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Abstract—In data-intensive real-time applications, e.g., trans- the data at rest stored in the distributed file system. Tlings, t
portation management and location-based services, the amot  data could be outdated and subject to significant I/O oveltiea
of sensor data is exploding. In these applications, it is deable Any information, e.g., route recommendations, derivecgisi

to extract value-added information, e.g., fast driving roues, tal data has littl | M t th ¢
from sensor data streams in real-time rather than overloadng S'@/€ S€NSOr data has fittie value. Moreover, not the system

users with massive raw data. However, achieving the objest is DUt @ user has to manually execute sensor data analytics
challenging due to the data volume and complex data analysis periodically, if necessary, to continuously analyze thal re
tasks with stringent timing constraints. Most existing big data \world status. This approach is tedious and further increase

management systems, e.g., Hadoop, are not directly applis® o gifficulty of developing real-time sensor data analysis
to real-time sensor data analytics, since they are timing agstic applications

and focus on batch processing of previously stored data thare
potentially outdated and subject to I/O overheads. To addrss Despite the increasing demand for real-time sensor data
the problem, we design a new real-time big data management gnaytics, related work is relatively scarce. Advancedadat

framework, which supports a non-preemptive periodic task
model for continuous in-memory sensor data analysis and a stream management systems, e.g., Storm [4], S4 [5], and Spar

schedulability test based on the EDF (Earliest Deadline Fit) Streaming [6], suppomear real-time stream data processing;

algorithm to derive information from current sensor data in real- however, they do not consider explicit deadlines or real-
time by extending the map-reduce model originated in functtnal  time scheduling to ensure the timeliness of data processing
programming. As a proof-of-concept case study, a prototype Although the problem of meeting deadlines in Hadoop has

system is implemented. In the performance evaluation, it is : . . .
empirically shown that all deadlines can be met for the teste been investigated [7], [8], [9], [10], they inherit the shor

sensor data analysis benchmarks. comings of Hadoop optimized for batch processing of the
data in the secondary storage. To address the problem, we
|. INTRODUCTION design a new real-time map-reduce framework, called RTMR

In a number of important real-time applications, e.g., sran(Real-Time Map-Reduce), that provide several unique featu
portation management, location-based services, andtistalic not provided by most existing big data management systems
health monitoring, the volume of sensor data is increasimacluding [1], [2], [4], [5], [6], [11], [7], [8], [9]. [10]:
rapidly. It is required to process large amounts of sensta da
in real-time to extract value-added information, e.g.{/fasl-
efficient driving routes and user mobility/network usagé- pa
terns. However, timely extraction of valuable informatfoom
large raw sensor data is challenging due to the increasiteg da
size and complex data analysis tasks with timing conssaint

MapReduce [1] and Hadoop [2] greatly simplify the de-
velopment of parallel big data analysis applicatiéms.user
only has to write seriatap() andr educe() functions. The . ; b ,
underlying runtime system divides massive data into smalle  iMing constraints considering both the computation and
chunks and schedules map/reduce tasks to process the datadata access delay. S
chunks in parallel on the user’s behalf. However, they ate no * S€veral mechanisms for efficient in-memory sensor data
readily applicable to real-time sensor data analytics évesal analysis are supported. First, sensor data are directly
reasons. First, they are timing agnostic. As a result, thay m  Stré@med into main memory to let RTMR distill infor-
miss many deadlines, diminishing the value of the derived ™Mation from them on the fly. Second, intermediate data

information. They only support one-time batch processing o~ 9€nerated in a map/reduce phase is pipelined straight
to the next phase, if any, without being staged in the

1Even though there is no single definition of big data on whisergbody local disk or distributed file system unlike Hadoop and
agrees, the notion of five Vs of big data [3] volume, velocity, variety, its variants. Further, memory reservation is Supported
veracity (uncertainty), and value is broadly accepted; that is, the volume, . .
variety, and velocity of data generation are increasing fiso, from big data to ensure enoth space Is allocated to store the Input,
that may involve uncertainties, valuable information reetm be extracted. intermediate, and output data for each real-time sensor

o Using the API (Application Programming Interface) of
RTMR, a user-an application developeican write serial
map() andr educe() functions for a specific real-time
data analysis application, and specify the data analysis
task parameters, e.g., the deadlines and periods.

« A non-preemptive periodic task model is supported for
continuous real-time analysis of sensor data. Moreover,
an EDF-based schedulability test is provided to support
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Fig. 1. RTMR Structure
Fig. 2. Map Function for Cell Phone Count
data analysis task. 1/// input: internediate (CellID, 1) pairs

In addition, we have implemented RTMR by extendirg// output: (CelllD, count)

Phoenix++ [11], a state-of-the-art open source multicoa@m® reidtrJ];:egioﬂtm kiy'O, iterator value) {

reduce framework, to support the aforementioned RT for each v in val ue {
features for real-time data analytics rather than rethoftts count = count + Vv:
Hadoop. 7

For performance evaluation, we generate synthetic peridy  €m t(key, count);
workloads using four micro-benchmarks to model real-ti
data analysis tasks: k-means clustering, linear regmssio
histogram, and matrix multiplication that can be applied to Fig. 3. Reduce Function for Cell Phone Count
support, for example, mobile user-clustering for locatb@sed
services, sensor data value or financial market prediction,
and autonomous vehicles. Using the benchmarks, we desigh? RTMR, a user has to write two serial functions, map() and
several real-time data analysis task sets and analyze ttiefuce(), and specify the period and deadline for eachtireal-
schedulability. For the task set with the tightest deadlinee data analysis task. For example, the map and reduce fusction
performance evaluation results empirically verify theestir N Figures 2 and 3 can be used to periodically monitor the
lability test by showing that all deadlines are actually mefumber of the active mobile phones in each cell in a local
On the other hand, Phoenix++ used as the baseline failscgjlular network as a basis to analyze customers’ mobifity a
do it. Further, for the task set, RTMR processes over 0.72 TEtwork usage patterns.
of sensor data in each 1000 second experimental run, whichrigure 4 illustrates the processing steps and data flow of
translates to more than 2.59 TB/hour and 62 TB/day. the MR engine in Figure 1 that processes real-time sensor

The remainder of this paper is organized as follows. [#ata analysis tasks based on the map-reduce model, which is
Section II, an overview of the RTMR architecture is giverPfiginated in functional programming [12] but not tied to a
In Section Ill, the real-time task model and scheduling féiPecific implementation, e.g., Hadoop. More specificalig t
real-time data analytics are described. In Section v, tif@rliest deadline job dispatched by the scheduler is pseces
performance of our approach is evaluated. Related work ¥ the MR engine as follows.
discussed in Section V. Finally, Section VI concludes thegpa 1) In RTMR, each input sensor datum is expressed as

and discusses future work. a (key, value) pair, e.g., (cell ID, phone number) for
location-based services, and streamed into memory. The
Il. OVERALL ARCHITECTURE OFRTMR input (key, value) pairs are evenly divided into chunks
The overall structure of our framework for real-time data
analytics is depicted in Figure 1. The periodic instances of Input Map Phase Reduce
i i i Ph
the data analysis tasks, called jobs, are scheduled vialiie E chunk 0~ map() Shuffle ase

scheduler. The job dispatched by the scheduler is processed
by the map-reduce (MR) engine until the completion without

being preempted to avoid large overheads for preemption and chunk 1 ——> map() reduce()
context switching in real-time data analytics. Althoughsit

often assumed that the context switch overhead is ignorable chunk2  —— map() reduce()
in real-time scheduling, this may not be the case for reaéti

data analysis tasks, each of which deals with relativelgdar chunk3 ___, map()

data every period, e.g., millions of sensor readings pepger . P

for transportation management or location-based servikes

illustrated in Figure 1, sensor data are directly streaméal i

main memory and intermediate data are pipelined to the next el
map/reduce phase, if any, until the job is completed. Amall

the derived information is returned to the user. Fig. 4. Map-Reduce Model

map()



by the MR engine and assigned to mappers, i.e., work@ata analysis task that consistspf(> 1) parallel execution

threads. segments, i.e., map/reduce phases, defined as follows:
2) The mappers independently execute the user-specifiedefinition 1:

map() function on different data chunks in parallel. For

1 1 S; S;
. R X 1 y ey ., . 7CiaDi
example, each mapper executes the map() function for i ((_< €ir My > , <etm'>) ) .
t\gheresi =1, if r; only consists of a map phasg.= 2, if it has

cellphone count in Figure 2, producing intermedial e ; ,
both map and reduce phases> 2 if it consists of multiple

(key, value) pairs as a result. . ) . :
3) The map phase is completed when all the mappers fini@"s of parallel map and reduce phases iteratively exddnte

) . . itior? j i i
processing the assigned data chunks. If there is no red§&9uence. In additior; andm; are the estimated maximum

phase, which is optional, the (key, value) pairs produc@d(eC”tion time of segmerjtand the_number of cores uged in
by the mappers are returned as the final result and ¢ Segment, respectively. The (estimated) maximum eiecut

job is terminated. time of 7; is: C; = 37/, e/, _

4) If there is a reduce phase, the intermediate (key, value)YSing the APl of RTMR, a user needs to specify the map()
pairs produced by the mappers are directly pipelined f§1d reduce() functions as well as and D; in Definition 1
one or more reducers and sorted based on their kel 7i considering the application semantfcin RTMR, C;
Specifically, the pointers to the intermediate results #i €Stimated offline considering not only the CPU time but

memory are passed to the reducers with no expensﬁ;léo the memory access delay, because the data access delay
data copies may not be ignorable in real-time data analytics. In thisquap

5) The reducers execute the user-defined reduce() functfon€ 1 1S run multiple times offline. For each run of,
in parallel to produce the final (key, value) pairs by"€ latency from reading the first input (key, value) pair to

processing the assigned non-overlapping intermedizﬂ@_ducmg the Igst qutput (key,.value) pair is used as the
(key, value) pairs. When all the reducers complet@sumated execution time to consider both the computatioin a

the final (key, value) pairs are returned and the job g’ata access latency. The maximum observed execution time
terminated. In an iterative application that consists Gcduired from the prespecified number of runs is used;as
multiple pairs of map and reduce phases, the output _fln RTMR, input sensor data are streamed into memory as
the reduce phase is directly pipelined to the map pha(ggcussed before. Further,. we assume that the size of input
of the next iteration by passing the pointers to the dataensor data is predetermined. At the end of a segment,

. . . ) . goduces intermediate data that is input for the next segmen
In RTMR, all input, intermediate, or final (key, value) pairgyecteq consecutively. If there is no following segmemayt

are stored in memory unlike MapReduce [1], Hadoop [2], Qe the final output of a periodic instance of Given that,
their variants. Phoenix++ [11] effectively utilizes the me pryip analyzes the maximum intermediate/output data sizes
ory hierarchy to process map-reduce tasks in memory Usigy yeserves enough memory for which typically consists
multiple CPU cores. However,. I dogs not support a periodi 4 few common operations, such as filtering, aggregation,
task r_nodel, real-time scheduling, dlrect.streamlng of SENS, nrediction of physical phenomena (e.g., the traffic spaed
data into memory, or memory rese_rvatlon. I_nstead, It ONY road segment) based on the recent history. If unimportant
supports FIFO scheduling. Further, it reads input data fropy, + qata are filtered out or sensor data are aggregated in a

and wriFes.outp.ut to the disk. RTMR extends Phoenix++ _%hase, the size of the output/intermediate data productx at
supporting: 1) input sensor data streaming, 2) intermedi nd of the phase is not bigger than the input. Prediction via,

data pipelining, 3) a non-preemptive periodic task mo.d.)al, r example, linear/nonlinear regression produces a [iirezte
memory resgrvatlon! and 5) an EDF-based schgdulat_)lllty Bimber of model parameters, which is considerably smaller
and scheduling required for real-time data analytics. Al 5, the input. Even when a join, one of the most expensive
description of the real-time task model, memory resertioy e ator for data processing, is performed between a pair of
and scheduling follows. input sensor data of size§ and M, the maximum output
size is limited to NM in the worst-case. AlsoN and M
are relatively small compared to data sizes considered in
In this section, the task model, memory reservation, ametch data analysis systems, e.g., Hadoop, because only the
scheduling supported by RTMR are discussed. current sensor data are processed per period for real-thtae d
analytics in RTMR.

IIl. REAL-TIME TASK MODEL AND SCHEDULING

A. Task Model and Memory Reservation ) ) -
2For the clarity of presentation, we assume that the dataitipaing

In this paper, we assume that a real-time sensor data amalysél shuffle steps in Figure 4 are included in the map and regheses,

system needs to execute a set.dhdependent periodic map—;Sdpfgg‘(j‘zg-pﬁ'zgééhe" latencies are added to the ei@tuimes of the map

reduce taskg' = (71, 72, ..., 7,) that are not S_elf'SUSpend'ng' 3In general, the analysis of worst-case execution times in uiticore
In the system, there arem > 1 cores available for real- processor is an open problem. Analyzing the execution tiohesal-time data

time data analytics. In this paper, an arbitrary real-timmm analysis tasks is even more challenging due to the incrgaste and volatility
’ of sensor data. A thorough investigation of more advancquoaghes to

redupe taSkTi. e I'is a.ssoc_la}ted W't.h the .perloﬂ’i a}nd analyze the execution times of real-time data analysisstéskeserved for
relative deadlineD; = P; (implicit deadline).7; is a real-time future work.



B. Schedulability Test than the maximum ones can be used, if occasional deadline
In the j*" segment ofr;, wherel < j < s;, m, threads are misses are acceptable to a certain degreean use fewer
SO A ’ thanm cores such that more than one tasks can run together,

used to run the user-specified map() or reduce() function of "'’ X )
in a parallel segment depending on whethgis currently in similar to [15], [16], if the maximum memory access delay and
tention for shared resources, e.g., the system bus amd me

the map or reduce phase. In this paper, each core runs a sitfQ'¢ _
map or reduce thread at a time. However; threads run in ory controller, between concurrent data analysis tasksbean

parallel in thej™ segment, following the data-parallel, Sing|eguant|f|ed in terms of timing. In a many-core system, the-real

instruction-multiple-data (SIMD) model. In parallel reghe time data anglysis t‘?‘SkS can be par.titi.oned into multialles?
data analytics, there is a trade-off between data and task-pall€ COres using a bin-packing heuristic [13]. In each partjt
lelism. If more cores are used by an individual task to preced'€ tasks statically assigned to the partition can be sdaedu
more data simultaneously in a SIMD manner, fewer tasks cH4find the method described in this paper. However, parétio
run in parallel or vice versa. As scheduling in multiprocess Scheduling of real-time data analysis tasks is challengimge

real-time systems is NP-hard in the strong sense [13], \H@-pagking is NP-compIete.Athorough investigation afsl
devise a heuristic to schedule real-time data analysis task 'SSUES is beyond the scope of this paper and reserved foefutu

this paper. More specifically, we intend to maximize the dat¥°"k-
parallelism subject to the available hardware paralleltsm
settingm;] = m for 7;, wherem is the total number of the
cores available for real-time data analytics in the system. In this section, the micro-benchmarks and system settings
this way, we finish a periodic instance of an individual reatised for performance evaluation are described. Also, the
time data analysis task as early as possible, while avoidif§Perimental results are discussed.
colnr;[etﬁtisswnches due to preem_ptlons. . . DAI'—' Workloads and System Settings

paper, we apply non-preemptive uniprocessor E
scheduling to meet timing constraints of real-time datdymia ~ For performance evaluation, the following popular data
tasks using the schedulability test for non-preemptivéopér  analytics benchmarks are adapted to model periodic ne-ti
tasks with no idle time insertion [14], because cores are data analysis tasks.
used as if they are a faster uniprocessor for data and compute Histogram (HG):A histogram is a fundamental method

IV. PERFORMANCEEVALUATION

intensive real-time data analytics. Specifically, the sesil® = for a graphical representation of any data distribution. In
(71, 72,...,7) iS schedulable, if the two following necessary  this paper, we consider image histograms that plot the
and sufficient conditions are met: number of pixels for each tonal value to support funda-
Condition 1. mental analysis in data-intensive real-time applications
zn: Gi 1 1) e.g., traffic control or visual surveillanéeThe input of
P P~ this periodic task is a large image with7 x 108 pixels
per task period. The input data size processed per period
Condition 2. Vi, 1 <i <mn; VL, P < L < P;: is approximately 1.4 GB.
=l « Linear Regression (LR)Linear regression is useful for
L>C; +Z { J C; 2 real-time data analytics. For example, it is applied to
j=1 P predict sensor data values and stock prices.x 107

(z,y) points in two dimensional space, totaling 518
MB, are used as the input per task period to model the
approximately linear relation betweenandy via LR.
Matrix Multiplication (MM): MM is heavily used in
autonomous vehicles and many scientific applications. In
this paper, MM multiplies two2048 x 2048 matrices
together per task period. Each input matrix is 16 MB.
The output matrix is 16 MB too.

o K-means clustering (KM)This is an important data min-
ing algorithm for clustering. For example, it can be used
to cluster mobile users based on their locations for real-
time location-based services. It partitioh®bservations
into k clusters (usually > k) such that each observation
belongs to the cluster with the nearest mean. The input of
the k-means task i80” points in two dimensional space,
totaling 77 MB, per task period.

Condition 1 requires the processor is not overloaded. In
Condition 2, the tasks il are sorted in hon-descending order
of periods. The right hand side of the inequality in Condiitio
2 is a least upper bound on the processor demand realizable in
an interval of lengthL that starts when;’s job is scheduled
and ends sometime before the deadline of the job. The two
conditions are unrelated in that conceiving of both schesulel
task sets with the total utilization of 1 and unschedulahgkt
sets having arbitrarily small utilization are possible][14

If T" is schedulable subject to Eq 1, Eq 2, and the memory
constraint, RTMR schedules the periodic data analysisstask
Otherwise, it provides feedback to the user so that the user
can adjust the task parameters, such as the task periods, or
provide faster map() and reduce() functions that may preduc
approximate results. After an adjustment, the scheditiabil
test is repeated for the modified task set.

We acknowledge that alternative scheduling methods COUIOlHG is not limited to image data but generally applicable ® dther types
be applicable. For example, the average execution timbemratof data, e.g., sensor readings.



All the benchmarks are reductive; that is, the size of thexecution time in Table | becomes marginal when> 8. In
intermediate/output data of all the benchmarks is not higgéM, individual points are often re-clustered and moved agion
than that of the input data. Among the tested benchmarkg, odifferent clusters until clustering is optimized in ternistioe
KM consists of more than one pair of map-reduce phaseklstance of each point to the closest mean. Thus, the cluster
Specifically, it is implemented as a series of seven pairs sites may vary dynamically depending on the distribution
iterative map and reduce phases. However, it generatesafidnput points between the consecutive map/reduce phases.
additional intermediate/output data; it only finds newneans As a result, threads may suffer from load imbalance. Thus,
and updates the cluster membership of each point accordirging more cores does not necessarily decrease the maximum
to the new means in each pair of the map and reduce phass®cution time of KM significantly.
For the tested benchmarks, enough memory is reserved as
discussed in Section Il

Our system used for performance evaluation has two AMD

TABLE Il
RELATIVE DEADLINES (SECONDS OF THE TASK SETS(I'] — I'g)

Opteron 6272 processors. Each of them has 16 cores running HG | LR | MM | KM
at 2.1 GHz. There is a 48 KB L1 cache and 1 MB L2 cache Iy | 23s ) 22s ) 30s | 255
per core. In addition, there is a 16 MB L3 cache shared among ?i 1715 185;5 ﬁz 182
the cores. Out of the 32 cores, one core is dedicated to the Iy | 45s| 5s | 7s | 6s
real-time scheduler and another core is exclusively used to s | 3s | 4s | 55 | 6s

T'g | 26s| 3s 4s 5s

generate periodic jobs of the real-time data analysis tadkes
remaining 30 cores are used to process the generated real-

time data analysis jobs. The system has 32 GB memory. Oj:]l:or performance evaluation, we intend to design a task set

prototype is implemented in Linux (kernel 3.5.2) to emulat\é{'th as short deadlines as possible. We have considered the

a real-time data analytics system that can be deployed t, zﬁotask sets in Table Il where the relative deadlines become

example, a traffic control or cellular network operationteen .rter froml’, to L. We. consider these task sets to a_nalyze
their schedulability for different numbers of cores subjec

B. Timeliness of Real-Time Data Analysis Tasks the two conditions specified in Eq 1 and Eq 2. In each task

In this section, we profile the maximum (observed) execg®l: @ longer deadline is assigned to a task with the larger
tion times of the tested benchmarks including the compartatiMaximum execution time. Also, in each task set, we have
and data access latency, perform the schedulability asalyicked task periods (i.e., relative deadlines) such that th
of real-time data management tasks offline based on tg@9est period in each task set is no more than twice longer
maximum execution times, and empirically verify whethez ththan th_e shortest period in the task set to mo_del real-tintee da
deadlines can be met for several sets of real-time data&ieal?nalys's tasks th_at need to b_e execut_ed relat|v_ely closadi_m €
tasks generated using the micro-benchmarks. Specificaity. other. InT'g, the tightest possible relative deadlines are picked
benchmark is run 20 times offline using randomly generatS§PI€Ct to these constraints in addition to Eq 1 and Eq 2. The
data. The maximum latency among the 20 runs is used for {R@XIMum execution times and relative deadlineseffor 30

schedulability test. cores are shown in th(_e last column_ (_':md_ row in Tables | and I,
respectively. The maximum total utilization bf; for 30 cores
TABLE | is setto 1 in Eq 1. Assigning shorter deadlines or bigger data
MAXIMUM EXECUTION TIMES IN SECONDS to the tasks iM's incurs deadline misses.
m=1 m=2 m=4 m=8 | m=16 | m=30 TABLE Il
HG | 2.41s| 1.67s| 0.88s| 0.56s| 0.33s | 0.2s SCHEDULABILITY OF THE TASK SETS

LR 149s| 1.3s | 1.18s| 0.95s| 0.62s | 0.37s
MM | 19.7s| 11.2s| 5.9s | 3.73s| 2.02s | 1.11s

m=1| m=2 | m=4 | m=8 | m=16 | m=30

KM 10.2s| 7.5s | 3.72s| 3.09s | 2.54s | 2.36s g ves ves ves ves ves ves

Ty no yes | yes | yes yes yes

Table | show the maximum execution times of the bench- [s | no | no | yes | yes | yes | yes

. . Iy no no no yes yes yes

marks derived offline. As the number of cores to process I's| no | no | no | no | ves | vyes
real-time data analysis tasksy, is increased from 1 to 30, I's | no no no no no yes

the maximum execution times of the HG, LR, MM, and

KM are decreased by over 12, 4.1, 17.7, and 4.3 times,Table Ill shows the results of the schedulability tests for
respectively. In HG and MM, load balancing among the corés —I'g. In Table 1ll, 'yes’ means a task set is schedulable for
is straightforward. As a result, the maximum execution time a specific number of cores used to run HG, LR, MM, and KM.
decreased significantly for the increasing number of thesorAll deadlines are met fof'; —I'g. We present the performance
used for real-time data analytics. Notably, LR’s maximumesults forl's that has the shortest deadlines and, therefore, it
execution time in Table | decreases substantially onlyrafts only schedulable whem = 30 as shown in Table IlI. All

m > 16. Form < 8, the hardware parallelism provided byfour periodic benchmark tasks, i.e., HG, LR, KM, and MM
the employed CPU cores is not enough to considerably spaasks inl's, simultaneously release their first jobs at time 0 and
up LR. On the other hand, the decrease of KM’s maximugontinue to generate jobs according to their periods specifi
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in the last row of Table Il for 1000s. As shown in Figures $ming constraints. Notably, simply using advanced reakt
— 8, all deadlines of the periodic real-time data analysiksasScheduling techniques that support intra-task paraelisg.,
in I'g are met. In total, more than 0.72 TB of data are processé®], [16], does not necessarily enhance the utilizatioor. F
in a 1000s experimental run, which is projected to be over €ample, the best known capacity augmentation bound of any
TB/day. global scheduler for tasks modeled as parallel directedl@cy
In this paper, Phoenix++ [11] is used as the baseline. It ggaphs is 2.618 [16]. Hence, the total utilization of thekFget
closest to RTMR in that it is a state-of-the-art in-memorghould be no more tham/2.618 and the worst-case critical-
multi-core map-reduce system unlike the other approacH@h length of an arbitrary task (i.e., the maximum execution
mainly based on Hadoop (discussed in Section V). Howeverlife of r; for an infinite number of cores)_ln the task set cannot
has missed most deadlinesaf for several reasons (although®xceedl/2.618 of D; to meet the deadlines.
it meets the deadlines for light workloads, suchTasusing Overall, our system deS|gn an(_:i experimental results serve
30 cores). First, it is timing agnostic and only supportdS Proof of concept for real-time big sensor data analy@us.
FIFO scheduling as discussed before. Further, it readst ing(Prk presented in this paper opens up many research issues,
data from and writes output to secondary storage withofitd-» more advanced scheduling, load balancing, exedtirtien
supporting input sensor data streaming into memory. Neitr@alysis, and real-time data analysis techniques, to eiigi
does it support in-memory pipelining of intermediate data f €xtract value-added information from large raw sensor tata
iterative tasks. As a result, a single operation to readtidpta @ timely manner.
from disk (write output to disk) takes 38ms 1.35s (71ms
— 1.14s) for the tested benchmarks. (More detailed results of
Phoenix++ are omitted due to space limitations.) Hadoop [2] is extensively used for big data analytics. A
In Figures 5— 8, we also observe that the periodic reallot of work has been done to enhance Hadoop too [17].
time data analysis jobs finish earlier than the deadlines duefortunately, these approaches based on batch procesfsing
to the pessimistic real-time scheduling needed to meet tte data stored in the distributed file system neither censid
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timing constraints nor support periodic in-memory progggs more efficient scheduling and resource management, while

of sensor data streams in real-time. HalLoop [18] suppopsoviding more advanced real-time data analytics.

iterative applications in Hadoop; however, it does not supp

the other key features of RTMR for real-time data analytics.
The problem of meeting real-time deadlines in Hadoop is This work was supported, in part, by NSF grant CNS-

investigated in [8], [7], [9], [10]. However, these apprbas 1117352.
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