FeedClean: Feedback-Driven Clean Utilization Management to Improve
Real-Time Data Services in Dynamic Environments

Kyoung-Don Kang
Department of Computer Science
State University of New York at Binghamton
kang @cs.binghamton.edu

Abstract

Real-time data services can significantly increase, e.g.,
the profit of online trades by processing transactions within
their deadlines. However, supporting the transaction time-
liness in dynamic environments such as the WWW is chal-
lenging, since transactions may arrive in a bursty manner
and execute longer than expected. As a result, the degree
of data/resource contention may vary, causing deadline
misses. To address this problem, we refine real-time data
service performance metrics and develop a novel feedback-
based scheme to manage the clean CPU utilization, which is
the difference between the aggregate utilization and wasted
utilization due to data conflicts and deadline misses, in main
memory real-time databases. According to the control sig-
nal computed in the feedback loop, the QoS of relatively
large transactions, which usually incur more data/resource
contention, can be degraded under high contention. Admis-
sion control can also be applied to incoming transactions,
if necessary, to improve the real-time database performance
under severe overload. By carefully managing the clean uti-
lization, we can substantially improve the success ratio, i.e.,
the fraction of the submitted transactions that have been ad-
mitted and finished within their deadlines. In a simulation
study, which models bursty arrivals of long-running trans-
actions with timing constraints, our approach improves the
success ratio by up to an order of magnitude compared to
existing approaches.

1 Introduction

A real-time database (RTDB) can improve, e.g., the
profit and product quality of e-commerce and agile man-
ufacturing. For example, e-commerce clients are sensitive
to the service delay, while a large portion of trade requests
need to be processed at the back-end database servers [12].
Since existing (non-real-time) databases do not support tim-

ing constraints, they are subject to missing business oppor-
tunities.

In this paper, we aim to significantly improve the perfor-
mance of RTDBs operating in dynamic environments, e.g.,
the World Wide Web, which often involve bursty arrivals of
possibly long-running transactions that execute longer than
expected with potential data conflicts [4, 9, 12]. For exam-
ple, stock price updates can arrive in a bursty manner upon
trades [11]. In addition, the arrival rate, execution time, and
data access pattern of user transactions may vary depending
on the current real world status.

Despite its importance, very little work has been done
to manage the RTDB performance in such dynamic envi-
ronments [3, 6, 10]. Most existing RTDB research such as
[1, 3, 6, 7] usually consider workloads consisted of periodic
updates and relatively smooth user transaction arrival pat-
terns such as Poisson arrival patterns. To shed light on this
problem, we take a stepwise approach in which we (i) revisit
and refine RTDB performance metrics; (ii) develop a novel
feedback-driven approach, called FeedClean, to improve
the performance of a memory-resident RTDB with minimal
CPU utilization wastes due to data conflicts and deadline
misses; and (iii) design a new RTDB workload model to
simulate the afore-mentioned dynamic workloads and com-
pare the performance of FeedClean to the existing baseline
approaches used for performance comparisons in the litera-
ture [1, 3, 6, 7].

We measure RTDB performance in terms of success ra-
tio, i.e., the fraction of the submitted transactions that com-
mit within their deadlines in a sampling period, e.g., 5 sec.
(For brevity, success ratio is called timeput in this paper.)
Unfortunately, one can not maximize the timeput by sim-
ply maximizing the utilization, since a lot of the precious
utilization can be wasted due to severe resource/data con-
tention. A transaction execution can be delayed due to re-
source contention. Its deadline can eventually be missed
wasting the utilization used to execute the transaction be-
fore the deadline miss. In addition, transactions may have
to be aborted and restarted from the beginning due to data

conflicts. In the worst case, a database system may thrash
by repeatedly aborting and restarting transactions without
making any progress under severe data contention [13].

To handle this problem, we aim to maintain a desired
level, e.g., 85%, of the clean utilization, i.e., the difference
between the current aggregate utilization and wasted utiliza-
tion, to improve the timeput. We have developed a novel
feedback-based approach to achieve the target CPU utiliza-
tion, e.g., 90%, with tolerable utilization wastes, e.g., 5%,
due to contention.! The feedback control system consists of
the aggregate and wasted utilization controllers that work
in concert.”> The utilization controller periodically moni-
tors the current utilization and computes the control signal
based on the error, i.e., the difference between the target
and current utilization, in a feedback loop. When the cur-
rent utilization is higher than the target, the control signal
becomes negative to require the workload reduction. When
the workload should be reduced, the QoS of a transaction
currently in the system can be degraded.

The waste controller dynamically adapts the maximum
transaction size M that can be processed with the full qual-
ity of service (QoS) based on the current waste error, i.e.,
the difference between the desired waste threshold and the
waste measured at the current sampling period. When the
utilization needs to be reduced, a subset of transactions
in the system whose estimated execution times are larger
than M can be degraded. We take this approach because
bigger transactions have a relatively high probability to
abort/restart other transactions or being aborted/restarted.
Note that this approach can handle transient overloads, if
any, more gracefully than existing approaches such as the
transaction time-out technique [9] that simply kills transac-
tions that run longer than a certain fixed time-out threshold
under overload.

If the workload should be further reduced after potential
QoS degradation, admission control is applied to incoming
transactions to improve the RTDB performance by reducing
the possibility of system thrashing under overload, similar
to [6, 7, 13]. By degrading the QoS before applying admis-
sion control, we can gracefully handle potential overloads.

Unlike most existing RTDB work (e.g., [1, 3, 6, 7]) that
consider periodic updates and relatively smooth Poisson ar-
rival patterns, we model bursty transaction arrivals that can
model both temporal data, e.g., stock price, updates and
user transaction arrivals. We also model long-running real-
time transactions with different degrees of potential data
contention. In the simulation study, FeedClean significantly
improves the timeput compared to the baselines described in
[1, 3, 6, 7], while effectively managing the clean utilization

'We do not aim to completely eliminate but aim to reduce the waste,
since most databases involve transaction aborts/restarts.

2We use the two controllers, because the utilization controller alone
cannot control the utilization waste. Further, we have found (via simula-
tions) that the waste controller alone may under utilize the system.

by dynamically adapting the system behavior via feedback
control, QoS management, and admission control.

The rest of the paper is organized as follows. Section 2
describes the database and transaction models, defines per-
formance metrics, and presents FeedClean. Section 3 de-
scribes the simulation techniques needed to design dynamic
workloads and discusses performance evaluation results.
Related work is discussed in Section 4. Finally, Section 5
concludes the paper and discusses the future work.

2 Performance Management in Dynamic En-
vironments

In this section, our transaction model, performance met-
rics, and the architecture and behavior of FeedClean are dis-
cussed. (We also model the utilization and waste in a con-
trol theoretic manner. Based on the models, we develop the
feedback controllers. However, the modeling and controller
development are not included in this paper due to space lim-
itations. We refer interested readers to [S] for the related
discussion.)

Database and Transaction Models. We consider the
main memory database model in which transactions have
firm deadlines. Tardy transactions are aborted upon their
deadline misses, .e.g., to avoid potential losses of profit due
to market status changes. A real-time transaction 7j is de-
scribed by its relative deadline D;, current QoS level QoS;,
and estimated execution time E'ET;. T; may read or write
data and do some computation based on the accessed data.
T; is composed of mandatory and optional parts, similar to
[8]. If the QoS; of T; is high, both the mandatory and op-
tional parts are executed; therefore, 7;’s estimated execu-
tion time K ET; = EFET; + EET;,,, where EET;
and FET;, , represent the estimated execution times of the
mandatory and optional parts, respectively. When QoS; =
low, only the mandatory part is executed. Thus, EET; =
EFET;, ... The estimated utilization EU; = EET;/D,
where D; = slackx (EET;,,,, +EFET;,,,) and slack > 0.
Transactions can be aborted/restarted due to data contention
and execution times may vary depending on the accessed
data values, e.g., the current stock prices. As a result, exe-
cution time estimates may include errors.

Performance Metrics. To measure the RTDB perfor-
mance, we define the following performance metrics: The
timeput = 100 x X=(%) where N, and N indicate the
number of transactions committed within their deadlines
and that submitted to the system in a sampling period,
which is set to 5 sec in this paper. The clean utilization
C = U — W where U is the measured CPU utilization
and W is the utilization wasted due to deadline misses and
aborts/restarts in a sampling period. Thus, C' represents the
pure utilization used to process real-time transactions with-
out any waste due to deadline misses or aborts/restarts. The

man man

QoS =100 x % (%) where Ny is the number of transac-
tions that have been committed within their deadlines and
processed at the full quality of service, executing both the
mandatory and optional parts. For the clarity of presenta-
tion, we set the desired utilization U; = 90% and tolerable
waste threshold W; = 5% in this paper. We set the de-
sired overshoot and settling time, e.g., think time between
trades, to 5% and 60 sec, respectively. Thus, an overshoot,
i.e., the worst case utilization U, or waste W, are such that
U, <94.5%(= 1.05xUy) and W, < 5.25%(= 1.05x W)
even when the system is under transient overload. Further,
it is desired for a RTDB using our approach to be able to
handle an overshoot, if any, in 60 sec and enter the steady
state in which U < 90% and W < 5%.

QoS Uand W
Manager Controllers
Current

Uand W
Incoming Ready Queue Dispatch

Transactions Admission T

Figure 1. FeedClean Real-Time Database Ar-
chitecture

AL

Terminate

Handler

Preempt or
Abort and Restart

U
bl EH}C“}AL‘RTDB L
(a) Utilization Control
Wa + Ew} CW}A }RTDB L

(b) Waste Control

Figure 2. Feedback Control of the Utilization
and Waste

FeedClean. Figure 1 shows a high-level design of Feed-
Clean. The transaction handler schedules transactions in an
EDF (earliest deadline first) manner. It also controls con-
currency using the well-studied 2PL-HP (two phase locking
high priority) protocol [1] in which a low priority transac-
tion is aborted and restarted upon a data conflict to avoid
priority inversions. A transaction can be dispatched to exe-
cute, preempted, and aborted/restarted due to data/resource
contention. At every sampling period, FeedClean monitors
the current U and W and compare them to the desired Uy

and W as shown in Figure 2. Based on the current utiliza-
tion error F,, = Uy — U, the utilization controller C', com-
putes the required workload adjustment, i.e., A L, to achieve
the Uy. When overloaded, i.e., AL < 0, a transaction 7} is
degraded if EET; > M; that is, only the mandatory part of
the T; will be executed. As a result, the utilization needed to
execute the optional part 6U; = EET;, ,/D; is saved and
AL is increased by 0U;. The QoS degradation is repeated
until A L becomes positive or there is no more transaction to
degrade. The waste controller C, periodically monitors the
current waste W to compute the control signal AM based
on the error E,, = W;— W, if necessary, to adjust the max-
imum size M of a transaction that can be processed with the
full QoS. AM becomes negative under high data/resource
contention. As a result, M is decreased to degrade more
transactions in the system whose estimated execution times
are greater than the new M. We assume that M is initialized
as the average estimated execution time that can be derived
offline based on the workload traces, e.g., online trade traces
collected for several days.

Specifically, FeedClean handles four possible combina-
tions of AL and AW as follows. (i) AL > 0and AM > 0:
To avoid underutilization, admit more transactions and in-
crease M by AM. (ii)) AL > 0 and AM < 0: Admit more
transactions, but decrease M by AM to prepare for possi-
ble QoS degradation in the future, if necessary, to reduce
the waste due to data contention. This case is possible, for
example, when the CPU is underutilized, but a number of
transactions in the system involve write operations incurring
relatively high data contention. (iii) AL < 0 and AM > 0:
Increase M by AM. Degrade the QoS based on the new M.
This case is possible, for example, when the CPU is highly
utilized with little data conflicts possibly because most in-
coming transactions are read-only. Therefore, in this case,
admission control rather than QoS degradation can play a
more important role to reduce the workload. (iv) AL < 0
and AM < 0: In this case, the RTDB is overloaded and
data/resource contention is high. Decrease M by AM. De-
grade the QoS based on the new M and apply admission
control, if necessary, to further reduce the workload. In-
coming transactions are not admitted until A L,,.,, > 0 after
a subset of currently running transactions finish.

3 Performance Evaluation

To evaluate the performance, we have developed a RTDB
simulator that models the RTDB architecture depicted in
Figure 1. The admission controller, QoS manager, and feed-
back controllers can selectively be turned on or off for per-
formance evaluation purposes. The main objective of the
performance evaluation is to observe whether or not Feed-
Clean can improve the timeput by supporting the desired
clean utilization even given bursty arrivals of long-running

real-time transactions with different degrees of potential
data conflicts. The simulation model, baseline approaches,
and performance analysis results are discussed in this sec-
tion.

Simulation Model. The simulated RTDB has one mil-
lion data items to model data-intensive real-time applica-
tions. To generate bursty transaction arrivals, each source
S, generates a sequence of transactions whose inter-arrival
times follow the Pareto distribution, similar to [4]. For other
simulation parameters such as the execution time, slack, and
write probability, we have taken common values from exist-
ing real-time database work including [1, 3, 6, 7] and vary
them, if necessary, to model more diverse workloads.

Each source S; is uniformly associated with an estimated
execution time FET; ranging between (Sms, 20ms). The
relative deadline of the transaction D; = slack x EET;
where the slack uniformly ranges between (10, 20). For
QoS management, we assume that the estimated execution
time of the mandatory part of a transaction is a half the EET
needed to execute the whole transaction, i.e., EET; =
0.5EET;.

To model long-running transactions that execute longer
than estimated, S; is also associated with the actual execu-
tion time AET; = TSF x EET; where 1 < TSF < 5in
our experiments. Note that all the tested approaches, includ-
ing FeedClean, process real-time transactions based on esti-
mated execution times, because they may not have a priori
knowledge of actual execution times (and other workload
parameters) in dynamic environments.

By controlling the TSF and number of sources, we
can control the load applied to the (simulated) RTDB,
called AppLoad. More specifically, AppLoad = 100 x
Zif AET;/D;(%) where K is the number of sources
and AET; is the actual execution time of a transaction gen-
erated by S;. When AppLoad > 100%, the workload ex-
ceeds the system capacity. Thus, the maximum possible
timeput becomes less than 100%.

The number of read/write operations in one transaction
is equal to its AET. As a result, longer transactions will
access more data incurring more data conflicts. In general,
data and resource contention may increase as AppLoad and
TSF increase. An operation of a transaction is a write op-
eration with a tunable write probability P,,. By varying P,
we can probabilistically vary the transaction mix as dis-
cussed before. Generally, a higher P, is subject to more
read/write and write/write conflicts. We evaluate the per-
formance of the tested approaches by applying several P,
values ranging between 0.1 and 0.5.

We consider two baselines called Admit-All and AC
[1, 3, 6, 7] widely used for performance comparisons in RT-
DBs. Admit-All simply admits all transactions, while AC
applies admission control to incoming transactions. In ad-
dition, Admit-All and AC do not degrade the QoS. For per-

formance analysis, we set the utilization threshold of AC for
admission control to 90%.

We apply three categories of workloads to Admit-All,
AC, and FeedClean to compare their performance given
different types of workloads: (i) nominal loads, (ii) over-
loads, and (iii) high data contention loads. For the nom-
inal loads, we set TSF = 1. Thus, AET = EET for every
transaction. We set the write probability P,, = 0.1. In ad-
dition, we increase the AppLoad from 60% to 200%. We
call these workloads nominal, because the tested approach
can exploit the precise execution time estimates (i.e., TSF
= 1) to manage the RTDB performance, even though the
AppLoad increases up to 200%.

In the overload model, we increase the TSF from 2 to 5
by 1. Accordingly, we increase the AppLoad from 200%
to 500% by 100%. Note that, however, the sum of the esti-
mated utilization remains as 100%. Thus, too many transac-
tions could be admitted incurring severe data/resource con-
tention.

To generate high data contention loads, we set P, = 0.5
and decrease the database size, similar to [1]. In this setting,
the database size is reduced to % the original size. Further,
we increase the estimated execution time to increase the
chance of data conflicts during the transaction execution.
Specifically, ' E'T; uniformly ranges between (5ms, 40ms).
In addition, we increase TSF (AppLoad) from 2 (200%) to
5 (500%) by 1 (100%) for this set of experiments. By re-
ducing the database size and increasing the execution time
and the number of data accesses, we can increase potential
data conflicts.

One simulation run lasts for 10 (simulated) minutes.
Each performance data is the average of 10 simulation runs
using different seed numbers. We have also derived the 90%
confidence intervals. In this paper, we omit the confidence
intervals because they are less than 2% in most cases. Due
to space limitations, we only present the performance re-
sults under the overload conditions in this paper. We refer
readers to [5] for the other performance results.

100
80 —
S i
: 60_&\\
3. i o -—=+- AC
2 40 e —x—-FC
T~ TTX— e
=S RN —x
20 S
1 Tt~
- —
0 T T |
2 3 4 5

TSF (AppLoad = 100TSF %)
Figure 3. Average Timeput

Average Performance Under Overloads. Figures 3

100
] T
80 -+
& 60_ //-'/
= i /// -+- AC
Ed b —_) -
@ 40 X—- FC
=]
20 4
J e e — ==X
0 f T |
2 3 4 5

TSF (AppLoad = 100TSF %)

Figure 4. Average Wasted Utilization

and 4 show the average timeput and waste of AC and FC
for increasing TSF. (We do not discuss Admit-All here, be-
cause its performance is relatively poor compared to AC
and FC.) In Figure 3, AC shows the poor timeput as TSF
increases. When TSF = 2, its timeput is only 36.8%. Fur-
ther, its timeput drops to 3.6% when TSF = 5. The timeput
sharply drops, because AC does not adapt the system be-
havior considering the current system status. As a result,
AC admits too many transactions due to high execution time
estimation errors. In contrast, the timeput of FC gradually
decreases from 62.9% to 29.8% as TSF increases from 2 to
5. From these results, we can observe that FC improves the
timeput by up to an order of magnitude compared to AC
(and Admit-All) when overloaded. Thus, these timeput val-
ues also indicate that FC can gracefully handle overloads.

As shown in Figure 4, the waste of AC sharply increases
reaching near 90% when TSF = 5. In contrast, FC can sup-
port the desired waste threshold, i.e., Wy = 5%, until TSF
= 4. The waste is only 5.5% when TSF = 5. In addition,
FC achieved the desired 90% utilization for all the tested
TSF values. Thus, the desired clean utilization of 85% is
achieved until TSF = 4 in FC. When TSF= 5, FC achieves
the clean utilization of 84.5%. From these results, observe
that FC supports the desired average clean utilization even
when overloaded. In contrast, AC wastes almost 90% of the
utilization when TSF = 5 as shown in Figure 4.

These results show both the advantage and cost of our
approach: FeedClean significantly improves the timeput
and waste compared to AC (and Admit-All), while sup-
porting the specified waste threshold when TSF < 4.
The QoS of FC ranges between 20% — 60% for the tested
TSF values. Generally, the QoS decreases as TSF increases.

Transient Performance Under Overloads. Figures 5
and 6 show the transient timeput and waste of FC when TSF
= 2 and TSF = 5, respectively. In Figure 5, FC shows the
consistent timeput mainly ranging between 50% — 70%. As
shown in the figure, FC’s waste is near O through the whole
simulation. From these results, we can observe that FC sup-

Q
p .‘uftt",(o SRR S g SRR Qe FRESRR GG .
& 8 -- O - Timeput
(A5
40 --% - Waste

Timeput & Waste (%)
3

0 50 100 150 200 250 300 350 400 450 500 550 600
Time (sec)

Figure 5. Transient Timeput and Waste when
TSF = 2 (AppLoad = 200%)

100
80
-- O~ Timeput
409 : --% - Waste

Timeput & Waste (%)
=

0 50 100 150 200 250 300 350 400 450 500 550 600
Time (sec)

Figure 6. Transient Timeput and Waste when
TSF = 5 (AppLoad = 500%)

ports the satisfactory transient performance when TSF = 2
by dynamically adapting the system behavior in the feed-
back loop according to the current utilization and waste due
to data/resource conflicts. In this experiment, AC’s timeput
ranges between only 30% — 40%. We have also observed
that AC’s waste is over 40% in many cases. We do not in-
clude a graph showing AC’s transient performance due to
space limitations.

Figure 6 shows the transient timeput and waste of FC
when TSF = 5. Initially, the timeput of FC is low, but it
gradually increase and ranges between 25% — 35% within
the time period of 85 sec and 600 sec. FC initially suffers
the low timeput due to the flash workload that are approxi-
mately five times the system capacity. However, it quickly
adapts to the workload and supports reasonable timeput af-
ter 85 sec, while achieving the near O waste from 110 sec.
In contrast, we have observed that the transient timeput and
waste of AC are near 0% and 100% through the simulation.

Table 1 shows the waste overshoot (O) and settling time
(1) of FC for the tested TSF values greater than two. (The
transient waste of FC is near zero when TSF = 2 as shown
in Figure 5; that is, there is no waste overshoot.) The set-
tling time, i.e., the time taken to reduce the waste below
the specified threshold 5%, is shorter than the desired 60

Table 1. Waste Overshoot and Settling Time
for Increasing TSF

TSF 3 4 5
O (%) | 564 | 28 | 43
T (sec) 30 85 | 105

sec (Section 2) until TSF = 3 and it is 105 sec when TSF
= 5. We can observe that the every overshoot, if any, hap-
pened at the beginning of the experiments, i.e., when the
flash workload was just applied, for the tested TSF values.
After an initial hick-up, if any, our approach can support the
desired transient performance, as shown in Figures 5 and 6,
via feedback control aided by QoS degradation and admis-
sion control.

4 Related Work

Amirijoo et al. [3] have recently applied the notion
of imprecise computation in a combination with feedback
control to manage the transaction timeliness and deviation
of temporal data from the external environment. Kang et
Ab. [6] propose a feedback-based RTDB QoS management
scheme that can support the desired deadline miss ratio and
sensor data freshness for admitted transactions. Our work
is different from these work in that we focus on managing
the clean utilization to improve the timeput in highly dy-
namic environments. Control theoretic approaches [2] have
been developed to manage the performance of web servers
that may observe bursty arrivals of service requests. How-
ever, these work do not consider database issues such as
data/resource conflicts and transaction aborts/restarts as we
do in this paper.

5 Conclusions

Generally, providing real-time data services in dynamic
environments is essential to support important applications
including e-commerce and agile manufacturing. However,
providing real-time data services is challenging, because
workloads in dynamic environments are not known a pri-
ori. In addition, real-time databases usually involve trans-
action aborts/restarts due to data/resource contention. For
these reasons, non-adaptive approaches often fail. Our work
presented in this paper aims to address the problem by (i)
refining the performance metrics, (ii) developing a novel
feedback-based approach to manage the clean utilization,
(iii) designing a new RTDB workload model to simulate dy-
namic workloads, and (iv) performing an extensive simula-
tion study to compare the performance of FeedClean to ex-
isting approaches. According to the performance evaluation

results, FeedClean has significantly improved the timeput,
while effectively managing the clean utilization. In the fu-
ture, we will investigate other performance metrics and QoS
management techniques to further improve real-time data
services in dynamic environments. We will also investi-
gate the QoS management issues in distributed real-time
databases such as replica control and load balancing.

References

[1] R. Abbott and H. Garcia-Molina. Scheduling Real-Time
Transactions: A Performance Evaluation. ACM Transac-
tions on Database System, 17:513-560, 1992.

[2] T. Abdelzaher, Y. Lu, R. Zhang, and D. Henriksson. Prac-
tical Application of Control Theory to Web Services. In
American Control Conference, 2004.

[3] M. Amirijoo, J. Hansson, and S. H. Son. Algorithms for
Managing QoS for Real-Time Data Services Using Impre-
cise Computation. In the Conference on Real-Time and
Embedded Computing Systems andApplications (RTCSA),
2003.

[4] M. E. Crovella and A. Bestavros. Self-Similarity in
World Wide Web Traffic: Evidence and Possible Causes.
IEEE/ACM Transactions on Networking, 5(6), Dec 1997.

[5] K. D. Kang. FeedClean: Feedback-Driven Clean Uti-
lization Management to Improve Real-Time Data Services
in Dynamic Environments. Technical Report CS-TR-05-
KDO1, Department of Computer Science, State Univer-
sity of New York at Binghamton, 2005. Available at
http://www.cs.binghamton.edu/~kang.

[6] K.D.Kang, S.H. Son, andJ. A. Stankovic. Managing Dead-
line Miss Ratio and Sensor Data Freshness in Real-Time
Databases. IEEE Transactions on Knowledge and Data En-
gineering, 16(10):1200-1216, Oct. 2004.

[7] S. Kim, S. H. Son, and J. A. Stankovic. Performance Eval-
uation on a Real-Time Database. In IEEE Real-Time Tech-
nology and Applications Symposium, 2002.

[8] K.J.Lin, S. Natarajan, and J. W. S. Liu. Imprecise Results:
Utilizing Partial Computations in Real-Time Systems. In
Real-Time System Symposium, December 1987.

[9] N. Paranjape. Learning from (others) mis-
takes: Query blocking. Available at

http://www.expresscomputeronline.com/20030210/techspacel.shtml.

[10] S. H. Son and K. D. Kang. QoS Management in Web-
based Real-Time Data Services. In the 4th IEEE Interna-
tional Workshop on Advanced Issues of E-Commerce and
Web-based Information Systems, 2002.

[11] The Stream Group. STREAM: The Stanford Stream Data
Manager. IEEE Data Engineering Bulletin, 26(1), 2003.

[12] U. Vallamsetty, K. Kant, and P. Mohapatra. Characterization
of E-Commerce Traffic. Electronic Commerce Research,
3(1-2), 2003.

[13] G. Weikum, A. Moenkeberg, C. Hasse, and P. Zabback.
Self-Tuning Database Technology and Information Ser-
vices: from Wishful Thinking to Viable Engineering. In
VLDB Conference, 2002.

