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Abstract

Real-time embedded systems are increasingly being net-
worked. In distributed real-time embedded applications,
e.g., electric grid management and command and control
applications, it is required to meet not only real-time but
also security requirements. It is essential to meet as many
deadlines as possible, e.g., to avoid a power outage or loss
of a life. It is also necessary to support the confidential-
ity and integrity of the data to ensure a potential adver-
sary cannot read transmitted data or corrupt them without
being detected. Unfortunately, in general, cryptographic
functions are computationally expensive, possibly causing
deadline misses in real-time embedded systems with limited
resources. As a basis for cost-effective security support in
real-time embedded systems, we define the notion of Quality
of Protection (QoP). Further, we present an adaptive secu-
rity policy in which the QoP is degraded by decreasing the
cryptographic key length for certain tasks, if necessary, to
improve the success ratio under overload conditions. Al-
though adaptive security support in real-time systems has
previously been studied, our work is different in that we can
quantify the degree of security degradation and specify the
period of time for which a shorter key is acceptable. Our
adaptive security policy is also integrated with feedback-
based utilization control to find the degree of security adap-
tation, while avoiding potential overloads even given dy-
namic workloads. In the performance evaluation, we show
that our approach can considerably improve the success ra-
tio at the cost of controlled QoP degradation when over-
loaded.

1 Introduction

Real-time embedded systems, which used to be iso-
lated, are increasingly being inter-networked due to dis-
tributed real-time embedded (DRE) applications including,
e.g., electric grid management, agile manufacturing, and de-
fense applications. In these applications, meeting deadlines

Sang H. Son
Department of Computer Science
University of Virginia
son@cs.virginia.edu

is essential, e.g., to avoid a power outage or loss of a life.
In addition to hard real-time sensing and control, DRE sys-
tems need to report the real world status, e.g., the electric
grid or battle field status, to the control center that manages
the overall electric grid or plans battle tactics. Therefore, it
is required to support the confidentiality and integrity of the
data transmitted across the network to ensure that a poten-
tial adversary cannot read or corrupt the data without being
detected.

Unfortunately, most cryptographic algorithms are com-
putationally expensive, possibly causing many deadline
misses in real-time embedded systems with limited re-
sources. Note that resource over-provisioning may not be
a viable solution due to stringent cost, size, weight, and
power constraints prevalent in these systems. On the other
hand, it is not desirable to ignore security requirements or
simply use a weak security scheme all the time. Thus, it is
necessary to balance timing and security requirements. De-
spite the importance of the problem, relatively little work
has been done.

To shed light on the problem, we present a new ap-
proach called SSTT (Systematic Security and Timeliness
Trade-offs) in real-time embedded systems. We first de-
scribe the security requirements in real-time embedded ap-
plications and define our research goal. Specifically, we aim
to maximize the success ratio, i.e., the fraction of the sub-
mitted tasks finishing within their deadlines, while meet-
ing the confidentiality and integrity requirements. Second,
we define a new quantitative metric to measure the Quality
of Protection [9]. Generally, the quality of security service
can only be measured qualitatively unlike real-time perfor-
mance. Even the advanced notion of Quality of Protection
(QoP) first introduced in [9] is not quantitative but a quali-
tative metric. In this paper, we provide a quantitative QoP
metric in terms of cryptographic key length to measure the
QoP in real-time embedded systems. Based on the rede-
fined QoP concept, we present an adaptive security policy in
which the QoP is degraded by decreasing the cryptographic
key length for certain tasks, if necessary, to improve the
success ratio under overload conditions. Although adaptive



security support in real-time systems has previously been
studied [20, 3, 19, 20, 6], our work is different in that we
can quantify the degree of security degradation and spec-
ify the period of time for which a shorter key is acceptable.
(The system should switch to the original, long key before
the period expires.)

Our adaptive security policy is seamlessly integrated
with feedback control to avoid overloads by controlling the
CPU utilization in the feedback loop even in the presence of
dynamic workloads. The feedback controller computes the
workload adjustment required to meet the target utilization,
e.g., 90%. According to the control signal, SSTT can adapt
the QoP, if necessary, to improve the success ratio by avoid-
ing overloads. In addition, admission control is applied to
incoming tasks, if the system is still overloaded after QoP
degradation. By degrading the QoP in a secure manner be-
fore admission control, we can further improve the success
ratio.

To evaluate the performance, we compare our approach,
via an extensive simulation study, to several baseline ap-
proaches well accepted for real-time computing. Our ap-
proach considerably improves the success ratio even given
dynamic workloads, while adapting the QoP in a controlled
manner, if necessary, to improve the success ratio when
overloaded.

The remainder of this paper is organized as follows. In
Section 2, an application scenario is discussed to motivate
our work. Further, the scope of the work is described by
formulating the problem of security and timeliness manage-
ment. The relation between the cryptographic key length
and strength of defense is discussed in Section 3. Based
on the discussion, the feedback control and QoP adaptation
are also discussed. In Section 4, the performance of SSTT
is compared, via a simulation study, to several baseline ap-
proaches applying well accepted open loop and closed loop
scheduling principles. Related work is discussed in Sec-
tion 5. Finally, Section 6 concludes the paper and discusses
the future work.

2 Scope of the Work

In this section, a (simplified) application scenario and
the security model are discussed to specify the scope of the
work. Based on the discussions, the problem of the cost-
effective support for security and timing constraints is for-
mulated.

2.1 Application Scenario

In time-critical target tracking [11], for example, UAV's
(Unmanned Aerial Vehicles) have hard real-time, e.g., en-
gine thrust control, tasks. In addition, they are required to
perform soft real-time reconnaissance tasks for monitoring

and transmitting the battle field images to the command and
control center (CC). Similarly, DRE systems used in elec-
tric grids perform hard real-time sensing and control tasks,
while reporting the local grid status to the control center
across the network.

In general, the workload characteristics, e.g., execution
times and periods, of hard real-time tasks are known a pri-
ori, while soft real-time workloads may vary in time. When
a UAV enters the current area of interest (AOI), for example,
it can be required to increase the resolution of the surveil-
lance image and report more frequently. Further, the image
processing workload can vary in time. As another example,
the CC of an electric grid may request DRE systems in the
AOI showing abnormal electricity supply patterns report the
status more frequently.

In this paper, we focus on maximizing the success ra-
tio of soft real-time tasks in an individual real-time embed-
ded system dedicated to handling soft real-time tasks, while
supporting confidentiality and integrity requirements. By
achieving this goal, the overall timeliness and security of
DRE applications can be improved. Although we expect
our adaptive security policy can also improve the end to end
delay, network QoS management is beyond the scope of this
paper. A thorough investigation is reserved for future work.

2.2 Security Model

We assume that isolated real-time embedded systems
(RTESs), e.g., working in a UAYV, are trusted and tamper
proof. Thus, a RTES only has to encrypt (and authenticate)
data before transmitting them across the network.

We consider a symmetric key system in which a CC and
RTES share a secret key, since the encryption/decryption
in a public key system takes several orders of magnitude
longer than that in a symmetric key system [18]. In this pa-
per, we consider the following cryptographic security sup-
port:

e Confidentiality: By encrypting messages, we can pre-
vent a potential adversary, without the secret key
shared between the CC and a RTES, from reading the
message.

e Integrity: To support the integrity of the message M,
a one-way hash value H (M) (where H (-) is the one-
way hash function) can be sent in addition to M. The
receiver can verify a received message M’ by comput-
ing the hash value H (M’). If the message has not been
altered during the transition, the message will be veri-
fied successfully, i.e, H(M') = H(M).

o Authenticity: Unfortunately, a one-way hash function
itself cannot authenticate the origin of a message. An
adversary can fabricate a message and compute the



corresponding hash value, since one-way hash func-
tions are known to the public [18]. A keyed one-way
hash function using a secret key between a RTES and
CC can handle this problem. Without the shared se-
cret key, an adversary cannot compute the appropriate
hash value. Hence, authenticity is a stronger concept
than integrity. Using a keyed one-way hash function,
one can verify not only the integrity but also the au-
thenticity of messages. Therefore, in the remainder of
this paper, we focus on message confidentiality and au-
thenticity. We assume that each RTES, e.g., a RTES
in a UAV, shares a pair of secret keys with a CC to
encrypt and authenticate messages to support the mes-
sage confidentiality and authenticity. We use different
keys for encryption and authentication, since the rule
of thumb is to use separate keys for different purposes
[18]. Thus, only the CC can decrypt and check the in-
tegrity and authenticity of the message transmitted by
the RTES using the shared keys and vice versa.

Finally, it is assumed that main attacks against a scruti-
nized cryptosystem without any known vulnerability, e.g.,
DES (Digital Encryption Standard) [18] or AES (Advanced
Encryption Standard) [15] are brute-force attacks that try to
find the secret key via an exhaustive search in the key space
as common in trusted cryptosystems [4, 18, 22]. Other at-
tacks such as denial of service attacks are beyond the scope
of this paper.

2.3 Problem Formulation

In our model, a (soft) real-time task 77 is associated with
a relative deadline D;. If it is a periodic task, we assume its
deadline is equal to the period. An aperiodic soft real-time
task is also associated with a relative deadline.

The estimated execution time of a soft real-time task 7T’
is: C; = Cj +C; c(1,) where C; . is the estimated real-time
function execution time and C; .(;,) is the estimated time
for data encryption and authentication when the current key
length used by T; is ;. Thus, the estimated utilization of a
real-time task 7; is: U; = C;/D;. As discussed before, the
actual execution times of soft real-time tasks may vary, e.g.,
due to tactical or energy supply reasons.

We aim to maximize the success ratio of soft real-time
tasks, while supporting the security requirements discussed
before:

Maximize Success Ratio = Ny/Ng (1)

where N, and N, represent the number of the timely tasks
that finish within the deadlines and the number of the tasks
submitted to the system, respectively.

The success ratio maximization is subject to:

li 2> Ui min 2
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where l; pip 1s the minimum key length allowed for T3, N
is the number of the tasks currently in the system, and B is
the utilization bound of the employed real-time scheduling
algorithm such as EDF (Earliest Deadline First) [10].
When Eq 2 is satisfied, we define the QoP as follows:
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where [; ;44 1s the maximum key length that can be used
by T;.

QoP =

3 Systematic Security and Timeliness Trade-
Offs

In this section, the strength of defense estimated by the
key length is discussed. Based on the discussion, our ap-
proach for systematic security and timeliness trade-offs and
its integration with feedback control are discussed.

3.1 Strength of Defense

The strength of a scrutinized symmetric key system,
which has no known shortcut to break it, is often estimated
by the difficulty of finding the key via brute-force attacks
as discussed before. The speed of a brute-force attack, in
which an adversary tests all possible keys, is mainly deter-
mined by the number of possible key values to be tested
and the speed of the key cracking machine(s). For example,
when the key is [ bits long and the adversary can test m keys
per second, it will take him, in average, 2t-1 /m seconds to
find the key.

Wiener [22] designed a specialized parallel hardware to
estimate the average time needed for a brute-force attack
to break the DES [18] algorithm. Note that this approach
is not limited to the DES, but generally applicable to other
encryption algorithms such as the AES [15] that is a new
encryption standard adopted by the US government. Table 1
shows the average time estimates for hardware brute-force
attacks in 2005. (These estimates extrapolate the previous
results [18, 22] according to Moore’s law.)

Although using a longer key is safer as shown in Table 1,
message encryption (or authentication) using a longer key
usually takes more time [4], incurring deadline misses. For
example, the execution of the AES algorithm using 128,
192, and 256 bit keys in a low-end microprocessor takes
approximately 2ms, 3ms, and 4ms in average [5]. There-
fore, we propose to use a longer key under light load, while



Table 1. Estimated Average Times for Parallel
Brute-Force Attacks

Key Length

Hardware | 64 bits 80 bits 128 bits
Cost

$10K 37 days 7000 years  10'® years
$100K 4 days 700 years 1017 years
$1M 9 hours 70 years 1016 years
$10M 1 hour 7 years 1015 years
$100M 5.4 minutes 245 days 104 years

switching to a shorter key when the system suffers transient
overloads. For example, a RTES can normally use a 128
(256) bit key for the DES (AES) algorithm, while switching
to a 80 (128) bit key when overloaded. In addition to im-
proving the timeliness under transient overload by reducing
the key size, SSTT has several desirable security and system
features as follows:

e A security officer can specify the time period for which
a short key can safely be used. For example, an 80 bit
DES key can be used in a UAV under transient over-
load! without compromising security as long as the
sum of the overload periods is not longer than the pe-
riod of the key renewal, which can be decided based
on Table 1 and the criticality of the specific applica-
tion. For example, the security officer of a time critical
target tracking application [11] can assume the most
powerful brute-force adversary (with enough mone-
tary budget) and schedule an 80 bit key renewal every
month in a hanger in addition to regular maintenance.?

e By switching between several independent keys, we
can require an adversary to spend more time to find
the key. Also, the key may not be used anymore when
the adversary eventually finds it. In general, perfect
security is not possible. Therefore, most existing se-
curity schemes aim to force a potential adversary to
spend more time and resource as we do in this paper.

e Storing a few more keys with different lengths in a
RTES does not significantly increase the memory re-
quirement, which is desirable in resource constrained
RTESs. Also, key length adaptation incurs little over-

UIf the system is consistently overloaded, more hardware resources
must be added to support timing constraints.

2 Alternatively, a RTES can use the AES algorithm with keys that are at
least 128 bits long, while using a 128 bit key under overload. In this case,
the keys may not have to be renewed for the lifetime of a RTES, e.g., a
RTES in a UAV. A thorough investigation of general key renewal issues in
RTESs is reserved for future work.

head, while providing desirable security features as
discussed above.

Note that the key length synchronization between a
RTES and the CC can be performed in an efficient man-
ner. Before a RTES changes its key length, it can inform
the CC by setting the special flag included in a regular mes-
sage to be encrypted. If it does not receive the acknowl-
edgment from the CC, it retransmits the message for a cer-
tain number of times, similar to common transmission pro-
tocols. Thus, key length synchronization does not incur
extra communication overheads. Also, the probability of
successful synchronization is relatively high. For example,
when the message loss probability is as high as 0.5 and the
probability of losing a message during the transit is inde-
pendent of other potential message losses, the message will
be delivered with the probability higher than 0.98 when it is
resent six times. In our approach, a RTES continues to use
the original, long key when the synchronization fails after
the predefined number of retransmissions at the cost of the
reduced success ratio.

Incoming

Tasks Terminated

Dispatched

Preempted

Figure 1. Overall Architecture

3.2 Feedback Control and Security Adaptation

As shown in Figure 1, in our approach, admission con-
trol is applied to incoming real-time tasks. Admitted tasks
are scheduled by the basic scheduler—the EDF scheduler
in this paper. The monitor continuously observes the sys-
tem behavior in terms of utilization and QoP. The feedback
controller (FC) computes the workload adjustment AW re-
quired to support the target utilization, e.g., 90%, based on
the current utilization error E,,, i.€., the difference between
the target utilization Uy and current utilization U, measured
at the current sampling period as shown in Figure 2. Ac-
cording to AW, SSTT adapts the QoP, if necessary, to re-
duce the workload under overload.

Interactions between SSTT and feedback control is sum-
marized as follows and discussed in detail in the remainder
of this section.

1. At a sampling period, the feedback controller shown
in Figure 2 computes AW based on the current uti-
lization error £, = U; — U...
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Figure 2. Feedback Control of Utilization

2. If AW < 0, SSTT decreases the key length of a task
T; currently in the system when T;’s current key length
l; > l; min. After the QoP degradation, AW is ad-
justed to consider the corresponding workload reduc-
tion. Repeat this step until AW,,¢,,, i.€., the new AW
after the QoP degradation, becomes greater than or
equal to zero or every task has become to use its short-
est key.

3. If further workload reduction is required after all pos-
sible QoP degradation, apply admission control to in-
coming tasks.

To control the utilization to be below the specified bound
Uy, we first model the utilization at the &' sampling instant
in the following difference equation:

u(k) =Y amu(k —i)+ Y bisw(k — i) (5)
=1 =1

where u(k — ¢) and ow(k — ¢) are the utilization and work-
load increase/reduction due to new task arrivals, admission
control, and/or QoP adaptation at the (k — i)** sampling
instant.

By taking the z-transform [16] of Eq 5, we can alge-
braically derive the transfer function showing the relation
between the input, i.e., the workload adjustment, and out-
put, i.e., the utilization, of the controlled RTES as follows:

b1z o2 4 . by
T(r =i T2 THed ©)

2" — a2zl — . —a,

because the z-transform of u(k — ) and dw(k — i) are
27'U(z) and z7*AW(z). In this paper, we set n = 2
and apply the system identification technique based on the
least square method [16] to derive the a;’s and b;’s in Eq 6
(1 < 7 < 2) based on the simulated workloads described
in Section 4. Specifically, we increased the load applied to
the system by 50% to 200% by 10% without applying ad-
mission control and QoP adaptation to identify the system
in the worst tested case.

Based on the system identification results, we applied the
Root Locus method [16] to tune the PI (Proportional and In-
tegral) controller used in this paper.> The controller is stable

3We have also considered 7 = 3 in Eq 6 and other controllers such as
the PID controller, but we have not observed a large difference in terms of
real-time performance.

since we picked the poles, i.e., the roots of the denomina-
tor of the transfer function in Eq 6, inside the unit circle.
The sampling period is set to 5 sec to observe the system
behavior before adapting the QoP, which is as critical as the
real-time performance. The corresponding expected over-
shoot is 16.2% and settling time is 70 sec, i.e., 12 sampling
periods. Generally, the overshoot and settling time have a
trade-off relation. We intend to minimize the overshoot that
can be more detrimental; a small overshoot can readily be
handled in the feedback loop via QoP adaptation and ad-
mission control.

When AW < 0, the QoP is degraded by decreasing the
key length for a subset of the tasks currently in the system.
When the key length is decreased from I; to (> {; pr ) for
task T, the estimated reduction of the execution time is:

0C; = Ci ey — Ciert) (7

where C; .17y is the execution time of the cryptographic
function(s) used by T after decreasing the key length. The
estimated workload reduction due to the QoP degradation
is approximately 6C;/D; where D; is the relative dead-
line of T;. After the degradation, we adjust the required
workload reduction: AW,,o,, = AW + 6C;/D;. This QoP
degradation procedure is repeated for the other tasks in the
system until AW,,c,, > 0 or no more QoP degradation is
allowed. Admission control is applied to incoming tasks
when AW, < 0 and the QoP cannot be degraded any-
more. Therefore, newly incoming tasks will not be admit-
ted until AW becomes positive as the tasks currently in the
system terminate. Overall, our approach is lightweight. The
time complexity of feedback control is O(1). When each
RTES shares a constant number of keys with the control
center, the QoP degradation is O(/N) where N is the num-
ber of tasks currently in the system.

4 Performance Evaluation

In this section, we describe the baselines, experimental
settings, and the simulation results comparing the perfor-
mance of SSTT to the baseline approaches in the presence
of dynamic workloads. A simulation run executes for 10
(simulated) minutes. For each performance data, we take
an average of 10 simulation runs executed using different
seed numbers. We have also derived the 90% confidence
intervals. However, we do not show the confidence inter-
vals, because most of them are smaller than 3%.

4.1 Baselines and Workload Generation

In this paper, we consider several baselines, which are
well accepted for real-time scheduling, as follows.



e EDF': This approach applies the EDF scheduling pol-
icy. All incoming tasks are admitted, while the QoP is
not degraded.

e EDF-AC: This approach is similar to EDF except it
applies admission control to incoming tasks to avoid
overloads.

e FC-AC: This approach applies EDF scheduling pol-
icy and admission control. In addition, it applies the
feedback-based utilization control discussed in Sec-
tion 3. However, the QoP is not degraded in this ap-
proach.

Table 2. Simulation Settings

Parameter Value

EET; Uniform(2ms, 10ms)
AET; (1+ EstErr)EET;
EstErr 0,0.2,0.4,0.6,0.8, 1
Load 50%, 100%, 150%, 200%
Slack Factor (10, 20)

#Keys 2

|Short Key|/|Long Key| 0.5
Exec. Time Savings (ETS) 10%, 20%, 30%, 40%, 50%

Table 2 summarizes our simulation settings. To generate
workloads, we create multiple workload sources that gen-
erate tasks whose inter-arrival times are exponentially dis-
tributed.* Specifically, a task 7T} generated by a source S;
is associated with the estimated execution time
EET; that is uniformly selected in the range (2ms, 10ms).
We consider the relatively long execution time, since RTESs
may have to process, e.g., reconnaissance images, while en-
crypting and authenticating messages where a message can
contain a numeric data or a fraction of an image packetized
for transmission.

T;’s actual execution time is: AFET; =
(1 + EstErr)EET; where the execution time
estimation error EstErr is varied from O to 1 as
shown in Table 2. Thus, AET; = EET; when EstErr =
0, while AET; = 2EFET; when EstErr = 1. As the
EstErr increases, it becomes harder to meet timing con-
straints due to possible errors in admission control, if ap-
plied. Note that all the tested baselines and our approach
are not aware of E'stErr. Thus, the system could be over-
loaded when too many tasks are admitted due to the estima-
tion error.

4We have also performed experiments using periodic workloads. In
this paper, we only present the experiments using aperiodic workloads in
which it is usually more challenging to support timing constraints.

The relative deadline of T; is: D; =
slack factor x E'ET; where the slack factor is uniformly se-
lected in the range (10, 20). The load generated by S; is
equal to AET;/D;. The total generated workload is equal
to Zle AET;/D; where s is the number of the generated
sources. Specifically, we present the performance evalu-
ation results for 50%, 100%, 150%, and 200% loads to
observe the system behavior under light load and overload
conditions.

Without losing the general applicability of our approach,
we assume that a RTES stores two keys where the length
of the short key, e.g., 128 bits in the AES algorithm, is a
half the length of the long key, e.g., 256 bits. Also, we
model the execution time savings ETS dueto a
possible decrease of the length of the key used by 7. For
example, when the ET'S is 10%, AET; pew = 0.9AET;
where AET; e, is the actual execution time of 7T} after the
QoP degradation.

Table 3. Experimental Sets
Set  Varied Fixed

1 Load = 50%, 100%, 150%, 200% EstErr=0
ETS =10%

2 EstErr=0-1 Load = 200%
ETS =10%

3 ETS = 10% — 50% Load = 200%
EstErr=1

In this paper, among the sets of experiments we have
performed, we present the most representative ones shown
in Table 3. In the Experiment Set 1, the load applied to
the system is increased, while assuming zero EstErr and
10% ET'S. Note that this workload favors the baseline ap-
proaches, since, for example, EDF-AC’s admission control
can be precise due to the zero EstErr, while SSTT may
not be able to significantly improve the success ratio com-
pared to the baselines due to a relatively small £7°S. In the
Experiment Set 2, we observe the resilience of the tested
approaches by increasing the E'stErr from O to 1, while
setting Load = 200% and ET'S = 10%. In the Experi-
ment Set 3, we increase the ET'S from 10% to 50%, while
setting Load = 200% and EstErr = 1 to observe the po-
tential impacts of £7°S on the success ratio and QoP in the
presence of high loads and large estimation errors.

4.2 Experiment Set 1: Increasing Load

Figure 3 shows the success ratio when the load increases
from 50% to 200% when EstErr = 0 and ETS = 10%
as described before. When the load is 50%, every approach
achieves the 100% success ratio. As the load increases, the
success ratio of EDF drops significantly. It drops to near



31% when the 200% load is applied to the system. This is
because EDF simply admits all incoming tasks incurring a
lot of backlog and cascading deadline misses.
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In Figure 3, EDF-AC shows good performance; its suc-
cess ratio is slightly above 47% when the load is 200%.
It improves the success ratio by approximately 16% com-
pared to EDF, because admission control is effective when
EstErr = 0. The success ratio of FC-AC is slightly lower
than EDF-AC. When the load is 200%, it is 43.5%. This is
because FC-AC ensures the utilization < 90% via feedback-
based admission control. Through all the experiments per-
formed, FC-AC and SSTT achieve the target utilization, i.e.,
90%, except when the applied load is lower than 90%. In
contrast, the CPU is saturated in the open loop approaches,
i.e., EDF and EDF-AC, when the load > 100%. Hence, we
do not discuss the average utilization in the remainder of the
paper.

In Figure 3, SSTT achieves the highest success ratio
at the cost of the QoP degradation under overload. It
achieves the approximately 53% success ratio when the load
is 200%, improving the success ratio by more than 20%

compared to EDF. As shown in Figure 4, the QoP of SSTT
ranges between 60% — 100%. (We do not plot the base-
lines’ QoP, since they do not degrade the QoP regardless of
the system status.) However, SSTT only degrades the QoP
for a certain period of time that is not long enough for a
possible adversary to find the cryptographic key via a brute-
force attack as discussed in Section 3. In this experimental
set, our approach meets the desired overshoot and settling
time described in Section 3.2. The transient performance is
discussed in detail in the following subsections dealing with
more dynamic workloads.

4.3 Experiment Set 2: Increasing Execution Time
Estimation Error

In this section, we apply the 200% load and assume the
ETS due to QoP degradation is only 10%, while increasing
the EstErr as summarized in Table 3. We also drop EDF,
since it has shown the relatively poor performance in the
previous section.
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Figure 5. Estimation Error vs. Success Ratio

In Figure 5, as the EstErr increases, EDF-AC’s success
ratio decreases from 47% to 37%, because EDF-AC erro-
neously admits more tasks than schedulable due to the in-
creasing EstErr. In contrast, FC-AC’s success ratio is stable
between 43% — 45%, since the workload is dynamically ad-
justed via feedback-aided admission control. As shown in
the figure, when EstErr = 1, SSTT improves the success ra-
tio by approximately 23% and 16% compared to EDF-AC
and FC-AC, respectively. It also improves its own success
ratio by approximately 7% as the EstErr increases from O to
1. A possible reason is that the QoP degradation may be-
come more aggressive as the EstErr and the corresponding
utilization error measured in the feedback loop increases.
This observation is supported by Figure 6 in which the QoP
of SSTT decreases from approximately 65% to 56% as the
EstErr increases.

Figure 7 shows the transient performance of SSTT. The
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Figure 7. Transient Performance of SSTT (ETS
= 10%)

transient success ratio of SSTT increases along the time axis
as the initial overload is handled in the feedback loop via
QoP adaptation and admission control. The transient tran-
sient utilization is lower than or equal to the target utiliza-
tion, i.e., 90%, except the initial overshoot. The utilization
is approximately 98.5% at 10 sec, while it is 90.3% at 90
sec. Therefore, the overshoot is handled in 80 sec, closely
meeting the desired settling time, i.e., 70 sec, specified in
Section 3.2. In other words, the desired settling time is ex-
ceeded by two sampling periods. A further optimization is
reserved for future work. Overall, we can observe that po-
tential overloads due to the 200% load and high EstErr, i.e.,
1, can be gracefully handled via feedback-based QoP adap-
tation and admission control, even though the ETS is only
10% in this set of experiments.

4.4 Experiment Set 3: Increasing Execution Time
Savings

In this experimental set, we increase the fraction of the
execution time saved due to QoP degradation, while set-
ting load = 200% and EstErr = 1. Note that, for the same
amount of the key length decrease, the execution time sav-
ings may vary for several reasons such as the complexity
of the specific cryptographic algorithm used to encrypt and
authenticate messages.
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As shown in Figure 8, the success ratio of our approach
increases as the ETS increase from 10% to 50%. Note that
the success ratio of SSTT is approximately 90% when ETS
= 50%, while EDF-AC and FC-AC show the success ratio
lower than 50%. Thus, the success ratio of SSTT increases
by approximately 30% when the ETS increases from 10%
to 50%. At the same time, the QoP of SSTT ranges between
55% — 58% as shown in Figure 9.

Figure 10 shows the transient performance of SSTT
when ETS = 20%. The patterns of the transient utilization
and QoP variations are similar to Figure 7; however, SSTT



100 pessssmnn T T
X *

_ >§< ifwmw %Wm m!é o -
X x
- 80F X 1
2 X
5 X WWWWW
S ef AL i
% S kT
S w+
£ 40t g
©
o
(2]
0
8
S 20 ) B
%} Success Ratio  +

e QoP  x

I+ Utilization  *

O Il Il Il Il Il
0 100 200 300 400 500 600

Time (sec)

Figure 10. Transient Performance of SSTT
(ETS = 20%)

shows the higher success ratio in Figure 10 than it does in
Figure 7 due to the higher ETS. The transient success ra-
tio of SSTT continuously increases as the ETS increases
beyond 20%, similar to the average success ratio shown in
Figure 8. However, we do not include all the transient per-
formance results due to space limitations.

In resource constrained RTESs, it is highly likely for
cryptographic functions to consume a large portion of the
execution time of a secure real-time task. Therefore, our
approach could considerably improve the success ratio by
adapting the QoP under transient overload in a reliable, ef-
ficient manner.

5 Related Work

Our QoP adaptation is inspired by the milestone ap-
proach [8] in which the QoS is monotonically improved as
a radar image, for example, is processed more. Similarly,
in our approach, a longer key improves the QoP at the cost
of the increased execution time. The main difference is that
our approach quantifies the degree of QoP degradation in
terms of key length and the time period during which the
key length decrease is acceptable.

Cryptographic security support has rarely been studied in
the context of real-time systems. QRAM [7, 17] selects an
appropriate encryption key length based on the importance
of an application and its resource requirements. However,
QRAM requires a priori knowledge of execution times to
optimize the QoS. Further, the selection of the key length
only occurs at the start of an application, e.g, a video con-
ference, unlike our approach.

Son et al. [20] developed an adaptive security manager
in a real-time database. When the real-time database is
overloaded, a weaker encryption algorithm is used to im-
prove the deadline miss ratio. However, their approach does

not quantify the degree of QoP degradation unlike our ap-
proach. Neither does it derive the time period in which a
weaker encryption algorithm can be used safely. In addi-
tion, storing several keys rather than several encryption al-
gorithms may require less memory in real-time embedded
systems with limited resources.

Although the notion of Quality of Protection has been
introduced in [9] to integrate the security and QoS support,
it is not clearly known yet how to measure the quality of
general security service. In this paper, we suggest to use
the key length as a QoP metric in the context of real-time
embedded systems. Spyropoulou et al. [21] have proposed
the notion of QoSS (Quality of Security Service). Ideally, a
system administrator and a security officer can select an ap-
propriate security scheme to optimize the cost-benefit rela-
tion, when a quantitative model showing the computational
cost and benefit of a security service is given. However, they
give no specific model that can be used for the cost-benefit
analysis. Also, they do not consider real-time constraints.
In general, the cost-benefit analysis of security services is
an open problem. We have taken a first step to solving this
problem focused on systematic cryptographic security and
timeliness trade-offs in real-time embedded systems.

Miyoshi et al. [14] have developed a novel access con-
trol scheme using the resource control lists to protect time-
multiplexed resources such as the CPU and network band-
width against some DoS (Denial of Service) attacks. Their
work is complementary to our work. For example, we can
use the resource control lists to protect real-time embedded
systems against some DoS attacks, while balancing timing
and cryptographic security requirements.

The access control problem in the multilevel security
model has been studied in the real-time database literature
[3, 19, 20, 6]. A majority of these work [3, 19, 20] tem-
porarily allow a covert channel, which can be used by an
adversary to enable an illegal information flow between dif-
ferent security levels, to improve the timeliness under over-
load conditions. George et al. [6] propose a secure real-
time concurrency control protocol to avoid a covert chan-
nel. However, none of these work considers issues related
to cryptographic security support.

Feedback-based real-time scheduling and QoS manage-
ment have recently attracted a lot of attention since the sev-
eral initial publications [1, 2, 12]. Our feedback control
approach is similar to [12, 13]. Specifically, we make the
utilization control model [12, 13] more formal by applying
the system identification technique [16]. Further, security
issues are not considered in [12, 13]. In fact, our adap-
tive QoP management policy is independent of the under-
lying scheduling algorithm. In this paper, however, we aim
to show that our QoP management approach can be seam-
lessly integrated with advanced feedback control techniques
to safely improve the success ratio even in the presence of



dynamic workloads. As a result, SSTT can considerably
improve the success ratio compared to the baselines includ-
ing the feedback-based utilization control as shown in Sec-
tion 4.

6 Conclusions and Future Work

A number of real-time embedded systems are employed
in important applications, e.g., electric grid management
or defense applications. In these systems, it is essential
to meet deadlines, while supporting the confidentiality, in-
tegrity, and authenticity of messages. Despite the impor-
tance, cryptographic security support in real-time embed-
ded systems has rarely been explored. To address this prob-
lem, we propose a systematic security and timeliness trade-
off policy integrated with a feedback control scheme. Our
approach for security adaptation is different from existing
work in that it can quantitatively measure the QoP degrada-
tion, while regulating how long a short key can be used to
handle transient overloads. In the simulation study, our ap-
proach significantly improves the success ratio, at the cost
of controlled security adaptation, especially when the sys-
tem is suffering transient overloads paying relatively high
computational costs for the cryptographic security support
considered in this paper. Therefore, we have observed that
our approach can efficiently support essential cryptographic
security features in resource constrained real-time embed-
ded systems. In the future, we will further investigate effi-
cient cryptographic security support in real-time embedded
systems. In addition, we will investigate other security is-
sues related to real-time embedded systems, e.g., detection
of (distributed) denial of service attacks.
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