
ACRE: A Method for Supporting Strong Consistency and Adaptivity

in Replicated Data Storage

Scott J. Denman and Kyoung-Don Kang

Department of Computer Science

State University of New York at Binghamton

{sdenman1, kang}@binghamton.edu

Abstract

As most key-value stores partition and replicate data
to support high availability with no strong consistency
guarantee among replicas, users may suffer from data
inconsistency. Although previous research has been
done to support strong consistency among replicated
data, most existing approaches suffer from potential
hotspots and load imbalance. Neither do they consider
dynamic data access patterns that may largely vary over
time. In this paper, we propose a new approach, called
ACRE (Adaptive Chain REplication), to support strong
consistency among data replicas, hotspot avoidance and
load balancing, and adaptivity to dynamic data access
patterns.

1 Introduction

Replicated data stores are a fundamental building
block for advanced online applications such as scientific
computing and social networking. In these systems,
data are partitioned and replicated multiple times to
manage vast amounts of data in a highly available
manner [5]. However, the CAP theorem [1] states that
it is impossible for replicated data stores to support
strong data consistency, availability, and tolerance to
network partitions simultaneously. Thus, to support
the high availability of service, a number of key-value
stores, such as the ones used at Google [3] and Amazon
[2], only support eventual consistency, providing no
strong consistency among replicas. As a result, users
of online applications may suffer from a nuisance or
even inconsistent results. Also, developing advanced
applications without strong data consistency support
is cumbersome and time consuming.

A novel method called chain replication [7] has

been developed to support strong consistency, while
improving the availability and throughput of fail-stop
storage servers. In chain replication, all nodes storing
shared data objects are organized as a chain. The
head node in a chain handles all write requests, while
the tail processes all read requests. Writes are propa-
gated down from the head to the tail of the chain of
replicated data stores before acknowledging the client.
Thus, total ordering among the versions of a data item
in the chain is supported. Also, strong consistency
is supported with respect to the version of the data
that is successfully written (i.e., committed) at the
tail. As the chain replication method is simple and
lacks multi-round protocols, it supports consistency,
high availability, and easy recovery. However, all
read requests for a data object must be processed at
the tail. Thus, the tail may become a hot spot and
performance bottleneck.

CRAQ (Chain Replication with Apportioned
Queries) [6] extends the chain replication method [7]
to support strong consistency as well as lower latency
and higher throughput for read requests. In CRAQ,
not only the tail but any node in a chain can process
reads. When a write commits at the tail, an acknowl-
edgment (ACK) for the committed version of the data
object is passed backwards, ultimately reaching the
head. The head and intermediate nodes, if any, process
read requests using the latest version acknowledged by
the tail. If the head or an intermediate node receives
a read request for a dirty version awaiting an ACK,
it simply waits for the ACK or sends a version query
to the tail that returns the latest version number. In
this way, CRAQ enhances the read throughput, while
supporting strong consistency with respect to the tail.
However, CRAQ has a drawback too. A node has to
query the tail first, if it wants to process a read request
without waiting for the ACK. Thus, the tail may be
flooded by excessive version queries and become a



bottleneck especially in the presence of write-heavy
workloads.

Although chain replication and CRAQ support
strong consistency with acceptable throughput and
availability, neither of them is effective enough to
deal with dynamic data access patterns. This can
be a serious problem, because it is known that data
access patterns often vary largely over time [4]. Hence,
optimizing a replication scheme for a specific data
access pattern may result in undesirable performance
and resource waste, while not necessarily enhancing
the availability.

To shed light on this problem, we propose a new
approach called ACRE (Adaptive Chain REplication).
In ACRE, any node can process a read request by
returning the latest acknowledged version, similar to
CRAQ [6]. However, ACRE is different from chain
replication and CRAQ; ACRE autonomously adapts
chain replication based on the dynamic data access
patterns that can be observed in the life cycle of data,
such as new scientific data or news articles read a
lot when created and gradually become dormant,
while supporting strong consistency. More specifically,
ACRE extends an existing chain by adding another
node to the chain to process read requests efficiently, if
the frequency of read requests increases significantly,
for example, due to the increased popularity of the
data.

On the other hand, if write requests dominate and
read requests shrink, we shorten the chain by removing
a node from the chain as long as the required minimum
chain length, i.e., the number of the replicated data
stores in the chain, for fault tolerance is maintained.
In this way, the total number of cascading writes from
the head to the tail along the chain can be decreased
without affecting the required level of fault tolerance.
Also, the wait time for the ACK of a write request
and the frequency of version queries sent to the tail
decrease. Thus, ACRE enhances not only the read
performance but also the cost-effectiveness of strong
consistency as well as fault tolerance considering
dynamic data access patterns.

In addition, ACRE naturally supports load balanc-
ing among the chained storage nodes. Because any
node can process reads, it is less likely for the tail
to become a bottleneck. For load balancing, read
requests can be evenly distributed (in an approximate
sense) to the chained nodes via, for example, random
distribution of reads to the nodes. Also, a write is

performed by every node in the chain to support
strong consistency and fault tolerance. Relatively
little prior work has been done to support flexible
data replication with strong consistency as well as
adaptivity to dynamic data access patterns, while
supporting hotspot avoidance and load balancing
[7, 6, 5].

For performance evaluation, we have implemented
ACRE and CRAQ and evaluated them using synthetic
read/write workloads, similar to [6]. Our initial results
show that ACRE decreases the average delay for
data access by approximately 30 - 50% compared to
the service delay provided by CRAQ by dynamically
adapting the replication chain considering different
data access patterns.

The remainder of this paper is organized as follows.
A description of ACRE is given in Section 2. Perfor-
mance evaluation results are presented in Section 3.
Related work is discussed in Section 4. Finally, Sec-
tion 5 concludes the paper and discusses future work.

2 Adaptive Chain Replication

In this section, the design and implementation issues
of ACRE are discussed in sequence.

2.1 Design of ACRE

head

reads reads reads
reads

tail

writes

(a) An Example Chain for Read-Heavy Workloads

reads

head tail

writes reads reads

(b) An Example Minimum Length Chain
for Write-Heavy Workloads

Figure 1. Adaptive Chain Replication

In ACRE, any node can process read requests
as shown in Figure 1. The solid horizontal lines in
Figure 1 indicate a write request performed in a



cascading manner, while a dotted line represent an
ACK packet carrying the version information that
acknowledges a successful write of a data item at
the tail. The head or an intermediate node (that
is neither the head nor the tail of a chain) has to
either wait for the corresponding ACK from the tail
or send the tail a version query, if it receives a read
request for a dirty data object. For a read request, a
node in ACRE returns the latest acknowledged version.

The key advantage that sets ACRE apart from the
existing approaches is the flexibility and adaptation to
dynamic changes in data access patterns. In ACRE,
if the frequency of read requests increases by a certain
threshold, a chain is expanded. For example, assume
that a chain initially consists of 3 nodes, but extends
to 4 nodes as shown in Figure 1(a). To extend a chain,
ACRE performs the following procedure:

1. ACRE appends a new node to the current tail,
if necessary, to extend the chain considering dy-
namic data access patterns.

2. ACRE requires the current tail to forward the
most up-to-date versions of the data, S, to the
new node. Let t1 indicate the time at which the
tail starts sending S to the new node.

3. The new node writes S to its storage. While the
new node is doing the writes, the current tail con-
tinues to work as the tail of the chain.

4. Once the new node finishes all writes, the new
node announces itself as the new tail to all the
other nodes in the chain via a reliable multicast.
When the current tail receives the announcement
at time t2, it stops working as the tail and becomes
the previous tail.

5. If some data ∆S have been written by the previous
tail between t1 and t2, the previous tail forwards
∆S to the new tail, which treats ∆S as regular
data writes to its storage and acknowledges the
other nodes after finishing the writes.

ACRE repeats this process, if necessary, to support
acceptable read performance, while supporting the
increased availability as data become more popular.
As a result, the throughput and availability of data
enhance as more replicas are created for more read
requests. In this paper, a node failure is handled
in a similar manner to the original chain replication
protocol [7].

On the other hand, the chain is shortened as shown
in Figure 1(b), if the data access pattern becomes

write-heavy. We take this approach, because a long
chain is subject to large delays and overheads for
write-heavy workloads, providing little opportunities
to improve the performance by processing many
reads in parallel. Specifically, ACRE cuts the tail,
if necessary, to efficiently handle increasing writes.
Notably, removing the tail from the chain is the
simplest and fastest way to shorten a chain, since the
the data stored by all the other nodes are at least
as fresh as the tail’s. Thus, we avoid overheads for
maintaining data consistency among the nodes by
cutting the tail. The leaving tail only has to process
pending version queries, if any, and then announce its
departure, while declaring its predecessor as the new
tail to the other nodes in the chain. ACRE repeats the
tail cutting process as writes become more frequent
until the chain cannot be shortened any further to
maintain the minimum specified number of replicas as
shown in Figure 1(b). For example, the Google File
System maintains three replicas for each data object
by default [3].

In ACRE, adaptation is performed by adding or re-
moving a node at the end of the chain for coordinated
control with little overhead. Depending on read/write
workloads, a node can be removed from and added
back to the tail later; however, the newly added
node only needs the latest versions acknowledged
by the current tail. When a new node is added to
the tail, the current tail continues to serve the data
requests, while sending the latest data to the new
tail in the background to minimize the impact on the
performance.

2.2 Chain Adaptation

In this paper, we assume that clients are given
the list of the data stores currently in the chain.
In the specific implementation of ACRE evaluated
in Section 3, the head node disseminates the list
whenever it is updated. Also, a client submits a read
request to a (pseudo) randomly selected data store
for load balancing purposes, while always submitting
a write request to the head node. In addition, ACRE
has a number of tunable parameters, such as the
chain adaptation threshold that triggers the chain to
adapt to the data access pattern. One metric, two
thresholds, and two constraints used for adaptation in
ACRE are described in this subsection.

For performance enhancement via adaptation, we
use the read ratio metric that measures the ratio of



read requests to writes tracked at each node in the
chain. This ratio is updated following every request
reception at a given node. It should be emphasized
that the scope of the ratio is limited to a single node
but all writes to the chain will eventually touch each
node in the chain. (However, this is not true for read
requests). Using the read ratio measured at each node,
the chain is adapted by ACRE, if all the following
thresholds are exceeded and the constraints are met.

• Extend threshold: This is the upper bound used to
determine when the chain will benefit from adding
a new node. When the read ratio exceeds this
threshold at any node that individual node sends
the tail a request to extend the chain (provided
the following adaptation constraints 1 and 2 are
met).

• Reduce threshold: This is the lower bound used to
determine when the chain will benefit from cutting
the tail. When the reduce threshold exceeds the
read ratio at a node, the node sends the tail a re-
quest to shorten the chain (provided the following
two constraints are met).

In addition to defining the read ratio and the thresh-
olds for adaptation, we allow adaptation only if the
following two constraints are met to support hysteresis
and avoid potential oscillations.

• Constraint 1. Minimum request bound: The min-
imum request bound imposes a lower limit on the
number of requests a node has processed before al-
lowing a chain adaptation request to be sent. This
bound allows ACRE to avoid too frequent adapta-
tion, which can result in oscillatory and unstable
system behaviors.

• Constraint 2. Minimum adaptation gap: The min-
imum adaptation gap imposes a minimum wait
time between two consecutive adaptation requests
processed by the chain. This allows time for the
previous request to take effect prior to requesting
a similar adaptation. As any adaptation happens
at the tail, the tail tracks the amount of time since
the last adaptation. No additional adaptation will
be allowed until this minimum amount of time has
passed.

We observe that it is possible for the nodes in
the chain may make conflicting requests for chain
adaptation in an extreme case. For example, one
node may request ACRE to extend the chain, while
another node may request ACRE to shorten the chain

Figure 2. Response Time for Test 1

when the read load is largely imbalanced among the
nodes in the chain. To address this problem, every
adaptation request is sent to the tail that makes a final
decision and actually adapts the chain, if necessary,
to decrease the data access delay. In this paper, the
tail makes a decision for adaptation based on the read
ratio measured by itself, if two or more nodes send
conflicting adaptation requests to the tail and the
two constraints are satisfied. We take this approach,
because the tail is aware of the progress of all writes
and receives a roughly fair share of read requests, since
clients randomly distribute read/write requests to the
nodes for load balancing purposes in this paper.

3 Performance Evaluation

In this section, we implement ACRE and CRAQ us-
ing TCP/IP and evaluate their performance. We de-
scribe our experimental settings for synthetic workload
generation followed by the performance results.

3.1 Experimental Settings

In this paper, we aim to evaluate CRAQ and ACRE
for different synthetic read/write workloads, similar
to [6]. More specifically, three tests are performed
for workloads that model read-heavy, write-heavy, and
mixed request streams, respectively.

• Test 1: In this test, data are initially written once
but only read later on. Hence, the read to write
ratio approaches infinity to model a read-heavy
workload.

• Test 2: In this test, data are initially read but only
written later on. Thus, the read to write ratio ap-
proaches zero, modeling a write-heavy workload.



Figure 3. Response Time for Test 2

• Test 3: The read to write ratio set to 1 in this test.
Hence, an equal number of read and write requests
are issued to model a balanced read/write split.

We initially use 4, 10, and 10 storage nodes in Test
1, Test 2, and Test 3, respectively. ACRE may extend
or shrink the chain between 4 and 10 nodes based
on the data access pattern. Each test is run for 5
minutes. These tests were intended to demonstrate
the benefits of ACRE over a short burst of extreme
read to write ratios. In each test, 100 clients running
on 4 physical machines submit read/write requests
to the storage nodes in the chain. A write request
is always sent to the head to maintain the strong
consistency of the chained data nodes. A read request
is submitted to one of the available nodes in the chain
that is selected using a pseudo random number gen-
erator for load balancing. After sending a read/write
request, a client waits for a random inter-request
delay selected in the range of [0ms, 100ms]. Hence,
on average, 2,000 read/write requests are submitted
to the chain every second. Each read/write request
reads/writes 1024 bytes. For ACRE, the minimum
request bound for adaptation and minimum adap-
tation gap are set to 500 requests and 30s, respectively.

3.2 Performance Evaluation Results

Each data point in Figure 2 - Figure 4 shows the
average response time of read/write requests processed
per second measured in the four physical machines
hosting the clients. (In ACRE, a chain can be ex-
tended up to 10 nodes. However, the response time
in the other nodes remain similar to the ones shown
in the figures.) From these figures, we observe that
the response time of ACRE is considerably shorter
than that of CRAQ. The response time gap becomes

Figure 4. Response Time for Test 3

pronounced after 30s. As shown in the figures, the
response time of ACRE is 30% - 50% shorter than
that of CRAQ after 30s. By dynamically adapting
the chain based on the data access patterns, ACRE
reduces the service delay, while supporting strong data
consistency and data availability. This contrasts to the
popular data stores, e.g., [3, 2], which sacrifice strong
data consistency and rely on eventual consistency,
providing no guarantee on data consistency. These
results show the viability of adaptive replication
that provides a strong consistency guarantee, while
adapting to dynamic read/write patterns.

4 Related Work

Data are partitioned and replicated to support
high performance and availability. Popular key-value
stores, e.g., [1, 2], only support eventual consistency
among replicas. As a result, inconsistent data can
be exposed to distributed clients accessing shared data.

Chain replication [7] supports strong consistency
by using a chain of replicated data stores. How-
ever, the tail node in a chain can be a performance
bottleneck, because only the tail has to process all
reads. CRAQ [6] enhances the read performance
by allowing not only the tail but also all the other
nodes in a chain to process reads. However, the tail
can be a bottleneck, if write-heavy workloads are given.

ACRE addresses this problem by dynamically
adapting the chain in a cost-effective manner, if nec-
essary, to improve the performance by considering
data access patterns unlike static approaches, such as
[3, 2, 7, 6], which support either weak consistency or
strong consistency in a fixed chain. The need for strong
consistency and high availability with load balancing



is increasing. Also, many real world applications have
time-varying data access patterns. However, it is chal-
lenging to support strong consistency, high availabil-
ity, and adaptivity to dynamic data access patterns.
ACRE takes an initial step to address these challenges.

5 Conclusions and Future Work

Due to the lack for strong consistency among repli-
cas, replicated key-value stores may suffer from data
inconsistency. In this paper, we present a new ap-
proach, called ACRE, to support strong consistency,
load balancing, and adaptivity to dynamic data access
patterns to enhance the performance. In the future,
we will investigate more efficient approaches to sup-
porting strong consistency with further enhanced per-
formance.

Acknowledgement

This work was supported, in part, by the NSF grant
CNS-117352.

References

[1] E. Brewer. Towards Robust Distributed Systems. In
PODC Keynote, 2000.

[2] G. Decandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, D. Hastorun, G. Decandia, and W. Vogels.
Dynamo: Amazon’s Highly Available Key-Value Store.
Symposium on Operating Systems Principles, 2007.

[3] S. Ghemawat, H. Gobioff, and S. Leung. The Google
File System. In Proceedings of the 19th ACM Sym-
posium on Operating Systems Principles (SOSP’03),
2003.

[4] R. T. Kaushik and M. Bhandarkar. GreenHDFS: To-
wards An Energy-Conserving, Storage-Efficient, Hybrid
Hadoop Compute Cluster. In HotPower, 2010.

[5] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Don’t Settle for Eventual: Scalable Causal
Consistency for Wide-Area Storage with COPS. In
ACM Symposium on Operating Systems Principles,
2011.

[6] J. Terrace and M. J. Freedman. Object Storage on
CRAQ: High-throughput chain replication for read-
mostly workloads. In USENIX Annual Technical Con-
ference, 2009.

[7] R. van Renesse and F. B. Schneider. Chain Replication
for Supporting High Throughput and Availability. In
Operating Systems Design and Implementation, 2004.


