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Abstract—The trend of growing GPU capacity necessitates the
support for concurrent executions of multiple applications in a
GPU, since a single application cannot fully utilize hardware
resources. Interference between the co-running applications,
however, increases non-deterministic timing behaviors. In this
paper, we propose an extension of the GPU memory architecture
to support bandwidth reservation that provides flexible resource
sharing, while reserving the required GPU memory bandwidth
for each application. Our experimental results show that our
approach supports the required memory bandwidth reservation
for each application and improves the performance by 20% on
average, compared to strict partitioning of hardware resources.

I. INTRODUCTION

Modern GPUs are adopted by a broad range of applications
to accelerate the computation with massive parallelism in an
energy-efficient manner [1]-[4]. As the amount of hardware
resources in GPUs increases, a single application cannot fully
use them, causing the enormous resources to be underutilized.
To achieve better hardware resource utilization, simultaneous
multi-application execution is becoming more relevant [S]-[9].

Although multi-application concurrency is a promising ap-
proach to enhance resource utilization, sharing resources such
as caches and memory controller generates unexpected depen-
dencies between applications as the memory requests from
one application may interfere with requests from other co-
running applications [10]-[16]. Inevitably, such unexpected
interference makes the time to process memory requests
highly variable. Even if the execution time of an application
is well analyzed/estimated, running it together with another
application easily invalidates the estimation due to different
workload characteristics and potential interference. A common
approach for reducing the interference between co-running
applications is resource partitioning [17] [18] that exclusively
assigns a portion of hardware resources to an application and
strictly bounds the each application’s resource usage to the as-
signment. However, such strict GPU partitioning scheme [19]
achieves performance isolation at the cost of flexibility.

This paper designs an effective GPU hardware resource
reservation scheme that provides a predefined reservation
of hardware resources to each application when multiple
applications run concurrently. Unlike strict partitioning, our
approach allows concurrent applications to dynamically share
unused hardware resources to reduce latency while supporting
resource reservation for co-running applications. Unlike prior
bandwidth reservation that regulates the memory traffic in
each CPU core or the CPU interconnect [20], we implement
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Fig. 1. GPU architecture with bandwidth reservation

our hardware in the GPU’s memory controller to manage the
actual memory channel usage. Overall, our design extends
the GPU memory architecture to support effective bandwidth
reservation and sharing with little overhead.

II. BANDWIDTH RESERVATION IN A GPU

We propose extending/adapting the GPU memory architec-
ture for the bandwidth reservations, rather than relying on
software implementation while suffering from uncertainties
and non-determinism of the black-box GPU hardware. In
our design, the GPU memory bandwidth reservation scheme
assigns a predefined amount of hardware resources to each
application. Then, all the memory requests from an application
are marked as high-priority requests when the application
still has remaining bandwidth reservation. Once it consumes
all the reserved bandwidth in an epoch, any following re-
quests are given low priority. The scheduler in the memory
controller always services high-priority requests first. Low-
priority requests are serviced when no high-priority requests
are waiting for service. In this way, our design supports
memory bandwidth reservation and sharing at the same time.

Figure 1 shows our bandwidth reservation framework design
that extends the baseline GPU architecture. We insert a hard-
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Fig. 2. The speedup of bandwidth reservation over strict partitioning
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Fig. 3. Bandwidth utilization with bandwidth reservation (BR) and strict partitioning (SP).

ware component, named a bandwidth manager (BM), between
the L2 cache and the memory controller in the memory hier-
archy to track the bandwidth reservation/consumption status
for applications. A memory request reaching the memory
controller contacts the BM to inquire about the bandwidth
usage status. To do this, the BM has two lists of registers, RB
and UB, per application. The RB register holds the value of the
predefined bandwidth for an application, and the UB register
tracks the bandwidth usage of the application in the current
epoch. To implement request prioritization in the memory
controller, we divide read/write queues into two queues: a
high-priority queue (HP queue) and a low-priority queue (LP
queue) for high and low priority requests, respectively. A
memory request reaching the memory controller contacts the
BM to inquire about the bandwidth usage status.

Memory bandwidth reservation alone cannot support perfor-
mance isolation because other shared hardware resources, e.g.,
the L2 shared cache, still impact the performance. Moreover,
we observed that such shared resources introduce new per-
formance bottlenecks in our bandwidth reservation framework
unless they are properly partitioned. Based on that, we applied
strict partitioning on L2 caches, MSHRs, and L2 cache queues.

For our experiments, we have implemented our design
in a GPU simulator built upon GPGPU-Sim [21]. We se-
lect applications from various benchmark suites including
Polybench [22], Rodinia [23], Parboil [24], Ispass2009 [25],
SHOC [26], CUDA [27], and LULESH [28]. We evaluate 1)
strict partitioning (SP) provided by FGPU [19] and 2) our
bandwidth reservation (BR) framework. We run two applica-
tions concurrently and measure the performance until one is
complete. Thus, the completion time of an application may
vary depending on which applications run together.

Figure 2 shows the speedup of our flexible bandwidth
reservation against the strict partitioning of FGPU. The two
bars in each set represent the speedup of each application,
respectively. The final pair of bars shows the geometric mean
of all the speedups. We observe that our bandwidth reservation
(BR) policy augmented by flexible sharing improves most

applications’ performance with the overall improvement by
approximately 20% on average. In the meantime, the per-
formance of the compute-intensive applications (BIN, BTC,
DXT, and HOT) experience little improvement or degradation
by bandwidth reservation due to their low dependence on the
memory bandwidth. Interestingly, although NN looks like a
compute-intensive application in the figure, we found that it
is a memory-intensive application with high cache hit rates.
NN creates massive memory requests that are mostly serviced
in the L1 cache, while the main memory traffic quickly
diminishes over time. Due to its high dependence on memory
instructions, it still benefits from the improved bandwidth
utilization in early execution phases, which can be observed
with short applications (3DS and FFT).

We have further investigated a primary reason for the per-
formance improvement achieved by our framework. Figure 3
compares the average bandwidth utilization of BR and SP
across all the channels. As expected, the figure shows that
BR yields higher bandwidth utilization than SP does in all the
workloads. The SP’s bandwidth utilization in the figure is only
44% on average, which indicates that SP cannot utilize even
half of the given memory bandwidth. However, BR shows 59%
utilization that is 15% improvement from the SP’s utilization.

III. CONCLUSIONS

Multi-application concurrency is a double-edged sword in
real-time systems in that it may either enhance performance or
decrease it due to increased interference. Meanwhile, the strict
partitioning for performance isolation substantially decreases
the hardware utilization and performance. Although strict
partitioning is effective for some shared resources, the par-
titioned memory bandwidth leads to significant performance
drop. Based on our observations, we extend the GPU memory
architecture design to support memory bandwidth reservation
and sharing while partitioning other shared resources strictly,
all without requiring major changes in software. In an ex-
tensive simulation study, our approach supports the specified
bandwidth reservations and enhances the performance by 20%
on average compared to strict partitioning.
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