elements and maximum

number of active threads that can run at once vary among

GPUs [18]. The latter may also vary even in one device

depending on the availability of resources at runtime.

CUDA provides a combination of hardware and soft-

ware techniques such as DMA, streams, and events to en-

hance the performance of GPU applications [17]. DMA sig-

nificantly improves the performance of host-device mem-

ory copies as it eliminates page faults and operating sys-

tem overhead. A stream is a group of CUDA opera-

tions that need to be executed sequentially in the device.

However, operations from different streams can be inter-

leaved. In PKM, we divide a kernel into subkernels to sup-

port fine grained preemption between subkernels, if nec-

essary, to avoid priority inversion due to non-preemptive

kernel execution in CUDA. Further, we support an asyn-

chronous, nonblocking memory copy using CUDA streams

and pinned memory in the host to execute subkernels and

memory copies of different streams, i.e., periodic jobs in a

concurrent manner. For example, while stream A does a

memory copy, stream B can execute its subkernel or vice

versa. CUDA also provides events to query the state of

asynchronous GPU transactions. Using events, the host

can check the status and progress of streams without be-

ing blocked. PKM extensively use streams and events to



improve the response time of real-time tasks.

In PKM, a static set of periodic tasks are compiled

together with the scheduler. PKM is completely imple-

mented in the user space as a single process to avoid con-

text switches between tasks. Tasks are implemented as

C++ classes that inherit the Task base class and imple-

ment the Task::run_job() template function, which

is invoked by the scheduler at specified intervals. In the

Task::run_job() function, a periodic task instance

(i.e., a job) requests the GPU to execute a series of mem-

ory copies and a kernel.

2.2 Fine­grained preemption of large kernels

Since an active CUDA kernel cannot be preempted, a

large kernel can take up all the resources in the GPU for

a considerable amount of time once it starts running. A

CUDA kernel consists of one or more grids. A user-

specified grid needed to execute a kernel consists of a num-

ber of blocks where a block consists of a number of threads.

A CUDA programmer has to define the number of grids G,

the number of blocks per grid B, and the number of threads

per block R for a kernel. In PKM, a large kernel submitted

by a user task is partitioned into subgrids that consist of a

fixed number of CUDA blocks. PKM receives a complete

kernel execution request from a user and divides it into sub-

grids to run subkernels. A system administrator explores

an appropriate subkernel size S (the number of blocks per

subgrid) via profiling to support fine grained kernel preemp-

tion in PKM with acceptable overhead. Essentially, there is

a tradeoff between fine grained preemption and overhead.

Smaller subkernels support more fine-grained preemption,

but they are subject to more overhead. On the other hand,

larger subkernels experience less overhead at the cost of

more gross-grained preemption, which may increase the po-

tential for priority inversion. Since an appropriate value of

S are specific to an application and a device, we profile the

relation between the subkernel size and slowdown due to

partitioning a single kernel into multiple subkernels.

Given S and the other aforementioned parameters, PKM

computes the number of subkernels: M = ⌈G × B/S⌉
where each block has R threads. For example, assume that

a job requests a grid of 1024 blocks to execute a kernel.

PKM divides this job into 4 subgrids, if S = 256 blocks.

PKM processes a single subgrid of the job that currently

has the highest priority. When a higher priority job arrives,

it preempts the current job after finishing its subkernel cur-

rently being executed. To analyze this tradeoff, we have de-

signed a matrix multiplication application that has a single

grid. For varying sizes of input matrices, we measure the

response time of the task for the decreasing subkernel size

A subkernel and a subgrid used to run a subkernel are used inter-

changeably in this paper.

Data Size B M S Slowdown

1024x1024 4096

4 1024 0%

16 256 26%

64 64 340%

2048x2048 16384

4 4096 0%

16 1024 10%

64 256 32%

128 128 250%

4096x4096 65536

4 16384 0%

16 4096 2%

64 1024 8%

256 256 9%

512 128 42%

Table 1. Subkernel size vs. slowdown for ma­
trix multiplication (B: #blocks/grid, M : #sub­

kernels, and S: #blocks/subgrid)

and the increasing number of subkernels. The results of the

experiments for profiling is given in Table 1. We observe

from the table that larger tasks better tolerate finer grained

partitions in terms of the overhead. The 4096x4096 matrix

multiplication task takes around 750ms when executed as a

single kernel. When it is divided into 256 subkernels, it ex-

periences only 9% increase in the response time as shown

in Table 1. Notably, this is one of the desirable features of

PKM. A large kernel, which may cause severe priority in-

version and a significant real-time performance penalty as

a result, is readily divisible into a series of subkernels with

acceptable overhead. On the other hand, it is desirable to

partition a relatively small kernel into a small set of subker-

nels that does not introduce a large increase in the response

time. In this way, PKM calculates the subgrid size S for

each task, starting from the highest priority task. Specifi-

cally, for each task, PKM chooses the largest S that results

in a preemption interval that is equal to or shorter than the

minimum of the periods of the higher priority tasks, if any.

2.3 Preemption of large memory transactions

PKM runtime system divides a kernel or a memory trans-

action into a series of smaller units. Given a memory copy

request, PKM queues the request with the total data size.

(Each task in PKM has two queues for scheduling kernels

and memory transactions. A detailed description of the

queue management in PKM is given in Section 3.) Each

time the request is serviced, PKM copies only a smaller

chunk of data and decreases the request size by the size of

the portion, similar to [10]. Thus, the data chunk size af-

fects the granularity of preemption and corresponding over-

head. A smaller chunk size supports more fine-grained pre-



emption between memory transactions potentially increas-

ing the overhead or vice versa. In this paper, we experi-

mentally picked 1MB as the chunk size, since it provides

fine granularity with the shortest response time for memory

transactions among the tested various chunk sizes.

In PKM, different from [10], PKM overlaps a kernel ex-

ecution with memory transactions as discussed before. Fur-

ther, data are directly written to the DMA buffer without

making an extra copy to the user space buffer and copy-

ing the data back to the DMA buffer. Removing extra data

copies are important especially for processing large real-

time sensor data such as audio/video streams, since ex-

tra copies will increase both the memory consumption and

delay for memory transactions. We are unaware of any

prior work that supports preemptive kernels and memory

copies, while supporting overlapped processing of kernels

and memory transactions for real-time applications.

3 System Design and Implementation

In this section, the data structures to model tasks and

scheduling queues are described. Also, our approach to

scheduling of preemptive kernels and memory transactions

is discussed.

3.1 Data Structures

Task

Priority

Period

Stream

CopyQueue

ExecQueue

Figure 1. Data structure of a task in PKM

The task data structure used by PKM is shown in Fig-

ure 1. It contains attributes to specify the priority and pe-

riod of a task. For each task, it also has a CUDA stream

handle, a queue for copy transactions, and another queue

for kernels. In PKM, each periodic real-time task is associ-

ated with a separate CUDA stream. Each task represented

by a stream has its own private queues for its kernels and

memory transactions separately.

The data structures used for copy and execution queue

entries are shown in Figure 2. They have common fields for

a timestamp and a CUDA event handle. In PKM, times-

tamps are only used to order memory/kernel operations

within a task. There is no total or partial order among the

timestamps of different tasks. Thus, a memory operation or

kernel without any unfinished preceding operation of a task

is eligible to run next. Among the eligible operations of

CopyQueueEntry

Timestamp

Destination

Source

Size in bytes

Direction

ExecQueueEntry

Timestamp

KernelExecutor

KernelExecutorParams

Event Event

Figure 2. Data structure of a kernel ormemory
copy request

different tasks, PKM schedules a memory copy and kernel

with the highest priority.

The CUDA event handle in Figure 2 is used mainly to

check the completion of an operation after it is scheduled.

This event handle is also used to gather response time statis-

tics. In addition to these common attributes, each entry

has parameters specific to the operation it is representing.

A memory copy entry contains the source and destination

pointers, total data size of the request, and the direction of

the copy, i.e., upload from host to device or download from

device to host. A single copy entry is created for each user

data copy operation. The size, destination, and source point-

ers are updated as the data request is processed chunk by

chunk. A kernel execution entry stores a user supplied ex-

ecution object that is responsible for passing the executable

with parameters (if any) and keeping track of the comple-

tion of the kernel.

Our approach greatly simplifies the design of the system-

wide scheduler. The PKM scheduler only has to pick the

highest priority memory copy and kernel that are ready to

run immediately and submit them to the device. Having

two separate queues for copy and execution transactions al-

lows PKM to easily check each task for pending transac-

tions of a particular type in non-ascending order of priority.

Therefore, our approach does not require complex schedul-

ing schemes, system-wide queues, message passing, or syn-

chronized queue access mechanisms. The overhead of our

scheduling is bounded by the cost of sorting the pending

tasks and searching through them to find the highest prior-

ity kernel and memory operations ready to run. Pending

tasks can be sorted using a min-heap. An update of a min-

heap is performed in O(log n) time when the size of the

task set is n. Thus, the runtime overhead for scheduling

is bounded by O(n) time due to the search for a kernel or

memory transaction with the highest priority when a DMA

request or subkernel execution finishes.

Notably, in a periodic task model, it is unnecessary for

a job to continually check whether a higher priority job has

arrived. Considering the periods of tasks, our scheduler an-

alyzes offline when a task can be preempted by a higher

priority task. For an arbitrary pair of tasks with different



priority levels, the scheduler computes offline when a low

priority job needs to check an arrival of a higher priority job

by computing the least common multiplier of the periods of

the two tasks. As a result, each job knows when it has to

suspend itself, if necessary, to avoid blocking a higher pri-

ority job. The scheduler has to compute this information for

only one hyper period of the task set and repeatedly apply

the computed result in the following hyper periods. There-

fore, the offline computation is performed in O(n2) time for

n tasks.

3.2 Concurrent Scheduling of Copy and Kernel
Operations

1 Task : : r un_ j ob ( )

2 {

3 PKMemCpy( dev_ds t , h o s t _ s r c , s i z e , UPLOAD) ;

4 PKExec ( Kerne lFunc ( Ke r n e l P a r ame t e r s ) ) ;

5 PKMemCpy( h o s t _ d s t , dev_ds t , s i z e , DOWNLOAD) ;

6 }

Listing 1. Specification of a user task

A user defines a job (i.e., a kernel) using a number of

functions provided by PKM. The pseudo code in Listing 1 is

an example job launcher of a periodic task. A job typically

generates a sequence of a data copy (upload), kernel execu-

tion, and data copy (download) requests through the PKM

runtime system. If run_job() is called at time t deter-
mined according to the task period, two entries are inserted

into the copy queue and one entry into the kernel queue of

the task with timestamps t, t + 2, and t + 1, respectively.

1 PKScheduler : : s ched ( )

2 {

3 t a s k _ l i s t . s o r t _ b y _ p r i o r i t y ( ) ;

4 i f ( c u r r e n t copy t r a n s a c t i o n i s comple t ed )

5 f o r e a c h ( t a s k i n t a s k _ l i s t )

6 i f ( t a s k . i sReady (COPY_QUEUE) )

7 {

8 CopyParams cp = t a s k . deque_copy (

CHUNK_SIZE) ;

9 l a unch COPY on t a s k . s t r e am us ing cp ;

10 break ;

11 }

12 i f ( c u r r e n t exec t r a n s a c t i o n i s comple t ed )

13 f o r e a c h ( t a s k i n t a s k _ l i s t )

14 i f ( t a s k . i sReady (EXEC_QUEUE) )

15 {

16 Kerne lPa rams kp = t a s k . deque_exec (

s ubGr i dS i z e ) ;

17 l a unch KERNEL on t a s k . s t r e am us ing kp ;

18 break ;

19 }

20 }

21

22 boo l ean Task : : i sReady ( queue )

23 {

24 i f ( queue == CopyQueue )

25 o t h e r _queue = ExecQueue ;

26 i f ( queue == ExecQueue )

27 o t h e r _queue = CopyQueue ;

28 re turn ( ! queue . empty ( ) and

29 queue . f r o n t ( ) . p r e c e d e s ( o t h e r _queue . f r o n t ( ) ) ) ;

30 }

Listing 2. Pseudo code for scheduling

The scheduling function of PKM, i.e., sched() in

Listing 2, makes necessary scheduling decisions when

an instance of a periodic task is created via a call of

Task::run_job() or a previously scheduled copy oper-

ation or subkernel completes. PKM maintains tasks in pri-

ority order in a list called the task_list. Each schedul-

ing decision picks a copy operation and a subkernel that is

associated with the highest priority and eligible to run next.

Example. Figure 3 shows three tasks with high,

medium, and low priority scheduled using the algorithm in

Listing 2. The PKM scheduler schedules the first entry in

the copy queue of the high priority task, i.e., HP(10). The

scheduler then looks for a kernel execution transaction. Al-

though the kernel execution queue of the highest priority

task is not empty, the scheduler will not schedule H(12)

until the preceding data copy operations HP(10, 11) com-

plete. Thus, it skips to the next task MP, which is not ready

to execute, because the kernel execution transaction MP(9)

is waiting for copy transactions MP(6, 7, 8) and these in

turn are currently blocked by HP(10). Hence, the sched-

uler considers the lowest priority task LP and schedules the

execution transaction LP(16) which is not waiting for any

copy transaction. This decision completes the first schedul-

ing round of the snapshot shown in Figure 3. The next de-

cision is made when HP(10) or LP(16) completes. For the

clarity of presentation, in this example, it is assumed that an

arbitrary data copy and subkernel execution complete at the

same time. Thus, the PKM scheduler concurrently sched-

ules HP(11) and LP(17) transactions next and proceeds with

remainder of the schedule shown in Figure 3.

3.3 Design of Preemptive Kernels

Preemptive memory copies are relatively easy to support

due to the incremental nature of data copies between the

host and device. However, supporting preemptive kernels is

more complex than providing preemptive memory copies.

Depending on the availability of resources, a GPU may ex-

ecute a user-defined grid of thread blocks either at once or

divide the grid into subgrids and execute them one by one.

Note that a user cannot control the procedure. Neither is the

procedure clearly known. Moreover, a grid executing a ker-

nel is non-preemptive even if it is run as a series of subgrids

by the device.

To support parallel programming, however, CUDA guar-

antees the consistency of the block index, blockIdx, used

in a user kernel. For example, if a user specifies a grid

of 1024 blocks, blockIdx ranges from 0 to 1023, even
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Figure 3. PKM scheduling example (HP: High Priority, MP: Middle Priority, LP: Low Priority, TS:
Timestamp, Params: Parameters)

if the underlying CUDA runtime system divides the grid

into, for example, 4 subgrids of 256 blocks each and ex-

ecute the subgrids one by one. For instance, a state-

ment such as char *block_data = src[blockIdx

* 1024] partitions data into chunks so that each CUDA

block receives a specific chunk of 1024 bytes of data based

on its block index. However, if we were to manually sched-

ule the same kernel in four grids of 256 blocks to enable pre-

emption, the previous assignment statement will not execute

correctly, since CUDA is unaware that these four smaller

grids are correlated. As a result, the blocks in each of the

four grids will be assigned 0 - 255 block indexes. Thus, one

cannot support preemptive kernels by manually partition-

ing a grid into subgrids. Even if the approach works, it is

onerous to require a user to redesign and re-implement the

kernel to support fine grained preemption, which may not

be a user’s main concern.

To address the problem, PKM provides a new feature

called subBlockOffset. In the previous example, PKM com-

putes a list of subBlockOffsets (0, 256, 512, 768) and

passes it to the kernel when each grid is launched. In this

way, the kth subkernel (0 ≤ k ≤ 3 in this example) re-

ceives an offset of k × S where S is the subkernel size

(256 in the example). PKM then computes subBlockIdx

= blockIdx + subBlockOffset for the kernel and

use the computed subBlockIdx to perform the data as-

signment discussed before; that is, PKM replaces the pre-

vious assignment statement with char *block_data =

src[subBlockIdx * 1024]. To write a preemptive ker-

nel, a user only has to use the PreemptiveKernel construc-

tor provided by PKM. PKM automatically divides a grid

to subgrids, where the size of a subgrid (a subkernel) is

determined offline by profiling the subgrid size vs. over-

head relation as discussed before. In summary, to divide a

kernel to subkernels and invoke them without requiring a

user to manually partition a kernel, PKM implements ker-

nel preemption by launching subkernels and maintaining a

subBlockIdx which is used by the real-time tasks in-

stead of CUDA auto-variable blockIdx.

4 Performance Evaluation

In this section, we have implemented PKM and

RGEM [10]. We compare their performance to basic CUDA

that provides no preemption. Especially, we measure the re-

sponse time that is important for real-time computing. The

system used in the experiments has an NVIDIA GeForce

GTX 460 GPU, AMD Athlon II X4 630 CPU, 4GB RAM,

and 500GB hard disk running Linux 2.6.32.21 kernel.

For performance evaluation, we use two micro-

benchmarks: matrix multiplication and linear search, sim-

ilar to RGEM [10]. Matrix multiplication (MM) task rep-

resents a compute intensive task such as processing video

sensor data. Linear search (LS) task is more I/O intensive,

it scans its input data and produces a small list of matches.

It models filtering large sensor data to pick important ones.

While it is relatively easy to implement LS as a series of

independent small kernels, MM requires direct support for

preemptive kernels due to incremental nature of LS. In this

paper, we implement an instance of a periodic LS task as a

series of subkernels for PKM and RGEM. Specifically, each

LS subkernel uploads 1MB of data, processes the data, and

downloads the result. However, only PKM supports pre-

emptive subkernels for matrix multiplication. In our exper-

iments, PKM subgrid size for MM is 1024 blocks.



4.1 Priority Inversion vs. Response Time

In this experiment, we aim to measure the response time

of a high priority (HP) task when there is a competing task

with a low priority (LP). A HP task does 1024x1024 MM at

every 50ms. An LP task is either LS or MM. We measure

the response time of the HP task as the input data size of an

LP task increases. Each data point in Figure 4 is the average

response time of the HP task when the HP task is executed

every 50ms and a low priority LS or MM task is run peri-

odically for a specific size of the input data for 100s. The

input data sizes of the low priority LS task used for these

experiments are 512KB, 1MB, 2MB, ..., 512MB. The data

sizes of the low priority MM used for the experiments are

256x256, 512x512, 768x768, ..., 4096x4096. As we use

bigger data, we also increase the period of the low priority

LS task from 20ms to 500ms. When a low priority MM task

is used to generate competing workloads, we extend the pe-

riod from 20ms to 800ms to avoid overloading the GPU. By

doing these extensive experiments, we intend to observe the

impact of potential priority inversion on the performance of

the HP task. We have derived 90% confidence intervals;

however, we have omitted them since they are less than 1%.

In Figure 4(a), we show the response time of the high pri-

ority MM task when the competing workload is LS. When

the lower priority task is LS, the response time of the HP

task in both RGEM and PKM is nearly constant as shown

in Figure 4(a). The response time of the HP task is 6ms for

PKM and 14ms for RGEM. By supporting kernel preemp-

tion in addition to preempting data chunk copies, and over-

lapping execution of these, PKM achieves over 2x speedup

and up to an order of magnitude performance enhancement

for the high priority task compared to RGEM and CUDA,

respectively. When the input data of the low priority LS

task is only 512KB, CUDA supports the shortest response

among the tested approaches as shown in Figure 4(a), be-

cause it does not have any overhead for supporting preemp-

tive memory copies or kernel executions. However, the re-

sponse time of the HP task in CUDA increases rapidly as

the input size of the LS increase due the non-preemptive

nature and resulting priority inversion. PKM achieves sub-

stantial performance enhancement compared to CUDA and

RGEM, because it can preempt low priority kernel execu-

tions as well as memory transactions. Although RGEM can

preempt low priority data chunk copies, it cannot preempt a

low priority kernel. As a result, it shows better performance

than CUDA does, while providing worse performance than

PKM does.

In Figure 4(b), we show the response time of the high

priority MM task when the competing workload is another

MM task with lower priority. The average response time of

Task Type Period Data Size

τ0 MM 50ms 1024 x 1024

τ1 LS 100ms 32MB

τ2 MM 100ms 1024 x 1024

τ3 MM 600ms 2048 x 2048

τ4 LS 1200ms 96MB

Table 2. Experimental Settings

the HP task in PKM is stable around 6ms as shown in Fig-

ure 4(b). In RGEM, however, the response time increases

from approximately 6ms to 100ms, since it suffers from pri-

ority inversion. Its performance is degraded compared to

that in Figure 4(a), since the low priority MM task is a sin-

gle kernel. The basic CUDAwith no support for preemption

shows the largest response time increase, reaching approx-

imately 600ms. Hence, the response time of RGEM and

basic CUDA is up to roughly 16x and 100x higher than that

of PKM.

4.2 Preemptive vs. Non­Preemptive Kernels

In this experiment, we measure the performance of PKM

and RGEM for a set of periodic tasks τ0 − τ4 listed in de-

scending fixed priority order in Table 2. Tasks τ0, τ2, and

τ3 are single kernel MM applications that are preemptive

only under PKM, while τ1 and τ4 are LS applications. The

performance results are shown in Figure 5 and summarized

in Table 3. We show the average response time with 90%

confidence intervals and also report the longest observed re-

sponse time for each task. On average, PKM completes an

instance of the highest priority task τ0 in 17.75 ± 0.57ms.

The maximum observed response time of τ0 is bounded by

25ms in PKM in Table 3. For every task, PKM substan-

tially reduces the response time compared to RGEM, while

bounding the response time in a relatively more reliable

manner with considerably smaller fluctuations compared to

RGEM as shown in Figure 5. Since high priority tasks fin-

ish early in PKM, lower priority tasks experience less fre-

quent preemption during data copies and kernel executions.

As a result, the performance of lower priority tasks also en-

hance. Notably, in RGEM, the maximum response time of

τ0 is 90ms, which is longer than the period of τ0 (50ms). In

contrast, PKM does not show such an undesirable behavior

by supporting preemptive kernels unlike RGEM. Moreover,

all the task instances finish before the task periods. Overall,

PKM significantly decreases the response time and its varia-

tions by supporting preemptive kernels and memory copies,

while multiplexing memory copies and kernel executions of

different tasks.
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Figure 5. Preemptive vs. Non­Preemptive Kernels: Response time of PKM and RGEM

4.3 Response Times under No Priority Inversion

Finally, we compare the performance of PKM and

RGEM in terms of memory management. For this pur-

pose, we generate three tasks τ0, τ1, and τ2 listed in de-

scending priority order. A periodic instance of task τ0 pro-

cesses a 1024 x 1024 matrix multiplication, while tasks τ1

and τ2 are linear search tasks periodically processing 64MB

and 128MB data, respectively. They are assigned 50ms,

100ms, and 100ms periods. Since the periods are harmonic,

they are released at every 100ms at which the jobs are exe-

cuted in priority order. Thus, priority inversion due to non-

preemptive kernels is eliminated. By doing this, we aim to

favor RGEM and evaluate the efficiency of PKM’s memory

copy mechanism and overlapped processing of memory and

kernel operations.

Figure 6 shows the performance results. Given the har-

monic tasks, the response time of each task in PKM and

RGEM is nearly constant. Thus, the confidence intervals

are almost zero in this set of experiments. The response

time of the highest priority task τ0 is 6ms and 14ms in

PKM and RGEM, respectively. Also, the response times

of τ1 and τ2 in PKM is considerably shorter than that in

RGEM as shown in Figure 6. Since a kernel does not block

for memory transactions of the other tasks and vice versa,

PKM shows considerable enhancement in terms of the re-

sponse time compared to RGEM.



Task PKM AVG RGEM AVG PKM Max RGEM Max

τ0 17.75±0.57ms 28.52±3.73ms 25ms 90ms

τ1 27.36±0.11ms 60.79±6.41ms 29ms 149ms

τ2 39.75±0.59ms 103.96±8.01ms 47ms 194ms

τ3 235.54±1.92ms 388.00±0.00ms 248ms 388ms

τ4 248.03±0.02ms 576.00±0.00ms 249ms 576ms

Table 3. Preemptive vs. Non­Preemptive Kernels: Maximum and average response time with 90%

confidence intervals
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Figure 6. Response time of PKM and RGEM with no priority inversion

5 Related Work

GPUs are employed to support high performance for

various applications including scientific applications [7, 3],

cryptography [22], intrusion detection [19], bioinfomatics

[13], databases [2], and storage systems [1]. However, the

detailed architectures of GPUs are not fully known to the

public. As a result, scheduling and resource management

for real-time support is challenging [10, 11, 5, 6, 16].

TimeGraph [11] is a GPU command scheduler at the de-

vice driver level. It supports prioritization and isolation for

real-time applications. TimeGraph is executed to schedule

every GPU command. RGEM [10] is subject to less over-

head, since it is run only when data are copied and kernels

are launched. PKM is also executed for data copies and

kernel launches. PKM provides enhanced real-time sup-

port by supporting preemptive kernel executions in addition

to preemptive memory copies. Moreover, PKM overlaps

the processing of memory copies and kernels using CUDA

streams. It provides these features in the user space lever-

aging basic CUDA capabilities without requiring any addi-

tional support from the underlying device drivers or operat-

ing system.

Research efforts have been made to integrate GPUs as

part of real-time multiprocessor systems [5, 6]. One of their

approaches, called Shared Resource Model, considers GPU

executions as critical sections. Another model, called Con-

tainer Method, provides less pessimistic analysis for real-

time scheduling. A brief analysis of the response time

bound in RGEM is given in [10]. Also, quality adaptive

anytime algorithms are developed to produce lower qual-

ity results early, if necessary, to support the timeliness of

real-time queries when the GPU is overloaded [14]. Our

contribution is providing more efficient methods to support

preemptive GPU computing, which can be used as a vehicle

to improve the responsiveness and schedulability of real-

time GPU tasks. Therefore, our work is complementary to

these approaches. For example, the response time bound

analysis in [10] can be extended to compute the bound for

PKM by considering the impact of preemptive kernels. Our

approach could also be integrated with an adaptive scheme,

such as [14], to gracefully adapt the quality of service under

overload. A thorough investigation of these research issues

is reserved for future work.

PTask [21] is a novel approach designed to support GPU

resource management via a data flow model in the oper-

ating system. GViM [8] is a GPU-accelerated virtual ma-

chine (VM) manager that provides GPU resource manage-

ment through CUDA APIs. It enables VMs to time-share a

GPU. Pegasus [9] also provides novel approaches to sharing



a GPU to increase the utilization. Ravi et al. [20] improves

GPU-accelerated VM technology by supporting inter-VM

concurrent kernel executions. However, research on global

CPU-GPU scheduling for sharing a GPU as a coproces-

sor to increase the performance of multi-processor systems

mainly focuses on fairness rather than prioritization [6, 21].

6 Conclusion and Future Work

In this paper, we present a new approach to supporting

fully preemptive execution of soft real-time tasks in GPG-

PUs via preemptive kernel execution and data copies be-

tween the host and device. Moreover, our approach simul-

taneously runs a computational job and memory transaction

to reduce the delay. For performance evaluation, we have

designed and implemented a prototype system for preemp-

tive data copies and job executions in a GPGPU. The ex-

perimental results show that our approach can bound the re-

sponse times in a reliable manner, while achieving an up to

two orders of magnitude shorter response time. In terms of

both the average and maximum observed response time, our

approach consistently outperformed the tested baselines. In

the future, we will further improve PKM, while investigat-

ing other research issues such as QoS adaptation of real-

time tasks in GPUs and admission control.
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