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ABSTRACT

Distributed real-time embedded (DRE) systems are key com-
ponents of critical infrastructure including surveillance, tar-
get tracking, electric grid management, traffic control, avion-
ics, and communications systems. They require (1) the coor-
dinated management of multiple resources, such as the CPU,
network, and disk, (2) end-to-end (E2E) real-time guaran-
tees across the use of multiple resources, and (3) feedback
control across multiple resources. None of these properties
is supported as a first-class feature within the state-of-the-
art real-time operating systems, but are left out as an in-
convenient detail to be managed by DRE application pro-
grammers. In this paper, we shed light on this fundamental
problem and make the case for greater research into the de-
velopment of theory and a runtime systems for coordinated
allocation and scheduling of multiple resources in real-time
operating systems. We also present the outlines of our pro-
posed solution approach, called the Multiple Resource Al-
location and Scheduling (MURALS) framework, that aims
to bridge this gap between the need for E2E timing require-
ments and the techniques to coordinate the use of multiple
resources.

1. INTRODUCTION

Distributed real-time embedded (DRE) systems are key
components of critical infrastructure including surveillance,
target tracking, electric grid management, traffic control and
safety, process control, robotics, avionics, communication
systems, and even real-time networked games. DRE systems
in these applications are required to use multiple heteroge-
neous resources, such the CPU, network bandwidth, main
memory, and secondary storage, The heterogeneity of re-
sources and their interactions calls for coordinated manage-
ment across these resources to meet end-to-end (E2E) dead-
lines. While real-time scheduling for a single resource in iso-
lation has been studied extensively, relatively little work has
been done for integrated allocation and scheduling of multi-
ple heterogeneous resources to meet E2E timing constraints.
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Absence of coordination across multiple resources can lead
to failure in meeting E2E timing guarantees in critical DRE
systems.

An example DRE application is a surveillance network [37,
49], which consists of a group of cameras (and other sensors)
connected over an area of interest. Each camera periodically
captures a video frame, which is compressed by an embedded
processor and transmitted over a wired or wireless LAN to a
command and control (C2) center. A C2 server receives com-
pressed video frames from multiple cameras across the LAN
and executes several concurrent activities, such as to moni-
tor the battlefield or traffic status. The server decompresses
the video frames, displays the video on monitors, processes
each frame for surveillance purposes, triggers alarms for se-
curity or safety reasons if necessary, and logs the data to
a storage device. In this example, an E2E real-time task
is associated with an E2E deadline to support the required
application QoS. It also consists of multiple distributed sub-
tasks using different system resources. A subtask depends
upon the successful and timely completion of the previous
subtask(s) in the sequence, forming precedence constraints.
To summarize, the following characteristics of DRE appli-
cations emerge: (1) Multiple heterogeneous resources are
used; (2) The resource usages within an application are or-
dered forming a precedence graph; and (3) Execution of a
repetitive sequence of correlated subtasks is bounded by an
E2E deadline. Our focus is on the applications with the
above characteristics.

In this paper, we make the case for greater research into
the development of theory and runtime systems for coordi-
nated allocation and scheduling of multiple resources. We
discuss four key open research problems and possible solu-
tion strategies.

(1) Deadline Partitioning Techniques: Given a DRE
task that requires the use of multiple resources to meet its
E2E deadline, one needs a deadline partitioning algorithm
during admission control and resource allocation that ap-
portions the the E2E delay budget among the subtasks of
the DRE task. Careful deadline partitioning is important
because it determines the load on each individual resource.
In particular, tighter delay budget at a resource can lead to
higher resource load, resulting in fewer admissible E2E DRE
tasks in future. We investigate algorithms to efficiently par-
tition E2E deadlines among multiple underlying resources.
The goal is to increase the success ratio, i.e., the fraction
of submitted DRE tasks that are admitted and completed
within their E2E deadlines. The key idea is to reduce the
extent of load imbalance among different resources during



deadline assignment to prevent formation of resource bot-
tlenecks. Although deadline assignments in multiprocessor
systems have previously been studied [51], most existing re-
search considers only a single isolated resource.

(2) Coordinated Runtime Scheduling of Multiple
Resources: While an effective deadline partitioning algo-
rithm is necessary to assign a delay budget to each subtask
of an E2E task, it is not sufficient by itself to guarantee
that the E2E deadline will be met. During task execution,
one needs explicit coordination across runtime schedulers of
different resources to ensure that each subtask is scheduled
to complete before its assigned sub-deadline. This is not
the case in traditional RTOSs where scheduling decisions at
one resource are made oblivious of the scheduling decisions
at other resources. It thus becomes the DRE application
writer’s responsibility to manage any cross resource timing
dependencies among subtasks. We illustrate this problem
and suggest possible approaches to address such scheduling
dependencies at runtime.

(3) Statistical Performance Guarantees: Reserving
resources for worst-case load requirements may lead to re-
source under-utilization in the common case of low offered
load. Additionally, a number of DRE applications, such as
visual tracking and traffic monitoring, can adapt to a small
probability of violations in their E2E guarantees. In this
light, the multiple resource allocation techniques could po-
tentially exploit the statistical multiplexing nature of the
resource usage among concurrent DRE tasks to improve the
system’s overall resource utilization efficiency. Thus one
needs statistical multi-resource allocation algorithms, such
as online measurement-based techniques, that can exploit
the statistical multiplexing nature of the resource usage and
distinct tolerance levels to QoS violations, to reduce overall
resource requirements of DRE applications. We investigate
the role of resource allocation algorithms that exploit statis-
tical multiplexing effects across multiple resources not just
along the traditional ‘bandwidth’ dimension, but also along
an orthogonal ‘delay’ dimension. We outline algorithms that
can support tasks with distinct probabilistic delay guaran-
tees, i.e., if certain tasks can tolerate more delay violations,
they can reserve less resources than the other tasks tolerat-
ing fewer violations.

(4) Feedback Control Across Multiple Resources.
Workloads may dynamically vary in DRE applications. For
example, the image processing frequency and compression
ratio may change depending on the presence or absence of
objects indicating security breaches or traffic jams. Further,
resource could be overbooked due to statistical multiplex-
ing. As a result, E2E deadlines can be missed. Thus one
requires control theoretic techniques to support E2E tim-
ing guarantees across multiple resources in unpredictable
environments. In general, statistical approaches can provide
high-level resource usage monitoring and QoS management,
while control theoretic approaches can support fine-grained
QoS management to ensure that, for example, no more than
1% of E2E deadlines are missed in average, no more than
1.5% of deadlines are missed even when the system is in
a transient state, and a transient miss ratio overshoot, if
any, decays within the specified settling time. Statistical
and control theoretic approaches for QoS management have
been studied separately; however, interactions between them
have rarely been investigated [66]. We outline possible ap-
proaches for applying a combination of statistical and con-
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Figure 1: A task precedence graph for video surveil-
lance with an E2E deadline.

trol theoretic techniques in multiple resource environments.

We also present the outlines of our proposed solution ap-
proach, called the Multiple Resource Allocation and Schedul-
ing (MURALS) framework and describe the ongoing devel-
opment a proof-of-concept MURALS testbed on top of an
commodity RTOS. The testbed includes not only kernel-
level coordinated resource allocation mechanisms but also
declarative APIs for E2E QoS specification. The APT allows
DRE application programmers to specify E2E tasks, their
deadlines, periods, and precedence constraints across mul-
tiple resources. This information is utilized by kernel-level
measurement-based QoS mapping scheme to automatically
derive the low-level resource requirements from high-level
performance requirements. Despite its importance, very lit-
tle prior work has been conducted to provide declarative
APIs and kernel support for deadline partitioning, coordi-
nated scheduling, statistical guarantees, and feedback con-
trol. The goal of this paper is to make a case for greater
research into this increasingly important subject.

2. DEADLINE PARTITIONING

A typical DRE task executes a set of subtasks related to
each other via precedence constraints. For instance, Figure 1
shows the precedence graph of a video surveillance task exe-
cuting four subtasks every period. Subtask 1 corresponds to
the periodic compression and transmission of a video frame
from a remote camera to a C2 server. At the C2 server,
subtask 2 decompresses and processes the frame for target
tracking, subtask 3 triggers alarms if necessary, and subtask
4 logs the results to a storage device in real-time. In this
example, subtasks 3 and 4 can proceed concurrently once
subtask 2 completes.

A precedence graph only describes the partial ordering
but not the timing relationships among subtasks. For in-
stance, the surveillance application may need to perform
the E2E processing of each video frame within 100ms. This
application-level performance requirement imposes a timing
constraint for the E2E task and its subtasks in the prece-
dence graph. Guaranteeing application-level QoS requires
more than just local real-time scheduling for each individ-
ual resource, because it can only guarantee the subtask level
QoS. For the DRE task shown in Figure 1, subtask 1 must
be completed early enough to leave time for subtasks 2, 3,
and 4 to complete before the E2E deadline.

A key problem illustrated in this example is how to par-
tition the E2F task deadline to meet the timing and prece-
dence constraints, while improving the overall efficiency of
resource utilization and E2E success ratio. This requires
specific algorithms that assign intermediate sub-deadlines
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Figure 2: Flows admitted vs. E2E delay bound
over Sprint IP Backbone. Hops=6. Flow data
rate=100kbps. Link speeds:45—200Mbps.

for each subtask, while accounting for current and future
load at each resource. Assigning a sub-deadline to a sub-
task also entails a specification of the load on the subtask’s
corresponding resource; in general, a tighter sub-deadline
implies a higher resource load. Therefore, partitioning the
delay budget, i.e., the E2E deadline, opens up an opportu-
nity for load balancing across multiple resources resulting
in efficient resource utilization. Rate-based schedulers, such
as Virtual Clock [65] or WFQ [43], permit explicit map-
ping between latency bound requirements and bandwidth
reservations [64]. Thus, the queuing delay experienced by a
subtask at any resource scheduler is inversely proportional
to the bandwidth reserved on its behalf. If a subtask needs
a smaller delay budget, the corresponding resource reserva-
tion has to be larger, which imposes a heavier load on the
resource. It is possible that some resources in the system
may be more heavily loaded than others. Thus, one could
partition the E2E deadline in such a manner that the more
loaded resources are assigned a larger proportion of the E2E
delay budget. This ensures that critical resources do not
deplete long before less critical resources, thus preventing
system-wide bottlenecks.

In the previous surveillance example, suppose the E2E
deadline is 120ms. Consider that a UAV (Unmanned Aerial
Vehicle) or traffic sensing node can capture and compress a
fixed size video frame in 20ms using the dedicated embedded
processor, whereas the network transmission delay and pro-
cessing delay at the C2 server are variable as these resources
are shared with other surveillance nodes. Thus, the remain-
ing delay budget of 100ms needs to be partitioned among
the network link and the C2 server’s CPU. Assume that the
C2 server’s CPU is already 20% utilized and network link is
80% utilized. Instead of equally partitioning the delay bud-
get between the network link and the CPU, a more sensible
partition can be to assign 20ms to the CPU and 80ms to
the network in proportion to their respective loads, and still
meet the E2E deadlines.

This approach has shown promising initial results [17, 18]
in which our delay partitioning techniques significantly re-
duce the load imbalance across multiple resources. In [17],
we proposed a load-aware delay partitioning approach for
sequential precedence graphs. We showed that one can in-
crease the number of tasks admitted into the system by as-
signing delay budget D; to each subtask ¢ as per Equation 1

below, such that the E2E delay bound D > ZZ D;.
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Here M; is the minimum delay budget required to complete
the subtask i, W; is the amount of work such as the number
of CPU cycles or bytes read/written, S is the slack in delay
budget given by S = D — ZZ M;, and Wayg, is the aver-
age amount of work requested by a DRE task at resource .
In [18], we proposed an iterative algorithm for delay parti-
tioning along multi-hop network paths where each network
link corresponds to one resource. Figure 2 shows that our
load-aware delay partitioning algorithm admits up to 39%
more network flows compared to equal partitioning, under
the same network setup and input workload.

There are several open research challenges in the deadline
partitioning problem.

Resource Specific Overheads: In practice, an exact
algorithm for deadline partitioning across different resources
needs to consider hard-to-characterize overheads such as con-
text switching, network transmission overheads, and disk
seek /rotational latency. Unfortunately, a large body of real-
time scheduling theory ignores these overheads. Thus, a set
of tasks may not be perfectly schedulable across multiple
resources even if the available capacity is theoretically suf-
ficient. Thus there is a need for a global admission control
mechanism, which first consults each local resource sched-
uler to determine the minimum delay it can support using
its current residual capacity. The delay partitioning algo-
rithm could then apportion any remaining slack in E2E de-
lay budget in a stepwise manner to decrease the demand
on each resource. In each incremental step, the algorithm
again needs to consult the local resource schedulers to deter-
mine how much the local delay will be increased due to the
increase in resource demand and whether the tasks would
still be schedulable. Such resource-aware algorithms for ap-
portioning slack depend upon accurate mapping functions
between the required delay bound and resource reservation
for multiple resources, possibly distributed across a LAN.

Revising Earlier Allocations: There also exists a scope
for algorithms that can make better deadline partitioning de-
cisions, given additional knowledge of workloads. To leave
as much resources unreserved as possible for the future use,
our previous online admission control policy only considers
a single DRE task for admission upon its arrival without
changing the current reservations. The virtue of this ap-
proach is its simplicity and low overhead. However, if the
delay partitioning algorithm has the flexibility of revising
the previously assigned delay budgets of all the DRE tasks
admitted earlier, then it can allocate all system resources to
the current set of DRE tasks without leaving any unreserved
resources. Thus one can design better resource allocation al-
gorithms that can revise earlier allocation decisions, if neces-
sary, to improve the efficiency of multi-resource utilization.

Optimizing for Power Efficiency: Another interest-
ing open research problem is to exploit E2E delay parti-
tioning to improve the power usage efficiency, instead of
load balancing. Note that a shorter delay budget can trans-
late to higher load and hence greater power dissipation at
each resource. However, the mapping from delay budget
to energy consumed for any given resource is likely to be
a piecewise step rather than a continuous function. There
is an opportunity to investigate different forms of such re-
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Figure 3: The inter-scheduler coordination problem
at runtime for an E2E task with two subtasks, F;
and E>. The disk subtask F> misses the E2E dead-
line D after waiting for another non-preemptible I/O
request Us.

source mapping functions and their impact on delay parti-
tioning strategies that optimize the energy consumption at
low-power resources. A useful metric to gauge both timeli-
ness and power usage efficiency is the effective power con-
sumption = total_power_consumption/success_ratio, lower
value indicating greater effectiveness of delay partitioning
algorithm. Existing work on Dynamic Slack Reclamation
[34, 24] could be a starting point in this direction.

3. COORDINATED SCHEDULING

In the previous section, we discussed how effective parti-
tioning of E2E delay budget among subtasks across multiple
resources is essential to meet deadlines as well as to main-
tain high resource usage efficiency. However deadline par-
titioning constitutes only one component of the complete
multi-resource allocation and scheduling framework. The
other essential component is coordinated runtime schedul-
ing of subtasks of an E2E task across multiple resources,
in the absence of which even most judiciously partitioned
deadlines might be missed.

To illustrate the problem, consider a simple example of an
E2E real-time task E in Figure 3 that requires two resources
— CPU and disk — to meet its E2E deadline of D. (We use
disk I/O for illustration, though this example can easily be
generalized for another I/O resource, such as network, or
even for multiple I/O resources.) Assume that E2E delay
budget D is partitioned as d1 and d2 across its CPU and
disk subtasks, F1 and Es respectively, where d1 + d2 = D.
Both CPU and disk have their own independent real-time
schedulers that, in the absence of any runtime coordination,
maintain their own independent backlog queues of computa-
tion and 1/0 requests respectively. Assume that the subtask
Eh begins execution at CPU resource at time ¢ = 0. In the
meantime, the disk scheduler continues servicing other I/O
requests U; and Uz that are unrelated to the E2E real-time
task E. At time t1 < d1, I/O request U1 completes and Us
is scheduled by the disk scheduler. At time d1, CPU sub-

task E1 completes and submits the real-time I/ O task FE->
to the disk scheduler’s runtime queue. However, even if Fs
is the most urgent I/O task at time d1, the disk scheduler
needs to wait till time ¢2, when Uz will complete service, be-
fore E5 can be dispatched to the disk. This additional wait
time could potentially cause F2 to miss its I/O deadline,
and consequently the E2E deadline, D.

Although the example above makes several simplifying as-
sumptions about operating system behaviour, it serves to
illustrate several fundamental problems when servicing a se-
quence of inter-dependent real-time subtasks across multiple
resource schedulers.

Inter-Scheduler Coordination: Meeting the E2E dead-
line D depends upon the timely execution of component sub-
tasks at multiple resource schedulers — here CPU and disk.
In the absence of runtime coordination, each resource sched-
uler makes its own independent and locally optimal schedul-
ing decisions because it is unaware of precedence constraints
that control the release times of different real-time subtasks.
For example, before time d1 in Figure 3, the disk scheduler
was independently scheduling tasks U; and Usz, unaware of
the fact that a real-time task F> was about to arrive with a
tight deadline.

I/O0 Request Non-preemptibility: In general, I/O
requests tend to be non-preemptible, once issued. Con-
sequently, when dealing with multi-resource E2E tasks, a
higher priority (static or dynamic) real-time I/O subtask
may arrive at the I/O scheduling queue only to wait for the
completion of a non-preemptible lower priority 1/O request
that’s already in progress. Loosely speaking, this results in a
short-term “priority inversion” that can potentially cause the
higher priority real-time subtask to miss its E2E deadline.

Execution Time Prediction: While execution time of
CPU subtasks can be predicted with reasonable accuracy,
either through static code analysis or runtime profiling, the
execution times for I/O subtasks are not as predictable. For
example, disk response depends highly upon the seek and ro-
tational latency whereas network response may depend upon
switch congestion or channel access contention in broadcast
media. In a multi-resource context, unpredictability in ex-
ecution time might not only affect the timeliness the single
I/O subtask in question, but also the timeliness of other
dependent subtasks in the sequence of an E2E DRE task.

Advance Notification of Subtasks: None of the ex-
isting real-time operating systems address the above issues
within a framework of coordinated multi-resource runtime
scheduling, and it is undoubtedly a challenging research
problem. To start making the problem manageable, our
MURALS system incorporates an inter-scheduler coordina-
tion mechanism for multi-resource E2E real-time tasks that
works as follows. Whenever a real-time E2E task begins ex-
ecution, information about expected future arrival time and
deadline of each of its subtasks are sent to the correspond-
ing local resource schedulers. In the earlier example, at the
start time 0, not only does the subtask E; begin execution
at the CPU, but the disk scheduler is also given the informa-
tion that subtask F2, with delay budget of d2, will be ready
at time d1. This enables the disk scheduler to insert an
empty placeholder I/O request for task E> in its scheduling
queue. At the scheduling time instant ¢1, the disk scheduler
now has additional information to decide whether request Us
can start and finish service early enough that the future real-
time request Fo can meet still its deadline. Admittedly, the
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Figure 4: The CDF of the ratio of the actual de-
lay experienced to the worst case delay expected by
VoIP packets sharing a 10Mbps link.

advance notification to the disk scheduler may not provide a
foolproof guarantee that E2 will always meet its deadline (for
instance a long non-preemptible I/O task that began before
time instant 0 might yet delay E2). Nor does advance no-
tification address the inherent unpredictability of I/O com-
pletion times. However this additional inter-scheduler coor-
dination does help the local resource schedulers make better
informed scheduling decisions from timeliness standpoint at
a larger number of scheduling instances than without the co-
ordination. For example, one option that the disk scheduler
can exercise at time t1 is to follow a non-work-conserving
policy by not scheduling any request between t1 and d1,
thus keeping the disk idle until the subtask Fo becomes eli-
gible for service. This enables the disk scheduler to sacrifice
throughput for the sake of timeliness when necessary — an
option it cannot exercise without the advance information
about Es.

4. STATISTICAL DELAY GUARANTEES

Another challenge faced in DRE systems using multiple
resources is that of resource under-utilization. While reserv-
ing resources for the peak load ensures that individual DRE
tasks always meet their performance targets under all condi-
tions, it ignores the reality that individual resources do not
encounter peak load situations in the common case. Addi-
tionally, a number of DRE applications, e.g., visual track-
ing and traffic monitoring, can adapt to a small probability
of violations in their QoS guarantees. Thus, the multiple
resource allocation techniques could exploit the statistical
multiplexing nature of the resource usage among DRE tasks
to improve the system’s resource utilization efficiency.

Traditional approaches tend to exploit statistical multi-
plexing along the bandwidth dimension, where the offered
load per resource is lower than the reserved bandwidth share,
due to which one can oversubscribe the underlying resource.
Additionally, one can also leverage statistical multiplexing
along the delay dimension. The latter effect arises from
the fact that not all real-time applications will generate their
peak request bursts at the same time. For instance, among
a set of ON-OFF Voice over IP (VoIP) flows traversing a
shared network link, it is unlikely that all VoIP flows will be
in their ON state simultaneously. The consequence of this
multiplexing is that actual delays rarely approach worst-case
delay bounds that are based on all real-time applications
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Figure 5: Effectiveness of DDM in differentiating
between network flows with different tolerance to
delay violations. Flows that have lower tolerance to
violations experience fewer deadline misses. Each
data point corresponds to one network flow. Delay
bound=20ms. Link capacity = 10Mbps.

generating their peak burst simultaneously. Note that sta-
tistical multiplexing in the delay dimension is orthogonal to
that along the bandwidth dimension.

Consider Figure 4 showing the cumulative distribution
function (CDF) Prob(r) of the ratio of the actual to worst
case delay experienced by various network packets (sub-
tasks) at a network access link (resource). The distribu-
tion Prob(r) gives the probability P that the actual de-
lay D encountered by a request is smaller than r times its
worst-case delay D“¢ where 0 < r < 1. Figure 4 shows
that most requests experience less than 1/4th of their worst-
case delays. In general, given a subtask that requires a la-
tency bound of D with a violation probability bound of P,
the following relationship holds from the definition of CDF:
D = D¢ x Prob~'(1— P). The nature of the worst-case de-
lay term D¢ depends upon the nature of the specific local
resource scheduler and the amount of resource bandwidth
p reserved by the subtask. For instance, if the resource is
scheduled using the Weighted Fair Queuing scheduler [43]
then D¢ = tLlmaes 4 %%7 where ¢ is the maximum re-
quest burst size, Lz 18 the maximum request size and C' is
the total resource capacity. Hence, given the measured CDF
Prob(r), we can derive the required resource reservation p
that satisfies the application latency requirements (D, P).

Our earlier work [19, 20] has successfully demonstrated
techniques to exploit statistical multiplexing in the context
of individual network and storage resource allocations. Fig-
ure 5 shows one example of the effectiveness of our approach
using delay distribution measurements (DDM) in differen-
tiating between the QoS requirements of multiple network
flows that share a link and have different tolerance levels
to delay bound violations. DDM has been shown to im-
prove the resource usage efficiency of network and storage
resources by up to a factor of 3 in the presence of statistical
QoS constraints.

While statistical multiplexing in the context of single re-
source in isolation has been studied extensively [28, 29, 47,
7, 27, 6, 26, 45, 8, 56, 59], there has been little work in
the direction of exploiting statistical multiplexing across



multiple heterogeneous resources. Consider a multi-
resource DRE task, as in Figure 1, which requires an E2E
delay bound of D with a violation probability bound of P.
How does one partition the E2E statistical QoS requirement
(D,P) into individual subtasks requirements (D;, P;) such
that resource loads can be balanced and the number of ad-
mitted DRE tasks can be increased as much as possible? We
outline a few possible solutions below.

Simple Partitioning Problem: A straightforward ap-
proach is to find a partition such that >7 D; < D and
[17(1 = P) > (1 — P) for a set of subtasks consisting an
E2E DRE task. We are currently investigating an iterative
algorithm for this version of the partitioning problem, which
is similar in structure to the basic delay partitioning algo-
rithms discussed in Section 2. In every iteration, we can
first estimate a delay partition assuming a fixed probability
partition and then find a new probability partition using the
fixed delay partition calculated in the previous step. This
process continues till the delay and probability partitions
obtained from two consecutive iterations are within a pre-
defined threshold of each other.

General Partitioning Problem: Note that, in the above
version of the partitioning problem, the condition on parti-
tioning E2E violation probability is more conservative than
necessary. In particular, it assumes that the entire DRE
task can satisfy its E2E violation probability bound only if
each subtask satisfies its local violation probability bounds.
In contrast, while a subtask ¢ could violate its local sub-
deadline at one resource, its next subtask ¢ + 1 in sequence
could complete well ahead of its sub-deadline, thus making
up for the lost time, and still meet the E2E deadline. Thus
an open research problem is to model this general partition-
ing problem taking into account inter-dependencies among
the current service loads at each resource, potentially yield-
ing significant gains.

5. FEEDBACK CONTROL

Resource requirements of E2E tasks may dynamically vary
in DRE applications, for example, due to varying image pro-
cessing time or propagation delay. The relative importance
of incoming data flows may change in time. For instance,
certain data flows may actually capture enemy aircraft or
traffic accidents, while the others do not deliver important
data. In this case, the DRE application can increase the
frequency of more important E2E tasks. Also, possible over-
booking due to statistical multiplexing can overload the sys-
tem. Given dynamic workloads, it is necessary to design
control theoretic techniques to manage the miss ratio of E2E
deadlines.

Figure 6 illustrates a possible architecture for feedback
control at a C2 system. First, incoming packets are classi-
fied. Packet processing is scheduled at local resource sched-
ulers via deadline partitioning and statistical multiplexing
algorithms. Note that these algorithms may not be pre-
cise as workloads can vary dynamically, causing deadline
misses under overload. The performance monitor measures
the E2E miss ratio at every sampling instant, e.g., 1s, and
informs the feedback controller of the current miss ratio me.
At the k*" sampling period, the controller computes the er-
ror e(k) = ms — mc(k) where ms is the miss ratio set-point,
e.g., 1%. Based on e(k), it computes the control signal ér (k).
When 6r(k) < 0, remote sensing nodes, e.g., UAVs or traf-
fic monitoring nodes, are required to reduce the aggregate
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Figure 6: E2E Deadline Control Architecture

sensing and transmission rate by |6r(k)|. The QoS manager
aware of application semantics or the instrumented DRE
application itself divides dr(k) among the incoming traffic
flows to ensure that the most important flow, e.g., the flow
tracking the largest number of targets, receives the highest
rate. The resulting rates dr1, o7z, ..., 07y for n incoming sen-
sor data flows are forwarded to a resource allocator, which
accordingly reallocates resources between the n flows and
sends the new required sensing rates to the remote sensor
nodes, if necessary, to meet the QoS requirements. Below
we describe some open research problems in developing an
E2E timing control architecture.

Handling Input Queue Backlogs: A possible backlog
in the incoming packet queues shown in Figure 6 can ad-
versely affect the overall control performance. The system
performance may not change immediately for a new con-
trol signal when there is a backlog to which the previous
delay budget is already distributed [66]. Thus, there could
be dead-time in control, which can result in a nonlinear sys-
tem behavior [44]. One possible approach is redistributing
the delay budget of the jobs already in the queues for the
cost of performing resource re-allocation. In such situations,
the resource allocation algorithms need to be lightweight so
that one can sporadically re-allocate resources to improve
real-time performance without affecting E2E tasks. We en-
vision linearly approximating the system model via the rela-
tion between the aggregate packet arrival rate and E2E miss
ratio. The miss ratio m(k) at the k'™ sampling period can
be modeled by an n*”* (n > 1) order difference equation with
unknown coefficients {a;, b;|1 <14 < n} initialized to zero:

m(k) = Z aim(k — i) + Z bir(k — i) (2)

where r(k — i) and m(k —¢) are the aggregate packet arrival
rate and E2E deadline miss ratio at the (k — )" sampling
instant, respectively. Eq 2 denotes that the current miss ra-
tio is dependent on the packet arrival rates and miss ratios
measured at the previous sampling periods. System identifi-
cation (SYSID) techniques [44, 42] can be applied to identify
the model parameters in Eq 2. At the same time, there is a
need to experimentally determine the specific order of Eq 2
producing high-accuracy SYSID results verified by standard
techniques such as root mean square errors [44].
Self-Tuning Based Techniques: If the linear time in-
variant (LTI) control based on the system model and SYSID
above is not applicable, e.g., due to a large backlog or wire-
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Figure 7: The architecture of the MURALS frame-
work.

less communication jitters in a noisy environment, it is also
feasible to consider either a self-tuning regulator (STR) [53]
or self-tuning fuzzy controller (STFC) [10]. A STR performs
online SYSID to find the model coefficients in Eq 2 and tune
the controller parameters online. In this way, the controller
can tune itself if the system dynamics change in time. Fuzzy
control is useful when the underlying system is hard to model
mathematically. A linguistic rulebase instead of a mathe-
matical system model can be designed for feedback control.
For example, if the current overshoot is high and it is diverg-
ing from the set-point, the rulebase can generate a negative
large control signal. On the other hand, if an overshoot
shows a self-decaying pattern compared to the previous one,
the rulebase generates a negative small signal for control
stability. Especially, a STFC can tune itself, via a separate
rulebase for self-tuning, to improve the performance consid-
ering the current system behavior. In real-time systems, the
performance of several LTI models are compared [3], but
other models are not compared extensively. Thus there is a
need to undertake in-depth comparisons of the performance
and complexity of the different control models, i.e., LTT and
more advanced models, in the context of multi-resource DRE
systems. As a result, control models achieving good perfor-
mance with low complexity can be developed. Other key is-
sues to be investigated along with control modeling include
sampling period selection and stability analysis.

6. MURALSTESTBED

We are developing a prototype MURALS testbed on top of
the TimeSys Linux [54] real-time operating system. The goal
of MURALS is not to develop another comprehensive RTOS,
but to demonstrate the effectiveness of core algorithms and
techniques required for coordinated multiple resource allo-
cation, with substantial rethinking of fundamental APIs and
system architecture.

Figure 7 shows the architecture of the MURALS frame-
work. Real-time applications access the MURALS API that
interacts with the kernel subsystem using a set of MURALS-
specific system calls. An admission controller makes admis-
sion decisions and performs deadline partitioning at the time
anew DRE task registers itself. A performance monitor con-
stantly tracks the timing behavior of E2E tasks to inform the
feedback controller of the E2E miss ratio at every sampling

instant.

The core of the MURALS kernel is organized around a
two-level scheduling architecture. It consists of a global
scheduler, which is aware of each application’s task graph
and estimated resource requirements, and a set of local sched-
ulers, each of which correspond to a particular resource. The
global scheduler ensures that a subtask’s dependencies are
all satisfied before it is executed by the the corresponding
local resource scheduler. Local real-time schedulers manage
individual resources and make scheduling decisions based
on both the subtask deadlines and resource utilization effi-
ciency. In this way, the global scheduler acts as a glue be-
tween local resource schedulers using its global knowledge of
E2E deadlines and estimated resource requirements of each
E2E task. Individual system resources employ rate-based
real-time scheduling algorithms. CPU scheduler is a variant
of Virtual Clock [65]. Disk scheduler is a rate-based variant
of the our work-conserving DSSCAN algorithm [16]. Real-
time network access is guaranteed by the wired and wireless
variants of our Real-Time Ethernet (RETHER) protocol [50,
57]. These algorithms are modular and replaceable by any
other rate-based schedulers.

The MURALS API library allows DRE application pro-
grammers to declaratively specify individual resource re-
quirements and E2E timing constraints. The API facilitates
creation and execution of a precedence graph, its component
subtasks, and their dependencies. The library in turn in-
forms the MURALS module in the kernel of the application
requirements. A DRE application creates an initially empty
precedence graph by first invoking the Create_graph func-
tion as Graph_id = Create_graph(Deadline,Tolerance) to
specify that the precedence graph for an E2E task needs to
be executed within the specified deadline and tolerance to
delay violations. The application can possibly spawn many
such precedence graphs that execute concurrently. The prece-
dence graph can be populated by application programmers
with individual subtasks such as read, write, or computa-
tion. For example, a write subtask can be added to the graph
via Register_write call as Subtaskl = Register_write(
Graph_id, File_descriptor, Buffer, Size) where the file
descriptor can represent either regular files or network sock-
ets. Thus, the subtask can transmit data across the network
or write data to the corresponding file. A read subtask can
be registered in a similar fashion. Also, a computation sub-
task can be registered as Subtask2 = Register_compute(
Graph_id, Compute_func). Dependencies among subtasks
can be specified in a pairwise manner. For example, De-
pend(Subtaskl, Subtask2, Graph_id) specifies that Sub-
task2 can execute only after Subtaskl completes. The sub-
task dependencies are conveyed by the API to the MU-
RALS kernel module verifying that the graph remains acyclic.

The registration of a subtask does not execute the subtask
immediately. Rather, it informs the kernel how to execute
this subtask when the kernel is asked to do so. This separa-
tion of how to execute a subtask from when to execute it is
a departure from conventional operating system designs. It
can provide greater flexibility in real-time application pro-
gramming and resource scheduling. The DRE task can then
be repeatedly executed by invoking Exec_graph(Graph_id),
which transparently executes all the subtasks according to
precedence constraints within the specified E2E deadline.



7. RELATED WORK

A vast amount of research work has been conducted in
real-time resource allocation and scheduling from different
perspectives. We discuss the most relevant research results.

Multiple Resource Coordination: The body of work
on real-time multi-resource coordination is relatively sparse,
with none of the techniques supported in state-of-the-art
RTOSs. The continuous media resource (CM-resource) model
[4] is a framework meant for continuous media, e.g., digital
audio and video, applications. Clients make resource reser-
vations for the worst-case workload. The meta-scheduler co-
ordinates with the CPU scheduler, network, and file-system
to negotiate delay guarantees and the required buffer size
on behalf of clients. Xu et. al. [63] present simulation re-
sults for a multi-resource reservation algorithm that deter-
mines the E2E QoS level for an application under resource
availability constraints. The work on Cooperative Schedul-
ing Server (CSS) [48] performs admission control for disk
I/0 requests by reserving both the raw disk bandwidth and
CPU bandwidth required for processing disk requests. Tim-
ing constraints are partitioned into multiple stages and each
of them is guaranteed to complete before its deadline on
a particular resource. However, the deadline is partitioned
based on a fixed slack sharing scheme rather than consider-
ing the resource utilization efficiency, possibly causing load
imbalance across different resources. Q-RAM [31, 46, 13,
14] considers the problem of allocating multiple resources in
one or more QoS dimensions to maximize the overall sys-
tem utility. Spring Kernel [52] provides real-time support
for multiprocessor and distributed systems using dynamic
planning based scheduling. Real-time applications are writ-
ten using Spring-C and resource requirements are specified
using System Description Language. [33] models the effect
of Linux network device driver on the schedulability analy-
sis of real-time applications. Deadline partitioning has also
been studied in the context of CPU resources alone for multi-
processor systems [51], for CPU and disk resource [17], and
multi-link network paths [18].

Real-time Operating Systems: Numerous RTOSs sup-
port real-time scheduling for independent system resources,
but lack a coordinated multi-resource allocation and schedul-
ing mechanism to support E2E delay bounds. Some of
these are Real-time Mach [55], Linux/RK [35], TimeSys
Linux [54], RT-Linux [12], KURT Linux [30], QLinux [21],
Eclipse/BSD [5], Rialto [25], and Nemesis [32].

Statistical Multiplexing: While statistical multiplex-
ing has been extensively studied in relation to networks
and to some extent in cluster-based services, relatively lit-
tle attention has been paid towards statistical multiplexing
effects in multi-resource real-time systems. Knightly and
Shroff [28] provide an excellent overview of admission con-
trol approaches for link-level statistical QoS. Kurose [29]
derived shared probabilistic bounds on delay and buffer oc-
cupancy using the concept of stochastic ordering for net-
work nodes that use FIFO scheduling. Several analytical
approaches [27, 9, 22, 47] have also considered multiplexing
with shared buffers in single and multiple link settings. The
notion of Effective Bandwidth, introduced by Kelly [26], is
an important measure of bandwidth resource usage by flows
relative to their peak and mean usage. A comparative study
[8] of several MBAC algorithms [45, 23, 11, 15] under FIFO
service concluded that none of them accurately achieve loss
targets. Urgaonkar et. al. [56] perform resource overbooking

via offline capacity profiling in shared hosting platforms for
CPU and network resources. Vin et.al [59] explored statis-
tical admission control algorithms for media servers. Ver-
nick et.al [58] reported empirical measurements from imple-
mentations of statistical admission control algorithms in a
fully operational disk-array video server.

Feedback Control: Most classical, open-loop real-time
scheduling algorithms assume precise a priori knowledge of
workloads. Feedback control has recently been applied to
real-time performance management, because it does not re-
quire accurate system models for performance guarantees. A
survey of feedback control for QoS management is provided
in [2]. FC-UM [39, 40] provides the specified miss ratio and
utilization in a single processor environment. DEUCON [61]
manages the E2E CPU utilization in a multiprocessor envi-
ronment via predictive model control. CAMRIT [60] ap-
plies control theoretic techniques to support the timeliness
of image transmissions across one wireless link. All these
approaches only consider a single resource, i.e., the CPU or
transmission rate. HIDRA [49] manages both CPU and net-
work bandwidth utilization via feedback control for target
tracking. AQuoSA[36] proposes a control theoretic strate-
gies to dynamically adapt CPU reservations in the Linux
kernel. Control theoretic techniques have also been applied
to manage the performance of a web server [1, 62, 38] and
web cache [41]. However little research has been directed
towards applying control theoretic techniques for real-time
multi-resource applications.

8. CONCLUSION

Modern real-time systems increasingly consist of appli-
cations that need to use multiple heterogeneous resources
to complete critical tasks within bounded end-to-end (E2E)
delay. This argues for coordinated allocation and schedul-
ing of multiple resources, such as the CPU, network, and
disk, in real-time operating systems (RTOS). Unfortunately,
state-of-the-art RTOS do not support multi-resource coor-
dination as a fundamental construct in the system design.
This is presumably because the complex inter-resource in-
teractions are poorly understood when it comes to resource
allocation and runtime scheduling decisions at each resource
in highly dynamic and distributed real-time systems. We
examined some of the fundamental problems in this area
and made the case for greater research effort into the de-
velopment of theory and a runtime systems for coordinated
allocation and scheduling of multiple resources in real-time
operating systems. We discussed four open research prob-
lems and possible solution strategies in the areas of E2E
deadline partitioning, explicit coordination across resource
schedulers, statistical performance guarantees, and feedback
control across multiple resources. We also described our cur-
rent research efforts in the design and implementation of a
MURALS testbed that addresses the above research prob-
lems. Even though we may not have covered all the major
research issues in multi-resource allocation and scheduling,
our paper has sought to identify and motivate investigation
into some of the fundamental problems in this increasingly
important area.
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