
A Framework for Real-Time Information Derivation
from Big Sensor Data

Liehuo Chen and Kyoung-Don Kang
Department of Computer Science

State University of New York at Binghamton
{lchen66,kang}@binghamton.edu

Abstract—In data-intensive real-time applications, e.g., trans-
portation management and location-based services, the amount
of sensor data is exploding. In these applications, it is desirable
to extract value-added information, e.g., fast driving routes,
from sensor data streams in real-time rather than overloading
users with massive raw data. However, achieving the objective is
challenging due to the data volume and complex data analysis
tasks with stringent timing constraints. Most existing big data
management systems, e.g., Hadoop, are not directly applicable
to real-time sensor data analytics, since they are timing agnostic
and focus on batch processing of previously stored data thatare
potentially outdated and subject to I/O overheads. To address
the problem, we design a new real-time big data management
framework, which supports a non-preemptive periodic task
model for continuous in-memory sensor data analysis and a
schedulability test based on the EDF (Earliest Deadline First)
algorithm to derive information from current sensor data in real-
time by extending the map-reduce model originated in functional
programming. As a proof-of-concept case study, a prototype
system is implemented. In the performance evaluation, it is
empirically shown that all deadlines can be met for the tested
sensor data analysis benchmarks.

I. I NTRODUCTION

In a number of important real-time applications, e.g., trans-
portation management, location-based services, and structural
health monitoring, the volume of sensor data is increasing
rapidly. It is required to process large amounts of sensor data
in real-time to extract value-added information, e.g., fast/fuel-
efficient driving routes and user mobility/network usage pat-
terns. However, timely extraction of valuable informationfrom
large raw sensor data is challenging due to the increasing data
size and complex data analysis tasks with timing constraints.

MapReduce [1] and Hadoop [2] greatly simplify the de-
velopment of parallel big data analysis applications.1 A user
only has to write serialmap() andreduce() functions. The
underlying runtime system divides massive data into smaller
chunks and schedules map/reduce tasks to process the data
chunks in parallel on the user’s behalf. However, they are not
readily applicable to real-time sensor data analytics for several
reasons. First, they are timing agnostic. As a result, they may
miss many deadlines, diminishing the value of the derived
information. They only support one-time batch processing of

1Even though there is no single definition of big data on which everybody
agrees, the notion of five Vs of big data [3]− volume, velocity, variety,
veracity (uncertainty), and value− is broadly accepted; that is, the volume,
variety, and velocity of data generation are increasing fast. Also, from big data
that may involve uncertainties, valuable information needs to be extracted.

the data at rest stored in the distributed file system. Thus, the
data could be outdated and subject to significant I/O overheads.
Any information, e.g., route recommendations, derived using
stale sensor data has little value. Moreover, not the system
but a user has to manually execute sensor data analytics
periodically, if necessary, to continuously analyze the real
world status. This approach is tedious and further increases
the difficulty of developing real-time sensor data analysis
applications.

Despite the increasing demand for real-time sensor data
analytics, related work is relatively scarce. Advanced data
stream management systems, e.g., Storm [4], S4 [5], and Spark
Streaming [6], supportnear real-time stream data processing;
however, they do not consider explicit deadlines or real-
time scheduling to ensure the timeliness of data processing.
Although the problem of meeting deadlines in Hadoop has
been investigated [7], [8], [9], [10], they inherit the short-
comings of Hadoop optimized for batch processing of the
data in the secondary storage. To address the problem, we
design a new real-time map-reduce framework, called RTMR
(Real-Time Map-Reduce), that provide several unique features
not provided by most existing big data management systems
including [1], [2], [4], [5], [6], [11], [7], [8], [9], [10]:

• Using the API (Application Programming Interface) of
RTMR, a user−an application developer−can write serial
map() andreduce() functions for a specific real-time
data analysis application, and specify the data analysis
task parameters, e.g., the deadlines and periods.

• A non-preemptive periodic task model is supported for
continuous real-time analysis of sensor data. Moreover,
an EDF-based schedulability test is provided to support
timing constraints considering both the computation and
data access delay.

• Several mechanisms for efficient in-memory sensor data
analysis are supported. First, sensor data are directly
streamed into main memory to let RTMR distill infor-
mation from them on the fly. Second, intermediate data
generated in a map/reduce phase is pipelined straight
to the next phase, if any, without being staged in the
local disk or distributed file system unlike Hadoop and
its variants. Further, memory reservation is supported
to ensure enough space is allocated to store the input,
intermediate, and output data for each real-time sensor

Data

analysis

tasks

Scheduler
MR

engine

Derived

info.

Sensor data

streams

...

Intermediate

data

Fig. 1. RTMR Structure

data analysis task.

In addition, we have implemented RTMR by extending
Phoenix++ [11], a state-of-the-art open source multicore map-
reduce framework, to support the aforementioned RTMR
features for real-time data analytics rather than retrofitting
Hadoop.

For performance evaluation, we generate synthetic periodic
workloads using four micro-benchmarks to model real-time
data analysis tasks: k-means clustering, linear regression,
histogram, and matrix multiplication that can be applied to
support, for example, mobile user-clustering for location-based
services, sensor data value or financial market prediction,
and autonomous vehicles. Using the benchmarks, we design
several real-time data analysis task sets and analyze their
schedulability. For the task set with the tightest deadlines, the
performance evaluation results empirically verify the schedu-
lability test by showing that all deadlines are actually met.
On the other hand, Phoenix++ used as the baseline fails to
do it. Further, for the task set, RTMR processes over 0.72 TB
of sensor data in each 1000 second experimental run, which
translates to more than 2.59 TB/hour and 62 TB/day.

The remainder of this paper is organized as follows. In
Section II, an overview of the RTMR architecture is given.
In Section III, the real-time task model and scheduling for
real-time data analytics are described. In Section IV, the
performance of our approach is evaluated. Related work is
discussed in Section V. Finally, Section VI concludes the paper
and discusses future work.

II. OVERALL ARCHITECTURE OFRTMR

The overall structure of our framework for real-time data
analytics is depicted in Figure 1. The periodic instances of
the data analysis tasks, called jobs, are scheduled via the EDF
scheduler. The job dispatched by the scheduler is processed
by the map-reduce (MR) engine until the completion without
being preempted to avoid large overheads for preemption and
context switching in real-time data analytics. Although itis
often assumed that the context switch overhead is ignorable
in real-time scheduling, this may not be the case for real-time
data analysis tasks, each of which deals with relatively large
data every period, e.g., millions of sensor readings per period
for transportation management or location-based services. As
illustrated in Figure 1, sensor data are directly streamed into
main memory and intermediate data are pipelined to the next
map/reduce phase, if any, until the job is completed. Finally,
the derived information is returned to the user.

1 // input: (CellID, PhoneNum) pairs
2 // output: intermediate (key, value) pairs
3 map(void *input) {
4 for each CellID in input {
5 emitIntermediate(CellID,1);
6 }
7 }

Fig. 2. Map Function for Cell Phone Count

1 // input: intermediate (CellID, 1) pairs
2 // output: (CellID, count)
3 reduce(int key, iterator value) {
4 int count = 0;
5 for each v in value {
6 count = count + v;
7 }
8 emit(key, count);
9 }

Fig. 3. Reduce Function for Cell Phone Count

In RTMR, a user has to write two serial functions, map() and
reduce(), and specify the period and deadline for each real-time
data analysis task. For example, the map and reduce functions
in Figures 2 and 3 can be used to periodically monitor the
number of the active mobile phones in each cell in a local
cellular network as a basis to analyze customers’ mobility and
network usage patterns.

Figure 4 illustrates the processing steps and data flow of
the MR engine in Figure 1 that processes real-time sensor
data analysis tasks based on the map-reduce model, which is
originated in functional programming [12] but not tied to a
specific implementation, e.g., Hadoop. More specifically, the
earliest deadline job dispatched by the scheduler is processed
by the MR engine as follows.

1) In RTMR, each input sensor datum is expressed as
a (key, value) pair, e.g., (cell ID, phone number) for
location-based services, and streamed into memory. The
input (key, value) pairs are evenly divided into chunks

Map Phase Reduce

Phase

Input

chunk 0

chunk 1

chunk 2

chunk 3

chunk c

.

.

.

Fig. 4. Map-Reduce Model

by the MR engine and assigned to mappers, i.e., worker
threads.

2) The mappers independently execute the user-specified
map() function on different data chunks in parallel. For
example, each mapper executes the map() function for
cellphone count in Figure 2, producing intermediate
(key, value) pairs as a result.

3) The map phase is completed when all the mappers finish
processing the assigned data chunks. If there is no reduce
phase, which is optional, the (key, value) pairs produced
by the mappers are returned as the final result and the
job is terminated.

4) If there is a reduce phase, the intermediate (key, value)
pairs produced by the mappers are directly pipelined to
one or more reducers and sorted based on their keys.
Specifically, the pointers to the intermediate results in
memory are passed to the reducers with no expensive
data copies.

5) The reducers execute the user-defined reduce() function
in parallel to produce the final (key, value) pairs by
processing the assigned non-overlapping intermediate
(key, value) pairs. When all the reducers complete,
the final (key, value) pairs are returned and the job is
terminated. In an iterative application that consists of
multiple pairs of map and reduce phases, the output of
the reduce phase is directly pipelined to the map phase
of the next iteration by passing the pointers to the data.

In RTMR, all input, intermediate, or final (key, value) pairs
are stored in memory unlike MapReduce [1], Hadoop [2], or
their variants. Phoenix++ [11] effectively utilizes the mem-
ory hierarchy to process map-reduce tasks in memory using
multiple CPU cores. However, it does not support a periodic
task model, real-time scheduling, direct streaming of sensor
data into memory, or memory reservation. Instead, it only
supports FIFO scheduling. Further, it reads input data from
and writes output to the disk. RTMR extends Phoenix++ by
supporting: 1) input sensor data streaming, 2) intermediate
data pipelining, 3) a non-preemptive periodic task model, 4)
memory reservation, and 5) an EDF-based schedulability test
and scheduling required for real-time data analytics. A detailed
description of the real-time task model, memory reservation,
and scheduling follows.

III. R EAL-TIME TASK MODEL AND SCHEDULING

In this section, the task model, memory reservation, and
scheduling supported by RTMR are discussed.

A. Task Model and Memory Reservation

In this paper, we assume that a real-time sensor data analysis
system needs to execute a set ofn independent periodic map-
reduce tasksΓ = (τ1, τ2, ..., τn) that are not self-suspending.
In the system, there arem ≥ 1 cores available for real-
time data analytics. In this paper, an arbitrary real-time map-
reduce taskτi ∈ Γ is associated with the periodPi and
relative deadlineDi = Pi (implicit deadline).τi is a real-time

data analysis task that consists ofsi (≥ 1) parallel execution
segments, i.e., map/reduce phases, defined as follows:

Definition 1:

τi : ((< e1i ,m
1

i >, ..., < esii ,msi
i >), Ci, Di)

wheresi = 1, if τi only consists of a map phase.si = 2, if it has
both map and reduce phases.si > 2 if it consists of multiple
pairs of parallel map and reduce phases iteratively executed in
sequence. In addition,eji andmj

i are the estimated maximum
execution time of segmentj and the number of cores used in
the segment, respectively. The (estimated) maximum execution
time of τi is: Ci =

∑si
j=1

eji .
Using the API of RTMR, a user needs to specify the map()

and reduce() functions as well assi andDi in Definition 1
for τi considering the application semantics.2 In RTMR, Ci

is estimated offline considering not only the CPU time but
also the memory access delay, because the data access delay
may not be ignorable in real-time data analytics. In this paper,
τi ∈ Γ is run multiple times offline. For each run ofτi,
the latency from reading the first input (key, value) pair to
producing the last output (key, value) pair is used as the
estimated execution time to consider both the computation and
data access latency. The maximum observed execution time
acquired from the prespecified number of runs is used asCi.3

In RTMR, input sensor data are streamed into memory as
discussed before. Further, we assume that the size of input
sensor data is predetermined. At the end of a segment,τi
produces intermediate data that is input for the next segment
executed consecutively. If there is no following segment, they
are the final output of a periodic instance ofτi. Given that,
RTMR analyzes the maximum intermediate/output data sizes
and reserves enough memory forτi, which typically consists
of a few common operations, such as filtering, aggregation,
or prediction of physical phenomena (e.g., the traffic speedin
a road segment) based on the recent history. If unimportant
input data are filtered out or sensor data are aggregated in a
phase, the size of the output/intermediate data produced atthe
end of the phase is not bigger than the input. Prediction via,
for example, linear/nonlinear regression produces a predefined
number of model parameters, which is considerably smaller
than the input. Even when a join, one of the most expensive
operator for data processing, is performed between a pair of
input sensor data of sizesN and M , the maximum output
size is limited toNM in the worst-case. Also,N and M
are relatively small compared to data sizes considered in
batch data analysis systems, e.g., Hadoop, because only the
current sensor data are processed per period for real-time data
analytics in RTMR.

2For the clarity of presentation, we assume that the data partitioning
and shuffle steps in Figure 4 are included in the map and reducephases,
respectively. Also, their latencies are added to the execution times of the map
and reduce phases.

3In general, the analysis of worst-case execution times in a multicore
processor is an open problem. Analyzing the execution timesof real-time data
analysis tasks is even more challenging due to the increasing size and volatility
of sensor data. A thorough investigation of more advanced approaches to
analyze the execution times of real-time data analysis tasks is reserved for
future work.

B. Schedulability Test

In the jth segment ofτi, where1 ≤ j ≤ si, mj threads are
used to run the user-specified map() or reduce() function ofτi
in a parallel segment depending on whetherτi is currently in
the map or reduce phase. In this paper, each core runs a single
map or reduce thread at a time. However,mj threads run in
parallel in thejth segment, following the data-parallel, single-
instruction-multiple-data (SIMD) model. In parallel real-time
data analytics, there is a trade-off between data and task paral-
lelism. If more cores are used by an individual task to process
more data simultaneously in a SIMD manner, fewer tasks can
run in parallel or vice versa. As scheduling in multiprocessor
real-time systems is NP-hard in the strong sense [13], we
devise a heuristic to schedule real-time data analysis tasks in
this paper. More specifically, we intend to maximize the data
parallelism subject to the available hardware parallelismby
settingmj

i = m for τi, wherem is the total number of the
cores available for real-time data analytics in the system.In
this way, we finish a periodic instance of an individual real-
time data analysis task as early as possible, while avoiding
context switches due to preemptions.

In this paper, we apply non-preemptive uniprocessor EDF
scheduling to meet timing constraints of real-time data analysis
tasks using the schedulability test for non-preemptive periodic
tasks with no idle time insertion [14], becausem cores are
used as if they are a faster uniprocessor for data and compute
intensive real-time data analytics. Specifically, the tasksetΓ =
(τ1, τ2, ..., τn) is schedulable, if the two following necessary
and sufficient conditions are met:
Condition 1.

n
∑

i=1

Ci

Pi

≤ 1 (1)

Condition 2. ∀i, 1 < i ≤ n; ∀L, P1 < L < Pi:

L ≥ Ci +

i−1
∑

j=1

⌊

L− 1

Pj

⌋

Cj (2)

Condition 1 requires the processor is not overloaded. In
Condition 2, the tasks inΓ are sorted in non-descending order
of periods. The right hand side of the inequality in Condition
2 is a least upper bound on the processor demand realizable in
an interval of lengthL that starts whenτi’s job is scheduled
and ends sometime before the deadline of the job. The two
conditions are unrelated in that conceiving of both schedulable
task sets with the total utilization of 1 and unschedulable task
sets having arbitrarily small utilization are possible [14].

If Γ is schedulable subject to Eq 1, Eq 2, and the memory
constraint, RTMR schedules the periodic data analysis tasks.
Otherwise, it provides feedback to the user so that the user
can adjust the task parameters, such as the task periods, or
provide faster map() and reduce() functions that may produce
approximate results. After an adjustment, the schedulability
test is repeated for the modified task set.

We acknowledge that alternative scheduling methods could
be applicable. For example, the average execution times rather

than the maximum ones can be used, if occasional deadline
misses are acceptable to a certain degree.τi can use fewer
thanm cores such that more than one tasks can run together,
similar to [15], [16], if the maximum memory access delay and
contention for shared resources, e.g., the system bus and mem-
ory controller, between concurrent data analysis tasks canbe
quantified in terms of timing. In a many-core system, the real-
time data analysis tasks can be partitioned into multiple sets of
the cores using a bin-packing heuristic [13]. In each partition,
the tasks statically assigned to the partition can be scheduled
using the method described in this paper. However, partitioned
scheduling of real-time data analysis tasks is challenging, since
bin-packing is NP-complete. A thorough investigation of these
issues is beyond the scope of this paper and reserved for future
work.

IV. PERFORMANCEEVALUATION

In this section, the micro-benchmarks and system settings
used for performance evaluation are described. Also, the
experimental results are discussed.

A. Workloads and System Settings

For performance evaluation, the following popular data
analytics benchmarks are adapted to model periodic real-time
data analysis tasks.

• Histogram (HG):A histogram is a fundamental method
for a graphical representation of any data distribution. In
this paper, we consider image histograms that plot the
number of pixels for each tonal value to support funda-
mental analysis in data-intensive real-time applications,
e.g., traffic control or visual surveillance.4 The input of
this periodic task is a large image with4.7× 108 pixels
per task period. The input data size processed per period
is approximately 1.4 GB.

• Linear Regression (LR):Linear regression is useful for
real-time data analytics. For example, it is applied to
predict sensor data values and stock prices.2.7 × 107

(x, y) points in two dimensional space, totaling 518
MB, are used as the input per task period to model the
approximately linear relation betweenx andy via LR.

• Matrix Multiplication (MM): MM is heavily used in
autonomous vehicles and many scientific applications. In
this paper, MM multiplies two2048 × 2048 matrices
together per task period. Each input matrix is 16 MB.
The output matrix is 16 MB too.

• K-means clustering (KM):This is an important data min-
ing algorithm for clustering. For example, it can be used
to cluster mobile users based on their locations for real-
time location-based services. It partitionsℓ observations
into k clusters (usuallyℓ ≫ k) such that each observation
belongs to the cluster with the nearest mean. The input of
the k-means task is107 points in two dimensional space,
totaling 77 MB, per task period.

4HG is not limited to image data but generally applicable to the other types
of data, e.g., sensor readings.

All the benchmarks are reductive; that is, the size of the
intermediate/output data of all the benchmarks is not bigger
than that of the input data. Among the tested benchmarks, only
KM consists of more than one pair of map-reduce phases.
Specifically, it is implemented as a series of seven pairs of
iterative map and reduce phases. However, it generates no
additional intermediate/output data; it only finds newk means
and updates the cluster membership of each point according
to the new means in each pair of the map and reduce phases.
For the tested benchmarks, enough memory is reserved as
discussed in Section III.

Our system used for performance evaluation has two AMD
Opteron 6272 processors. Each of them has 16 cores running
at 2.1 GHz. There is a 48 KB L1 cache and 1 MB L2 cache
per core. In addition, there is a 16 MB L3 cache shared among
the cores. Out of the 32 cores, one core is dedicated to the
real-time scheduler and another core is exclusively used to
generate periodic jobs of the real-time data analysis tasks. The
remaining 30 cores are used to process the generated real-
time data analysis jobs. The system has 32 GB memory. Our
prototype is implemented in Linux (kernel 3.5.2) to emulate
a real-time data analytics system that can be deployed at, for
example, a traffic control or cellular network operation center.

B. Timeliness of Real-Time Data Analysis Tasks

In this section, we profile the maximum (observed) execu-
tion times of the tested benchmarks including the computation
and data access latency, perform the schedulability analysis
of real-time data management tasks offline based on the
maximum execution times, and empirically verify whether the
deadlines can be met for several sets of real-time data analysis
tasks generated using the micro-benchmarks. Specifically,one
benchmark is run 20 times offline using randomly generated
data. The maximum latency among the 20 runs is used for the
schedulability test.

TABLE I
MAXIMUM EXECUTION T IMES IN SECONDS

m=1 m=2 m=4 m=8 m=16 m=30
HG 2.41s 1.67s 0.88s 0.56s 0.33s 0.2s
LR 1.49s 1.3s 1.18s 0.95s 0.62s 0.37s
MM 19.7s 11.2s 5.9s 3.73s 2.02s 1.11s
KM 10.2s 7.5s 3.72s 3.09s 2.54s 2.36s

Table I show the maximum execution times of the bench-
marks derived offline. As the number of cores to process
real-time data analysis tasks,m, is increased from 1 to 30,
the maximum execution times of the HG, LR, MM, and
KM are decreased by over 12, 4.1, 17.7, and 4.3 times,
respectively. In HG and MM, load balancing among the cores
is straightforward. As a result, the maximum execution timeis
decreased significantly for the increasing number of the cores
used for real-time data analytics. Notably, LR’s maximum
execution time in Table I decreases substantially only after
m ≥ 16. For m ≤ 8, the hardware parallelism provided by
the employed CPU cores is not enough to considerably speed
up LR. On the other hand, the decrease of KM’s maximum

execution time in Table I becomes marginal whenm ≥ 8. In
KM, individual points are often re-clustered and moved among
different clusters until clustering is optimized in terms of the
distance of each point to the closest mean. Thus, the cluster
sizes may vary dynamically depending on the distribution
of input points between the consecutive map/reduce phases.
As a result, threads may suffer from load imbalance. Thus,
using more cores does not necessarily decrease the maximum
execution time of KM significantly.

TABLE II
RELATIVE DEADLINES (SECONDS) OF THE TASK SETS (Γ1 − Γ6)

HG LR MM KM
Γ1 23s 22s 30s 25s
Γ2 13s 15s 22s 18s
Γ3 7s 8s 12s 10s
Γ4 4.5s 5s 7s 6s
Γ5 3s 4s 5s 6s
Γ6 2.6s 3s 4s 5s

For performance evaluation, we intend to design a task set
with as short deadlines as possible. We have considered the
six task sets in Table II where the relative deadlines become
shorter fromΓ1 to Γ6. We consider these task sets to analyze
their schedulability for different numbers of cores subject to
the two conditions specified in Eq 1 and Eq 2. In each task
set, a longer deadline is assigned to a task with the larger
maximum execution time. Also, in each task set, we have
picked task periods (i.e., relative deadlines) such that the
longest period in each task set is no more than twice longer
than the shortest period in the task set to model real-time data
analysis tasks that need to be executed relatively close to each
other. InΓ6, the tightest possible relative deadlines are picked
subject to these constraints in addition to Eq 1 and Eq 2. The
maximum execution times and relative deadlines ofΓ6 for 30
cores are shown in the last column and row in Tables I and II,
respectively. The maximum total utilization ofΓ6 for 30 cores
is set to 1 in Eq 1. Assigning shorter deadlines or bigger data
to the tasks inΓ6 incurs deadline misses.

TABLE III
SCHEDULABILITY OF THE TASK SETS

m=1 m=2 m=4 m=8 m=16 m=30
Γ1 yes yes yes yes yes yes
Γ2 no yes yes yes yes yes
Γ3 no no yes yes yes yes
Γ4 no no no yes yes yes
Γ5 no no no no yes yes
Γ6 no no no no no yes

Table III shows the results of the schedulability tests for
Γ1−Γ6. In Table III, ’yes’ means a task set is schedulable for
a specific number of cores used to run HG, LR, MM, and KM.
All deadlines are met forΓ1−Γ6. We present the performance
results forΓ6 that has the shortest deadlines and, therefore, it
is only schedulable whenm = 30 as shown in Table III. All
four periodic benchmark tasks, i.e., HG, LR, KM, and MM
tasks inΓ6, simultaneously release their first jobs at time 0 and
continue to generate jobs according to their periods specified

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600 700 800 900 1000

R
es

po
ns

e
T

im
e

(m
s)

Time (seconds)

Response Time
Deadline

Fig. 5. Response Times of Histogram Jobs (Deadline: 2.6s)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100 200 300 400 500 600 700 800 900 1000

R
es

po
ns

e
T

im
e

(m
s)

Time (seconds)

Response Time
Deadline

Fig. 6. Response Times of Linear Regression Jobs (Deadline:3s)

in the last row of Table II for 1000s. As shown in Figures 5
− 8, all deadlines of the periodic real-time data analysis tasks
in Γ6 are met. In total, more than 0.72 TB of data are processed
in a 1000s experimental run, which is projected to be over 62
TB/day.

In this paper, Phoenix++ [11] is used as the baseline. It is
closest to RTMR in that it is a state-of-the-art in-memory,
multi-core map-reduce system unlike the other approaches
mainly based on Hadoop (discussed in Section V). However, it
has missed most deadlines ofΓ6 for several reasons (although
it meets the deadlines for light workloads, such asΓ1 using
30 cores). First, it is timing agnostic and only supports
FIFO scheduling as discussed before. Further, it reads input
data from and writes output to secondary storage without
supporting input sensor data streaming into memory. Neither
does it support in-memory pipelining of intermediate data for
iterative tasks. As a result, a single operation to read input data
from disk (write output to disk) takes 38ms− 1.35s (71ms
− 1.14s) for the tested benchmarks. (More detailed results of
Phoenix++ are omitted due to space limitations.)

In Figures 5− 8, we also observe that the periodic real-
time data analysis jobs finish earlier than the deadlines due
to the pessimistic real-time scheduling needed to meet the

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500 600 700 800 900 1000

R
es

po
ns

e
T

im
e

(m
s)

Time (seconds)

Response Time
Deadline

Fig. 7. Response Times of Matrix Multiplication Jobs (Deadline: 4s)

 0

 1000

 2000

 3000

 4000

 5000

 0 200 400 600 800 1000

R
es

po
ns

e
T

im
e

(m
s)

Time (seconds)

Response Time
Deadline

Fig. 8. Response Times of K-means Jobs (Deadline: 5s)

timing constraints. Notably, simply using advanced real-time
scheduling techniques that support intra-task parallelism, e.g.,
[15], [16], does not necessarily enhance the utilization. For
example, the best known capacity augmentation bound of any
global scheduler for tasks modeled as parallel directed acyclic
graphs is 2.618 [16]. Hence, the total utilization of the task set
should be no more thanm/2.618 and the worst-case critical-
path length of an arbitrary taskτi (i.e., the maximum execution
time ofτi for an infinite number of cores) in the task set cannot
exceed1/2.618 of Di to meet the deadlines.

Overall, our system design and experimental results serve
as proof of concept for real-time big sensor data analytics.Our
work presented in this paper opens up many research issues,
e.g., more advanced scheduling, load balancing, executiontime
analysis, and real-time data analysis techniques, to efficiently
extract value-added information from large raw sensor datain
a timely manner.

V. RELATED WORK

Hadoop [2] is extensively used for big data analytics. A
lot of work has been done to enhance Hadoop too [17].
Unfortunately, these approaches based on batch processingof
the data stored in the distributed file system neither consider

timing constraints nor support periodic in-memory processing
of sensor data streams in real-time. HaLoop [18] supports
iterative applications in Hadoop; however, it does not support
the other key features of RTMR for real-time data analytics.

The problem of meeting real-time deadlines in Hadoop is
investigated in [8], [7], [9], [10]. However, these approaches
retrofit Hadoop optimized for batch processing of archived
data. Neither do they support sensor data streaming or inter-
mediate data pipelining. Hence, they are subject to significant
I/O overheads. Also, the deadlines considered by them are tens
of minutes long that are inappropriate for real-time sensordata
analytics with stringent timing constraints, e.g., trafficcontrol
or location-based services. Phoenix++ [11] supports efficient
in-memory execution of map/reduce tasks in a multicore
system. In this paper, it is significantly extended to support
real-time data analytics.

Real-time databases (RTDBs) have been studied extensively
to process user transactions using fresh temporal data repre-
senting the current real world status. However, sophisticated
data analysis based on, for example, machine learning or
data mining has rarely been considered in RTDBs. Neither
do they provide an easy-to-use parallel programming model,
e.g., the map-reduce model [12]. Leading-edge data stream
management systems, e.g., Storm [4], S4 [5], Spark Streaming
[6], and C-MR [19], supportnear real-time stream data
processing. RAMCloud [20] always stores entire data in
distributed memory and provides high speed networking to
support reads/writes 1000 times faster than disk-based storage.
However, they do not consider timing constraints for real-time
data analytics. Our approach could be combined with these
approaches to handle bigger sensor data in real-time.

In multiprocessor real-time scheduling, it is a common
practice to schedule serial tasks concurrently using multiple
processors or cores [21]. Novel scheduling algorithms, e.g.,
[15], [16], are developed to support intra-task parallelism
such that a single real-time task can use multiple cores (or
processors) at a time. In this way, compute-intensive tasks
can meet stringent deadlines that cannot be met otherwise.
However, these studies do not consider real-time data analytics
issues, e.g., the real-time map-reduce model, data stream-
ing/pipelining, and memory reservation for timely analysis of
sensor data.

VI. CONCLUSIONS ANDFUTURE WORK

Distilling value-added information from massive sensor data
in real-time is desirable yet challenging. Most existing big data
management systems, e.g., Hadoop, are timing agnostic and
only focus on batch processing of previously stored data rather
than dealing with real-time sensor data on the fly. To address
the problem, we design a new framework for real-time big
data analytics. We have also implemented a prototype system
and evaluated its performance using important data analysis
benchmarks adapted to model real-time data analytics. In the
performance evaluation, our approach can meet the deadlines
of the tested real-time data analysis tasks, whereas the state-of-
the-art baseline fails to do it. In the future, we will investigate

more efficient scheduling and resource management, while
providing more advanced real-time data analytics.

ACKNOWLEDGMENT

This work was supported, in part, by NSF grant CNS-
1117352.

REFERENCES

[1] J. Dean and J. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” inSymposium on Operating Systems Design and
Implementation, 2004.

[2] “Hadoop Project,” http://hadoop.apache.org.
[3] D. Beluke, “Big Data Impacts Data Management: The 5 Vs of

Big Data,” http://davebeulke.com/big-data-impacts-data-management-
the-five-vs-of-big-data/.

[4] “Apache Storm,” https://storm.apache.org/.
[5] “S4: Distributed Stream Computing Platform,” http://incubator.apache.

org/s4/.
[6] “Spark Streaming,” https://spark.apache.org/streaming/.
[7] L. T. X. Phan, Z. Zhang, Q. Zheng, B. T. Loo, and I. Lee, “An Empirical

Analysis of Scheduling Techniques for Real-time Cloud-based Data
Processing,” inInternational Workshop on Service-Oriented Computing
and Applications, 2011.

[8] K. Kc and K. Anyanwu, “Scheduling Hadoop Jobs to Meet Deadlines,”
in International Conference on Cloud Computing Technology and Sci-
ence, 2010.

[9] F. Teng, H. Yang, T. Li, Y. Yang, and Z. Li, “Scheduling real-time
workflow on MapReduce-based cloud,” inInternational Conference on
Innovative Computing Technology, 2013.

[10] S. Li, S. Hu, S. Wang, L. Su, T. Abdelzaher, I. Gupta, and R. Pace,
“WOHA: Deadline-Aware Map-Reduce Workflow Scheduling Frame-
work over Hadoop Cluster,” inICDCS, 2014.

[11] J. Talbot, R. M. Yoo, and C. Kozyrakis, “Phoenix++: Modular MapRe-
duce for Shared-Memory Systems,” inInternational Workshop on
MapReduce and its Applications, 2011.

[12] R. Bird and P. Wadler,Introduction to Functional Programming, 2nd ed.
Prentice Hall, 1998.

[13] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah, “A Categorization of Real-time Multiprocessor Scheduling
Problems and Algorithms,” inHandbook of Scheduling: Algorithms,
Models, and Performance Analysis, J. Y.-T. Leung, Ed. Chapman
Hall/CRC Press, 2003.

[14] K. Jeffay, D. Stanat, and C. U. Martel, “On Non-Preemptive Scheduling
of Periodic and Sporadic Tasks,” inReal-Time Systems Symposium,
1991.

[15] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D.Gill, “Par-
allel Real-Time Scheduling of DAGs,”IEEE Transactions on Parallel
Distributed Systems, vol. 25, no. 12, pp. 3242–3252, 2014.

[16] J. Li, J.-J. Chen, K. Agrawal, C. Lu, C. D. Gill, and A. Saifullah,
“Analysis of Federated and Global Scheduling for Parallel Real-Time
Tasks,” inEuromicro Conference on Real-Time Systems, 2014.

[17] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon, “Parallel
Data Processing with MapReduce: A Survey,”SIGMOD Record, vol. 40,
no. 4, pp. 11–20, 2011.

[18] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop: Efficient
Iterative Data Processing on Large Clusters,”PVLDB, vol. 3, no. 1-2,
pp. 285–296, 2010.

[19] N. Backman, K. Pattabiraman, R. Fonseca, and U. Cetintemel, “ C-MR:
Continuously Executing MapReduce Workflows on Multi-core Proces-
sors,” in International Workshop on MapReduce and its Applications,
2012.

[20] “RAMCloud,” https://ramcloud.atlassian.net/wiki/display/RAM/
RAMCloud.

[21] R. I. Davis and A. Burns, “A Survey of Hard Real-time Scheduling for
Multiprocessor Systems,”ACM Computing Surveys, vol. 43, no. 4, 2011.

