
Electronic Commerce Research, 3: 113–142 (2003)
 2003 Kluwer Academic Publishers. Manufactured in the Netherlands.

Differentiated Real-Time Data Services for
E-Commerce Applications ∗

KYOUNG-DON KANG ∗∗, SANG H. SON and JOHN A. STANKOVIC
{kk7v,son,stankovic}@cs.virginia.edu

Department of Computer Science, University of Virginia, VA, USA

Abstract

The demand for real-time e-commerce data services has been increasing recently. In many e-commerce applica-
tions, it is essential to process user requests within their deadlines, i.e., before the market status changes, using
fresh data reflecting the current market status. However, current data services are poor at processing user re-
quests in a timely manner using fresh data. To address this problem, we present a differentiated real-time data
service framework for e-commerce applications. User requests are classified into several service classes accord-
ing to their importance, and they receive differentiated real-time performance guarantees in terms of deadline
miss ratio. At the same time, a certain data freshness is guaranteed for all transactions that commit within their
deadlines. A feedback-based approach is applied to differentiate the deadline miss ratio among service classes.
Admission control and adaptable update schemes are applied to manage potential overload. A simulation study,
which reflects the e-commerce data semantics, shows that our approach can achieve a significant performance
improvement compared to baseline approaches. Our approach can support the specified per-class deadline miss
ratios maintaining the required data freshness even in the presence of unpredictable workloads and data access
patterns, whereas baseline approaches fail.

1. Introduction

The demand for real-time data services has been increasing recently. Many e-commerce
applications are becoming very sophisticated in their data needs. They span the spectrum
from low level status data, e.g., current stock prices, to high level aggregated data, e.g.,
recommended selling/buying points. In e-commerce applications, it is desired to process
transactions within their deadlines using fresh (temporally consistent) data reflecting the
current market status. By meeting these timing and data freshness constraints, merchandise
such as stock items can be traded in a timely manner before the current market conditions
change, i.e., real-time data services are provided.

It is very challenging to provide real-time data services because of data-dependent re-
source requirements and highly uncertain workloads in e-commerce applications. For ex-
ample, transactions in stock trading may read different sets of stock prices and perform
different operations based on the current market status. Furthermore, the number of ser-
vice requests can vary from time to time. Consequently, developing real-time data services

∗ Supported, in part, by NSF Grants EIA-9900895, CCR-0098269, and IIS-0208758.
∗∗ Corresponding author.



114 KANG ET AL.

should involve techniques for managing overload and unexpected failures to support the
QoS requirements expressed in terms of deadline miss ratio and data freshness. How-
ever, current (non-real-time) databases are poor at supporting timing and data temporal
constraints.

To address this problem, we present a novel real-time database QoS management frame-
work called Diff-Real (Differentiated Real-time data services for e-commerce applica-
tions). Diff-Real provides performance guarantees in terms of differentiated deadline miss
ratio and data freshness even in the presence of unpredictable workloads and data access
patterns. Despite the abundance of real-time database research, Diff-Real is the first ap-
proach to provide guarantees on differentiated miss ratio and data freshness.

In our approach, user requests are classified into three classes according to their impor-
tance such as payments, namely, Classes 0, 1, and 2 where Class 0 is the highest priority
class. This could model a typical e-commerce system, in which users can be classified into
premium, business, and economy (or free-trial) classes. For Classes 0 and 1, we provide
differentiated guarantees on their miss ratios to support real-time data services even under
transient system status, while trying to meet as many Class 2 deadlines as possible (without
any guarantee). Under overload, we can improve the system performance and provide a
basic support to maximize the profit by providing preferred services to the high priority
class(es).

Feedback control is the key technology we use to achieve differentiated miss ratio guar-
antees. An adaptable update scheme maintains the required data freshness for timely
transactions—transactions that commit within their deadlines—in a cost-effective man-
ner. Admission control is applied to prevent potential overload, which can lead to the loss
of profit due to many deadline misses in e-commerce transaction processing.

For performance evaluation, we designed a simulation model inspired by a study of the
online trading environment available at the Bridge Center for Financial Markets, University
of Virginia (discussed in Section 4). In the simulation study, our approach showed a sig-
nificant performance improvement compared to the baseline approaches. In our approach,
the required per-class miss ratios and data freshness are supported, whereas the baseline
approaches fail to support the specified QoS in the presence of unpredictable workloads
and access patterns. Compared to the baseline approaches, our approach can also reduce
the potential starvation for the least privileged Class 2.

The rest of this paper is organized as follows. In Section 2, real-time database model is
discussed. Performance metrics and QoS specification issues are also discussed. Section 3
gives a detailed discussion of our differentiated service framework. Performance evalua-
tion results are presented in Section 4. Related work is presented in Section 5. Section 6
concludes the paper and discusses avenues for future work.

2. Real-time database model and QoS specification

In this paper, we assume that some deadline misses or freshness violations are inevitable
due to unpredictable workloads and data access patterns in e-commerce applications as
discussed before. A few deadline misses or freshness violations are considered tolerable as



REAL TIME DATA SERVICES FOR E-COMMERCE 115

long as they do not exceed certain thresholds. Using our approach, a database administrator
(DBA) can explicitly specify the required database QoS in terms of miss ratio and fresh-
ness, and the system supports the specified QoS. In this section, we describe the real-time
database model and real-time transaction semantics adopted in Diff-Real. Average and
transient performance metrics are defined to represent the miss ratio and data freshness
perceived by users. QoS specification issues are discussed in terms of defined performance
metrics.

2.1. Real-time database model and transaction semantics

In this paper, we consider a main memory database model. Due to their relatively high
performance and decreasing main memory cost, main memory databases have been in-
creasingly applied to real-time data management such as online auction, stock trading,
and voice/data networking [Adelberg, Garcia-Molina, and Kao, 3; Baulier et al., 4; 23;
28]. In our main memory database model, the CPU is the system resource of main con-
sideration. Transactions are classified as either user transactions and data updates. Con-
tinuously changing real-world states are captured by periodic updates of temporal data,
e.g., the current stock prices, which can become outdated according to the passage of time.
User transactions execute arithmetic/logical operations, e.g., buy/sell operations, based on
the current real-world states reflected in the real-time database. We assume that each user
transaction has a deadline. The deadline of an update transaction is set to the correspond-
ing update period. Our target applications are firm real-time data services, in which tardy
transactions—transactions that have missed their deadlines—add no value to the system,
and therefore, are aborted upon their deadline misses. This is because tardy transactions,
e.g., late sell/buy operations after the market state has changed, can adversely affect the
profit wasting system resources.

2.2. Average performance metrics

In Diff-Real, two main performance metrics are considered to specify the real-time data-
base QoS: per-class deadline miss ratio and freshness of data accessed by timely transac-
tions.

• Miss ratio. Let #Tardyi and #Timelyi represent the number of tardy and timely
transactions for admitted transactions belonging to Class i. The Class i miss ratio is
defined as:

MRi = 100 · #Tardyi

#Tardyi + #Timelyi

(%).

• Freshness. Data in real-time databases can become outdated due to the passage of time,
e.g., current stock prices. Thus, it is important for a real-time database to continuously
update the (temporal) data to maintain the temporal consistency between the real-world
states and the values reflected in the database. To measure the freshness of data in
real-time databases, we use the notion of absolute validity intervals [Ramamritham, 25].



116 KANG ET AL.

A data object X is related to a timestamp indicating the latest observation of the real-
world. X is considered temporally consistent or fresh if (current time− timestamp(X) ≤
avi(X)) where avi(X) is the absolute validity interval of X. Therefore, absolute validity
interval is the length of the time a data object remains fresh. We further classify the
notion of data freshness into database freshness and perceived freshness [Kang et al.,
11]. Database freshness, also called QoD (Quality of Data) in this paper, is the ratio
of fresh data to the entire data in a database. In contrast, perceived freshness is defined
for the data accessed by timely transactions as follows. Let us call the number of data
accessed by timely transactions Naccessed. Let Nfresh represent the number of fresh data
accessed by timely transactions.

Perceived_Freshness = 100 · Nfresh

Naccessed
(%).

In a QoS specification only the perceived freshness is considered, since tardy transac-
tions add no value to our firm real-time database model. In this way, we can leverage the
inherent leeway in the QoD. Under overload, the QoD can be traded off for a certain subset
of data to reduce the update workload as long as the perceived freshness requirement is not
violated. As a result, the deadline miss ratio of user transactions can be improved without
affecting the perceived freshness (Section 3.3).

2.3. Transient performance metrics

Long-term performance metrics such as average miss ratio are not sufficient for the per-
formance specification of dynamic systems, in which the system performance can be time-
varying. For this reason, transient performance metrics such as overshoot and settling
time are adopted from control theory for a real-time system performance specification
[Lu et al., 16]:

• Overshoot (V ) is the worst-case system performance in the transient system state. As
shown in Figure 1, in this paper it is considered the highest miss ratio over the miss ratio
threshold in the transient state.

• Settling time (ts) is the time for the transient overshoot to decay and reach the steady
state performance as shown in Figure 1. In the steady state, the miss ratio should be
below the miss ratio threshold.

Figure 1. Definition of overshoot and settling time in real-time databases.



REAL TIME DATA SERVICES FOR E-COMMERCE 117

2.4. QoS specification

In a QoS specification, a DBA can specify a threshold of the deadline miss ratio for each
service class and the target perceived freshness (PFtarget). In this way, a DBA can explicitly
specify the tolerable per-class miss ratios and the perceived freshness desired for a specific
real-time data service application. In this paper, we consider the following QoS specifica-
tion as an example to illustrate the applicability of our approach for service differentiation:

QoS_Spec = {[MR0 ≤ 1%, V0 ≤ 20%, T0 ≤ 20 sec],
[MR1 ≤ 5%, V1 ≤ 50%, T1 ≤ 40 sec], MR2 = best-effort,

PFtarget ≥ 98%, U ≥ 80%
}
.

This QoS specification requires us to control the average miss ratio below 1% (5%) for
Class 0 (1). We also set V0 ≤ 20%, therefore, a MR0 overshoot (V0) should not exceed
1.2% = 1% × (1 + 0.2). Similarly, MR1 overshoot (V1) should be below 7.5% = 5% ×
(1+0.5). An overshoot V0 (V1), if any, should decay within 20 sec (40 sec). Therefore, the
system should be back in the steady state after 20 sec (40 sec), i.e., think time for trades,
even if it is currently in the transient state. By enforcing QoS_Spec, the desired system
performance can be provided in a consistent manner for Classes 0 and 1, while best-effort
services are provided for Class 2. Regarding freshness, at least 98% perceived freshness
is required for timely transactions (regardless of their service classes). We also require the
CPU utilization to be at least 80% to prevent underutilization.

In our previous work [Kang, Son, and Stankovic, 10], we presented an approach for
service differentiation in real-time databases. However, in [Kang, Son, and Stankovic, 10]
the transient miss ratio guarantee is only provided for Class 0. In this paper, we extend
the feedback-based miss ratio controllers to support the transient miss ratio guarantees for
both Classes 0 and 1. It is challenging to provide average/transient miss ratio guarantees
for both Classes 0 and 1. Class 1 performance can fluctuate as Class 0 workload increases,
since Class 0 transactions receive preferred services in terms of scheduling and concur-
rency control for service differentiation purposes. (A detailed discussion of scheduling,
concurrency control, and feedback control is given in Section 3.) For this reason, as shown
in QoS_Spec we set relatively flexible performance requirements for Class 1 compared to
Class 0 in terms of average/transient miss ratio.

In general, QoS_Spec is a stringent QoS requirement considering the specified aver-
age/transient miss ratio requirements and the required data freshness. Further, the max-
imum allowed performance difference in terms of average miss ratio between Classes 0
and 1 is only 4%. Not only MR0 but also MR1 should meet the required overshoot and
settling time. Note that these requirements may not leave a large leeway for temporary
relaxations of MR1, if necessary. In Section 4, various experiments are performed to de-
termine whether or not this QoS specification can be supported even in the presence of
unpredictable workloads and data access patterns.



118 KANG ET AL.

3. Differentiated real-time data service architecture

Our differentiated service architecture is shown in Figure 2. Transaction are scheduled
in one of the multi-level ready queues according to their service classes, that is, Class i

(0 ≤ i ≤ 2) transactions are scheduled at Qi . The transaction handler executes queued
transactions. At each sampling instant, the current miss ratio, perceived freshness, and
CPU utilization are monitored. The miss ratio and utilization controllers derive the re-
quired CPU utilization adjustment (
U in Figure 2) considering the current performance
error such as the miss ratio overshoot or CPU underutilization. Based on 
U , the QoD
manager adapts the QoD (i.e., database freshness), if necessary. The update scheduler
schedules an incoming update according to the update policy currently associated with
the corresponding data object. The admission controller enforces the remaining utilization
adjustment after potential QoD adaptations, i.e., 
Unew. A detailed discussion of each
component is as follows.

3.1. Transaction handler

The transaction handler provides an infrastructure for real-time database services, which
consists of a concurrency controller (CC), a freshness manager (FM), and a basic sched-
uler. For concurrency control, we use two phase locking high priority (2PL-HP) [Abbott
and Garcia-Molina, 2], in which a low priority transaction is aborted and restarted upon
a conflict. 2PL-HP extends the widely accepted 2PL protocol to eliminate priority inver-
sions. Hence, it is appropriate to support service differentiation in real-time databases.

Figure 2. Real-time database architecture for service differentiation.



REAL TIME DATA SERVICES FOR E-COMMERCE 119

The FM checks the freshness before accessing a data item using the corresponding va-
lidity interval. It blocks a user transaction if an accessing data item is currently stale. The
blocked transaction(s) will be transferred from the block queue to the ready queue as soon
as the corresponding update commits.

By the basic scheduler, user transactions are scheduled in one of multi-level queues
(Q0,Q1, and Q2 as shown in Figure 2) according to their service classes. A fixed priority
is applied among the multi-level ready queues. A transaction in a low priority queue can
be scheduled if there is no ready transaction at the higher priority queue(s). A low priority
transaction is preempted upon the arrival of a high priority transaction. In each queue,
transactions are scheduled in an EDF manner. To provide the data freshness guarantee, all
temporal data updates are scheduled at Q0 in this paper. This is to minimize the possibility
for user transactions to miss their deadlines waiting for updates of data, which are currently
outdated.

By applying the fixed priority among the service classes, we provide a basic support
for service differentiation in real-time databases. However, this is insufficient to provide
guarantees on MR0, MR1, and perceived freshness in the presence of unpredictable work-
loads/access patterns. For this reason, we apply the feedback control and QoD management
as follows.

3.2. Feedback control

Feedback control is very effective in supporting a required performance specification when
the system model includes uncertainties [Phillips and Nagle, 22]. The target performance
can be achieved by dynamically adapting the system behavior based on the current per-
formance error measured in the feedback control loop. In this paper, feedback control is
applied to provide average/transient guarantees on MR0 and MR1 despite unpredictable
workloads and access patterns.

3.2.1. Miss ratio controllers In our approach, miss ratio controllers are employed for
Classes 0 and 1, respectively, to provide guarantees on their miss ratios. Each class k (0 ≤
k ≤ 1) is associated with a certain miss ratio threshold Tk as shown in Figure 3(b). In
Class k, a miss ratio control loop MR_LOOPk computes a miss ratio control signal 
Uk

based on the current performance error Ek(n) = Tk − MRk(n), i.e., the difference between
the specified miss ratio threshold for Class k and the Class k miss ratio measured at the nth
sampling instant:


Uk = KP · Ek(n) + KI ·
n∑

i=1

Ek(i). (1)

When overloaded, 
Uk can become negative to request the reduction of the CPU utiliza-
tion.

3.2.2. Profiling and controller tuning To support the specified average/transient MR0
and MR1, miss ratio controllers are tuned as follows.



120 KANG ET AL.

Figure 3. Miss ratio/utilization controllers.

• MR_LOOP0. To tune a miss ratio controller, the miss ratio gain GMR = max{Miss_
Ratio_Increase/Unit_Load_Increase}, should be derived under the worst case set-up to
support a certain miss ratio guarantee [Lu et al., 17]. To derive GMR, the performance
of the controlled system, i.e., a real-time database in this paper, should be profiled. In
the profiling, to model the worst case all incoming user transactions are admitted and
no QoD adaptation is performed regardless of the current system status. Average MR0
was measured for loads increasing from 60% to 200% by 10%. From this, we derived
the MR0 gain GMR0 = 1.586 when the load increases from 120% to 130%. Using
GMR0 , we applied the Root Locus design method in Matlab [Phillips and Nagle, 22] to
tune KP and KI to satisfy the average/transient MR0 specified in QoS_Spec. By using
the mathematically well established Root Locus method, we can avoid tuning/testing
iterations. The sampling period for feedback control is set to 5 sec. We have selected
the closed loop poles at p0 = 0.778, p1 = 0.539. The feedback control system is
stable, since the closed loop poles are inside the unit circle. The corresponding values
are KP = 0.183 and KI = 0.176.

• MR_LOOP1. In this paper, it is also necessary to profile MR1, since we aim to support
not only the required average, but also the transient miss ratio for Class 1 unlike our
previous approach [Kang, Son, and Stankovic, 10]. For MR_LOOP1, we measured MR1
for the same workloads described above. For MR1, the gain GMR1 = 3.084 when the
load increases from 80% to 90%. Note that GMR1 is higher than GMR0 , and the sharpest
MR1 increase is observed at lower loads (between 80%–90%) compared to Class 0.
This is mainly because the CPU scheduling and concurrency control are performed in
favor of Class 0 for service differentiation. To tune MR_LOOP1, we applied the Root
Locus method to support the average/transient MR1 specified in QoS_Spec, similar to
MR_LOOP0 tuning. The closed loop poles are located inside the unit circle for the
stability of MR_LOOP1. The corresponding values are KP = 0.094 and KI = 0.176.



REAL TIME DATA SERVICES FOR E-COMMERCE 121

3.2.3. Utilization controller One utilization control loop is employed to prevent a po-
tential underutilization, similar to [Kang, Son, and Stankovic, 10; Lu et al., 17]. This is to
avoid a trivial solution, in which all the miss ratio requirements are satisfied due to the un-
derutilization. At each sampling instant, the utilization controller computes the utilization
control signal 
Uutil based on the utilization error, which is the difference between the tar-
get utilization and the current utilization measured by the Monitor at the current sampling
instant as shown in Figure 3(a). At the nth sampling instant, the utilization control signal
is:


Uutil = KP · E(n) + KI ·
n∑

i=1

E(i). (2)

The utilization controller is also tuned using the Root Locus method, but we do not
discuss the details due to space limitations. The utilization controller is further extended
by employing the utilization threshold manager as follows.

3.2.4. Utilization threshold manager For many complex real-time systems, the schedu-
lable utilization bound is unknown or can be very pessimistic [Lu et al., 17]. In real-time
databases, the utilization bound is hard to derive, if it even exists. This is partly be-
cause database applications usually include unpredictable workloads/access patterns and
aborts/restarts due to data/resource conflicts. A relatively simple way to handle this prob-
lem is to set/enforce a pessimistic utilization threshold. However, this can lead to an unnec-
essary underutilization. In contrast, an excessively optimistic utilization threshold can lead
to a large miss ratio overshoot. It is a hard problem to decide a proper utilization threshold
in a complex real-time system such as a real-time database. To address this problem, we
propose a novel online approach in which the utilization threshold (the target utilization
in Figure 3(a)) is dynamically adjusted considering the current real-time system behavior
as follows. Initially, the utilization threshold is set to an initial utilization set point, e.g.,
80%. If no deadline miss is observed at the current sampling instant in Classes 0 and 1,
the utilization threshold is incremented by a certain step size, e.g., 2%, unless the resulting
utilization threshold is over 100%. The utilization threshold will be continuously increased
as long as no deadline miss is observed. The utilization threshold will be switched back
to the initial utilization set point as soon as the miss ratio controller takes the control.
This back-off scheme could be considered conservative, however, we take this approach to
prevent a potential miss ratio overshoot due to an overly optimistic utilization threshold.
Note that our approach is self-adaptive requiring no a priori knowledge about a specific
workload model and is computationally light-weight. Using our approach, the potentially
time-varying utilization threshold can be closely approximated.

3.2.5. Derivation of a single control signal For the consistency of feedback control,
we derive a single control signal 
U from two miss ratio control signals (
Uk where
0 ≤ k ≤ 1) and one utilization control signal (
Uutil) as follows.

From 
U0 and 
U1, a single miss ratio control signal, 
UMR, is derived. To derive

UMR, we need to consider two cases: both 
U0 and 
U1 are currently negative, or at
least one of the two control signals is non-negative. In the first case, both MR0 and MR1 are



122 KANG ET AL.

violated. Hence, we set 
UMR = ∑1
k=0 
Uk to require the enough CPU utilization adjust-

ment (i.e., reduction) to avoid a significant miss ratio increase in the consecutive sampling
instants. Otherwise, we set 
UMR = min(
U0,
U1) to support a smooth transition from
one system state to another, similar to [Kang, Son, and Stankovic, 10; Lu et al., 17]. After
deriving 
UMR, we set the current control signal 
U = min(
Uutil,
UMR) for a similar
reason.

3.2.6. Integrator antiwindup All feedback controllers shown in Figure 3 are digital
PI (proportional and integral) controllers. Combined with a proportional controller, an
integral controller can improve the performance of the feedback control system. However,
care should be taken to avoid erroneous accumulations of control signals by the integrator
which can lead to a substantial overshoot later [Phillips and Nagle, 22]. For this purpose,
the integrator antiwindup technique [Phillips and Nagle, 22] is applied as follows.

• Case 1 (
UMR > 
Uutil). Turn on the integrator for the utilization controller, but turn
off all integrators of MR_LOOPk (0 ≤ k ≤ 1), since the current 
U = 
Uutil.

• Case 2 (
UMR ≤ 
Uutil). In this case, the integrator of the utilization controller is
turned off, since currently 
U = 
UMR. For the miss ratio controllers, if both 
U0
and 
U1 are negative, turn on the integrators for both MR_LOOP0 and MR_LOOP1.
This is because the current 
U = ∑1

k=0 
Uk. Otherwise, only turn on the integrator of
MR_LOOPk (k = 0 or 1) whose miss ratio control signal is smaller than the other.

3.3. QoD manager and update scheduler

In general, it is hard to meet both the timing and freshness constraints at the same time.
High update workloads may increase the deadline miss ratio of user transactions; infre-
quent updates, however, reduce the data freshness. As a result, transactions may have to
use stale data [Adelberg, Garcia-Molina, and Kao, 3]. For this reason, we do not con-
sider designing a separate feedback controller to manage the freshness. The specified
miss ratio and freshness can pose conflicting requirements leading to a potentially unstable
feedback control system. Instead, we use the QoD manager, an actuator from the control
theory perspective, to dynamically balance potentially conflicting miss ratio and freshness
requirements.

When overloaded (i.e., 
U < 0), the QoD manager can degrade the current QoD to
reduce the update workload and improve the deadline miss ratio, as a result. In fact, it
might not be necessary to schedule all incoming temporal data updates. Some data objects
can be updated very frequently, but accessed infrequently. In contrast, other data objects
can be accessed frequently within consecutive updates. Based on the access update ratio
(AUR), we classify data as hot or cold: a data object is considered hot if the corresponding
accesses are more frequent than the updates, i.e., AUR ≥ 1. Otherwise, it is considered
cold. It is reasonable to update hot data in an aggressive manner. If a hot data object is
out of date when accessed, potentially a multitude of transactions may miss their deadlines
waiting for the update. For cold data objects, we can save the CPU utilization by applying
a lazy update policy when overloaded. Only a few transactions might be affected by the
update delay. We select immediate and on-demand policies as the aggressive and lazy
update policies, respectively.



REAL TIME DATA SERVICES FOR E-COMMERCE 123

Figure 4. Update policy adaptations.

For example, consider Figure 4. D is the set of the entire (temporal) data in a real-
time database. Dimm is the set of data updated immediately when their new values arrive.
In contrast, Dod is the set of data updated on demand. Initially, every data is updated
immediately (i.e., D = Dimm). A subset of cold data can be updated on demand as the
workload increases. The QoD is degraded, as a result. The QoD degradation is stopped
once the required CPU utilization adjustment (
U ) is achieved or the degradation bound
(i.e., AUR = 1) is reached. The update policy is switched back to the immediate policy for
a certain subset of data when the perceived freshness is violated. Using dynamic change
of the update policy, the QoD manager differentiates the QoD among hot and cold data
classes when overloaded. For more details about the QoD management, refer to [Kang
et al., 11].

The update scheduler decides whether to schedule or drop an incoming update based on
the update policy selected for a data object. Immediate updates will always be scheduled,
whereas on-demand updates will be scheduled only if any transaction is blocked to access
a fresh version of the corresponding data.

3.4. Admission control

In addition to the QoD manager, the admission controller is another system component
that enforces the control signal to prevent a miss ratio overshoot, which can lead to the loss
of profit. An incoming user transaction can be admitted if its estimated CPU utilization
requirement is currently available. The current utilization is examined by aggregating the
utilization estimates of previously admitted transactions.

In our approach, admission control is necessary, since under severe overload the QoD
manager itself might not be able to enforce the required utilization reduction (i.e., 
U < 0)
entirely. The QoD degradation bound (AUR = 1) can be reached before achieving 
U . Or,
the perceived freshness requirement is currently violated, therefore, no QoD degradation
is possible. Note that under overload it is impossible to meet the required per-class miss
ratios and/or data freshness if all incoming transactions are simply admitted. Instead, it is
reasonable to control the admission to improve the miss ratio/data freshness. Dropped user



124 KANG ET AL.

requests can be resubmitted later under appropriate market status rather than jeopardizing
the database QoS for all user transactions currently in the system. Also, in Diff-Real the
number of dropped transactions is reduced by applying QoD adaptation before admission
control (Figure 3), if necessary. In contrast, more incoming transactions should be admitted
when underutilized, i.e., 
U > 0. To enforce the remaining control signal after possible
QoD adaptations, if any, the admission controller is informed of the adjusted control signal,
i.e., 
Unew as shown in Figure 2.

4. Performance evaluation

In this section, we analyze the performance of our service differentiation approach. For
performance evaluation, we have developed a real-time database simulator, which mod-
els the real-time database architecture depicted in Figure 2. Each system component in
Figure 2 can be selectively turned on/off for performance evaluation purposes. The main
objective of our simulation study is to show whether or not our approach can provide the
performance guarantees as required in QoS_Spec, that is, per-class miss ratios are below
the specified thresholds and the perceived freshness requirement is satisfied even in the
presence of unpredictable loads and data access patterns. The workloads used for our
experiments are discussed. Baseline approaches are introduced for performance compar-
isons, and the performance evaluation results are presented.

4.1. Simulation model

In our simulation, we apply workloads consisting of temporal data updates and user trans-
actions described as follows.

4.1.1. Temporal data and updates As shown in Table 1, there are 1000 temporal data
objects in our simulated real-time database. Each data object Oi is periodically updated by
an update stream, Streami , which is associated with an estimated execution time (EETi)
and an update period (Pi) where 1 ≤ i ≤ 1000. EET i and Pi are uniformly distributed in
a range (1 ms, 8 ms) and in a range (100 ms, 50 sec), respectively. Upon the generation
of an update, the actual update execution time is varied by applying a normal distribu-
tion Normal(EETi ,

√
EET i ) for Streami to introduce errors in execution time estimates.

The total update workload is manipulated to require approximately 50% of the total CPU
utilization if every update is scheduled by the immediate update policy.

Table 1. Simulation settings for data and updates.

Parameter Value

#Data objects 1000
Update period Uniform(100 ms, 50 sec)
EETi (estimated execution time) Uniform(1 ms, 8 ms)
Actual execution time Normal(EETi ,

√
EETi )

Total update load ≈ 50%



REAL TIME DATA SERVICES FOR E-COMMERCE 125

Market status data such as stock prices can vary at arbitrary times when individual trades
occur. However, financial trading tools such as Moneyline Telerate Plus [19], which is
widely used in financial trading laboratories such as the Bridge Center for Financial Mar-
kets at University of Virginia and Sloan Trading Room at MIT, provides periodic price
updates for periodic market monitoring. In Telerate Plus, users can select the update pe-
riod in the range from 1 minute to 60 minutes for the real-time quote of an individual stock
item. In this paper, we consider a more advanced system set-up, in which the update period
ranges between 100 ms–50 sec. We have also studied the actual trace of real-time stock
prices streamed to the Bridge Center for Financial Markets, and confirmed that our update
periods can closely approximate NYSE trades for popular stock items. From 06/03/02 to
06/26/02, we measured the average time between two consecutive trades streamed into the
Bridge Center for tens of S&P 500 stock items. In Table 2, most representative ones are
presented. The other stock items not presented in Table 2 showed similar inter-trade times.
As shown in Table 2, the shortest average inter-trade time observed is 189 ms for Item1,
while the longest one observed is 26 sec for Item 6.1

As shown in Table 1, the shortest update period selected for our experiments, i.e.,
100 ms, is approximately one half of the average inter-trade time of Item1. In contrast,
the longest update period of 50 sec is approximately twice the average inter-trade time of
Item 6 to model a wider range of update periods.

4.1.2. User transactions A source, Sourcei , generates a group of user transactions
whose inter-arrival time is exponentially distributed. Sourcei is associated with an esti-
mated execution time (EETi ) and an average execution time (AETi). We set EET i =
Uniform(5 ms, 20 ms) as shown in Table 3. By generating multiple sources, we can de-
rive transaction groups with different average execution time and average number of data
accesses in a statistical manner. Also, by increasing the number of sources we can in-
crease the workload applied to the simulated database, since more user transactions will
arrive in a certain time interval. We set AETi = (1 + EstErr) · EET i , in which EstErr is
used to introduce the execution time estimation errors. Note that Diff-Real and all base-
line approaches are only aware of the estimated execution time. Upon the generation of
a user transaction, the actual execution time is generated by applying the normal distribu-

Table 2. Average inter-trade times for S&P stock items.

Stock item Item1 Item2 Item3 Item4 Item5 Item 6
Average time 189 ms 4.41 sec 8.84 sec 16.89 sec 22.03 sec 25.99 sec

Table 3. Simulation settings for user transactions.

Parameter Value

EETi (Estimated execution time) Uniform(5 ms, 20 ms)
AETi (Average execution time) EETi · (1 + EstErri )
Actual execution time Normal(AETi ,

√
AETi )

NDATAi
(#Average data accesses) EETi · Data_Access_Factor = (5, 20)

#Actual data accesses Normal(NDATAi
,
√

NDATAi
)



126 KANG ET AL.

tion Normal(AET i ,
√

AET i ) to introduce the execution time variance in one group of user
transactions generated by Sourcei .

The number of data accesses for Sourcei is derived in proportion to the length of
EET i , i.e., NDATAi = data_access_ factor · EET i = (5, 20). As a result, longer
transactions access more data in general. Upon the generation of a user transaction,
Sourcei associates the actual number of data accesses with the transaction by applying
Normal(NDATAi

,
√

NDATAi
) to introduce the variance in the user transaction group. We

set deadline = arrival_time + average_execution_time · slack_ factor for a user transac-
tion. A slack factor is uniformly distributed in a range (10, 20). For an update, we set
deadline = next_update_ period.

For performance evaluations, we have also applied other settings for execution time,
data access factor, and slack factor different from the settings given in Table 3. We have
confirmed that for different workload settings Diff-Real can also support QoS_Spec by dy-
namically adjusting the system behavior based on the current performance error measured
in feedback control loops. However, we do not include the results due to space limitations.

4.2. Baselines

To our best knowledge, no previous research has applied feedback control and QoD adap-
tations to provide the service differentiation and freshness guarantee in real-time databases.
For this reason, we have developed two baselines as follows to compare the per-class miss
ratios and perceived freshness with Diff-Real:

• Basic-IMU. In this approach, a basic service differentiation is provided by using the fixed
priority scheduling among the service classes and concurrency control policy without
priority inversion, i.e., 2PL-HP, discussed in Section 3. The admission control scheme,
described in Section 3, is applied to partially prevent overload. All temporal data are up-
dated immediately when their values are newly observed, therefore, the highest possible
QoD can be provided. The QoD adaptation and feedback-based closed loop scheduling
are not applied. Therefore, all the shaded components in Figure 2 are turned off.

• Basic-ODU. This is similar to Basic-IMU except that all temporal data are updated on
demand to reduce the update workload. The miss ratio could be improved at the expense
of potentially reduced QoD compared to Basic-IMU because of lazy updates. In Diff-
Real, the QoD can be dynamically adjusted, if necessary, between the highest value
supported by Basic-IMU and the lowest value provided by Basic-ODU to meet both
timing and freshness constraints.

In our experiments, we have also considered other baseline approaches. These ap-
proaches are similar to Basic-IMU and Basic-ODU except that admission control is not
applied. Note that these baselines capture commonly accepted database system dynamics.
In most of database systems, the feedback-based closed loop scheduling is not applied.
The database update policy is usually fixed and not adaptable considering the system sta-
tus. Further, admission control is rarely applied to manage potential overload. Compared
to these baselines, Basic-IMU and Basic-ODU showed the lower miss ratio, i.e., smaller



REAL TIME DATA SERVICES FOR E-COMMERCE 127

chances for profit loss, because of admission control. Due to the relatively poor perfor-
mance of these baselines without admission control, we only compare the performance of
Basic-IMU and Basic-ODU to Diff-Real.

4.3. Workload variables and experiments

To adjust the workload from various aspects for experimental purposes, we define the
workload variables and describe the performed experiments as follows.

4.3.1. Workload variables

• AppLoad. Computational systems generally show different performance for increasing
loads, especially when overloaded. We use a variable, called AppLoad, to apply different
workloads in the simulation. Note that this variable indicates the load assuming that all
incoming transactions are admitted and all updates are immediately scheduled. The
actual load can be reduced in a tested approach by applying the admission control and
QoD management. For performance evaluation, we applied AppLoad = 70%, 100%,
150%, and 200%.

• EstErr (Execution Time Estimation Error). EstErr is used to introduce errors in ex-
ecution time estimates as described before. We have evaluated the performance for
EstErr = 0, 0.25, 0.5, 0.75, and 1. When EstErr = 0, there is no error in execution
time estimates. When EstErr = 1, the actual execution time is approximately twice the
estimated execution time, since actual execution time ≈ (1 + EstErr) · EET. In general,
a high execution time estimation error could induce a difficulty in real-time scheduling.

• HCR (Highest Class Ratio). In general, the performance of a service differentiation
scheme may change according to the high priority class workload. In our approach,
MR1 and MR2 could increase as the Class 0 load increases due to the scheduling and
concurrency control in favor of Class 0. To adjust the Class 0 workload, we define a
workload variable:

HCR = 100 · #Class 0 User_Transactions
∑2

k=0 #Class k User_Transactions
(%).

We evaluate the performance for HCR = 20%, 40%, 60%, 80%, and 100%.
• HSS (Hot Spot Size). Database performance can vary as the degree of data contention

changes [Abbott and Garcia-Molina, 2; Hsu and Zhang, 9]. For this reason, we apply
different access patterns by using the x–y access scheme [Hsu and Zhang, 9], in which
x% of data accesses are directed to y% of the entire data in the database and x ≥ y. For
example, under 90–10 access pattern 90% of data accesses are directed to the 10% of a
database (i.e., hot spot). When x = y = 50%, data are accessed in a uniform manner.
We call a certain y a hot spot size (HSS). The performance is evaluated for HSS = 10%,
20%, 30%, 40%, and 50% (uniform access pattern).



128 KANG ET AL.

4.3.2. Presented experiments Even though we have performed a large number of ex-
periments for varying values of AppLoad, EstErr, HSS, and HCR, we present only three
most representative sets of experiments as shown in Table 4 due to space limitations. We
have verified that all the experiments show a consistent performance trend for varying
workloads and access patterns: only our approach can provide guarantees on MR0, MR1,
and perceived freshness, while the baselines fail to provide guarantees on miss ratios and/or
perceived freshness in the presence of unpredictable workloads and access patterns.

• Experiment 1. As described in Table 4, no error is considered in the execution time
estimation, i.e., EstErr = 0. Note that this is an ideal assumption since precise execution
time estimates are usually not available. Performance is evaluated for AppLoad = 70%,
100%, 150%, and 200%. In the other sets of experiments, we fix AppLoad = 200%
to compare the adaptability of Basic-IMU, Basic-ODU, and Diff-Real under overload.
In this set of experiments, we set HCR = 20%. Hence, the best case settings in our
experiments are applied to Experiment 1.

• Experiment 2. In general, precise execution time estimates are not available. In this set
of experiments, we apply increasing execution time estimation errors, i.e., EstErr = 0,
0.25, 0.5, 0.75, and 1. We set AppLoad = 200% and HCR = 20%.

• Experiment 3. In this set of experiments, the worst case settings in our experiments
are applied. We set AppLoad = 200% and EstErr = 1, i.e., the highest load and the
largest execution time estimation error applied in our experiments. We also increase
HCR = 20%, 40%, 60%, 80%, and 100% to stress the modeled real-time database. As
HCR increases, miss ratios, especially MR1 and MR2, may increase significantly.

In our experiments, one simulation run lasts for 10 minutes of simulated time. For all
performance data, we have taken the average of 10 simulation runs and derived the 90%
confidence intervals. Confidence intervals are plotted as vertical bars in the graphs showing
the performance evaluation results. (For some performance data, the vertical bars may not
be noticeable due to the small confidence intervals.)

Table 4. Presented experiments.

Experiment Vary Fix

1 AppLoad = 70%, 100%, 150%, 200% EstErr = 0
HCR = 20%
HSS = 50%

2 EstErr = 0, 0.25, 0.5, 0.75, 1 AppLoad = 200%
HCR = 20%
HSS = 50%

3 HCR = 20%, 40%, 60%, 80%, 100% AppLoad = 200%
EstErr = 1
HSS = 50%



REAL TIME DATA SERVICES FOR E-COMMERCE 129

4.4. Experiment 1. Effects of increasing load

In this section, we compare the performance of Basic-IMU, Basic-ODU, and Diff-Real for
increasing AppLoad.

4.4.1. Miss ratio As shown in Figure 5, for Basic-IMU average MR0 is near zero. How-
ever, average MR1 for Basic-IMU increases as AppLoad increases violating MR1 threshold
(5%) when AppLoad = 150% and 200% due to the relatively high update workloads.
When AppLoad = 200%, MR1 exceeds 17% and MR2 exceeds 90% as shown in Figure 5.

In contrast, both Basic-ODU and Diff-Real achieved near zero MR0 and MR1 as shown
in Figures 6 and 7. Notably, Diff-Real also showed the lowest MR2 among the tested

Figure 5. Average miss ratio for Basic-IMU.

Figure 6. Average miss ratio for Basic-ODU.



130 KANG ET AL.

Figure 7. Average miss ratio for Diff-Real.

approaches. When AppLoad = 200%, average MR2 for Diff-Real is 6.63 ± 2.79% as
shown in Figure 7. MR2 for Basic-IMU and Basic-ODU exceeds 90% and 50% as shown in
Figures 5 and 6, respectively. From this, we can observe that our approach can support the
specified average miss ratio for Classes 0 and 1, while significantly reducing the potential
starvation for Class 2 compared to the baseline approaches. This is mainly because our
approach dynamically adapts the system behavior considering the current system status.
As a result, even the least privileged Class 2 can benefit.

Concerning the transient miss ratio, we have observed that Basic-ODU and Diff-Real
satisfy the MR0 and MR1 overshoot as required by QoS_Spec. Basic-IMU satisfied the re-
quired performance in terms of MR0. However, the required transient MR1 is significantly
violated. Basic-IMU has violated even the specified average MR1 (5%) for increasing loads
as shown in Figure 5.

Even though Basic-ODU showed a good MR0 and MR1, comparable to Diff-Real, we
show that it cannot support the perceived freshness requirement in the following subsec-
tion.

4.4.2. Perceived freshness Basic-IMU provides 100% perceived freshness as shown in
Figure 8. This is because every update is immediately scheduled in Basic-IMU regard-
less of the current miss ratio. Diff-Real supports near 100% perceived freshness. The
lowest freshness is 98.2 ± 0.17% when AppLoad = 100% achieving the target perceived
freshness PFtarget = 98%. However, Basic-ODU has failed to support the PFtarget. When
AppLoad = 200%, it showed 25.6 ± 9% perceived freshness as shown in Figure 8. This is
because every data is updated on demand in Basic-ODU. As a result, many user transac-
tions are forced to read stale data to meet their deadlines. To verify this, we have measured
the average QoD for Basic-ODU in 10 simulation runs when AppLoad = 200%. The
average QoD provided by Basic-ODU was only 9.1 ± 0.08%.



REAL TIME DATA SERVICES FOR E-COMMERCE 131

Figure 8. Average perceived freshness.

When the on-demand update policy is applied, it is possible that a blocked transaction
can not finish in time to wait for an on-demand update. This problem can be handled in one
of the two alternative ways: either aborting the corresponding user transaction, or allowing
a stale data access to meet the transaction deadline [Adelberg, Garcia-Molina, and Kao,
3]. The selection between the two alternatives is application dependent, that is, it depends
on the criticalness of the stale data access in a specific real-time database application. In
this paper, for the clarity of presentation we take the latter approach, which allows stale
data accesses to meet the deadline, if necessary. Currently, we are also investigating an
alternative approach, which can support the perfect freshness and specified miss ratio for a
single service class [Kang et al., 12]. In the future, we shall extend this approach to provide
the perfect freshness while differentiating the miss ratio among several service classes.

4.4.3. Utilization In Figure 9, Basic-IMU shows the highest utilization among the
tested approaches due to the high update workload. As shown in Figure 9, Basic-ODU
shows the significant underutilization until AppLoad = 100% due to unscheduled updates.
Both in Basic-IMU and Basic-ODU, the utilization increases sharply as the AppLoad in-
creases leading to potential overload, in which MR1 threshold or the PFtarget is violated
as shown in Figures 5 and 8. In contrast, Diff-Real shows a relatively stable utilization
ranging between 60–80% for increasing AppLoad as shown in Figure 9. In Diff-Real,
by avoiding the CPU saturation the remaining CPU utilization can be utilized to handle
transient overloads, which can lead to the loss of profit due to large miss ratio overshoots.

Note that in Experiment 1 only Diff-Real can support both the PFtarget and required miss
ratio guarantees on MR0 and MR1, while Basic-IMU and Basic-ODU fail to provide MR1
and perceived freshness guarantees, respectively. Our approach also achieved the lowest
MR2 among the tested approaches as discussed before. The performance gap between
Diff-Real and baseline approaches increases for Experiments 2 and 3, which apply more
stringent simulation settings.



132 KANG ET AL.

Figure 9. Average utilization.

4.5. Experiment 2. Effects of increasing execution time estimation error

In the remainder of this paper, we mainly focus on miss ratio comparisons among Basic-
IMU, Basic-ODU, and Diff-Real. Perceived freshness has also been measured, but it is
not plotted to avoid repetition. Basic-IMU and Diff-Real showed near 100% perceived
freshness, while Basic-ODU failed to support the PFtarget, similar to the results described
in the previous section.

4.5.1. Average performance As shown in Figures 10–12, MR0 is near zero for all tested
approaches. We have also confirmed that the transient MR0 does not exceed the specified
overshoot, i.e., 1.2%, for all tested approaches. This is mainly because HCR = 20%; only
20% of the applied workload belongs to Class 0, which receive preferred services in terms
of scheduling and concurrency control as discussed in Section 3.

As shown in Figure 10, Basic-IMU shows increasing MR1 for increasing EstErr. When
EstErr = 1, average MR1 exceeds 60% significantly violating the required average MR1
threshold (5%). As shown in Figure 11, average MR1 for Basic-ODU is 5%±3.43% when
EstErr = 1. Diff-Real shows near zero MR1 as shown in Figure 12. Even though Basic-
ODU has closely met the required average MR1, it violates the transient MR1 requirement,
while Diff-Real meets both average and transient requirements (discussed in Section 4.5.2).

As shown in Figures 10 and 11, MR2 for Basic-IMU and Basic-ODU reach near 100%
and 80% when EstErr = 1. In contrast, Diff-Real shows 3.79 ± 5.51% MR2 when
EstErr = 1 as shown in Figure 12. This is mainly because Basic-IMU and Basic-ODU
can admit too many transactions due to increasing execution estimation errors, whereas in
our approach the system behavior is dynamically adapted according to the current system
status as discussed before.

As shown in Figure 13, for Basic-IMU and Basic-ODU the utilization is near 100%
leading to potential miss ratio overshoots and/or perceived freshness violations. In contrast,



REAL TIME DATA SERVICES FOR E-COMMERCE 133

Figure 10. Average miss ratio for Basic-IMU.

Figure 11. Average miss ratio for Basic-ODU.

for our approach the utilization ranges between 80–90%.

4.5.2. Transient miss ratio In Figure 14, we plot the transient MR1 of Basic-ODU and
Diff-Real for EstErr = 1, i.e., the highest EstErr tested in Experiment 2. (Transient
MR1 for Basic-IMU is not plotted, since it significantly violated the average MR1 thresh-
old as shown in Figure 10.) We only compare MR1 for the two approaches, since aver-
age/transient MR0 is near zero for Basic-IMU, Basic-ODU, and Diff-Real in Experiment 2.

As shown in Figure 14, Basic-ODU, which has closely met the average MR1 requirement
as discussed in the previous section, significantly violates the transient MR1. For Basic-
ODU, the transient MR1 overshoots, which exceed the required 5% MR1 threshold (the
dotted horizontal line in Figure 14), are prevalent through the experiment and do not decay.



134 KANG ET AL.

Figure 12. Average miss ratio for Diff-Real.

Figure 13. Average utilization.

From this, observe that the average miss ratio metric is not enough to capture/control the
potentially time-varying performance of dynamic systems such as real-time databases. In
contrast, as shown in Figure 14 our approach shows no miss ratio overshoot throughout the
experiment, since the miss ratio is consistently controlled in the feedback loop.

4.6. Experiment 3. Effects of increasing the highest class load

In real-time database applications, the HCR value might not be fixed but could be time-
varying. This can affect the real-time database performance. Miss ratios, especially MR1
and MR2, may increase as HCR increases. To quantify this, we evaluate the performance



REAL TIME DATA SERVICES FOR E-COMMERCE 135

Figure 14. Transient MR1 for Basic-ODU and Diff-Real.

Figure 15. Average miss ratio for Class 0.

for HCR values increasing from 20% to 100%. When HCR becomes 100%, every transac-
tion belongs to Class 0 and the service differentiation is not applicable, as a result.

4.6.1. Average performance As shown in Figure 15, for Basic-IMU average MR0 con-
tinuously increases as HCR increases, exceeding 20% when HCR = 100%. For Basic-
ODU, the average MR0 shows approximately 1% when HCR = 100% as shown in Fig-
ure 15. However, we found that the MR0 overshoot for Basic-ODU reaches 3.56% vio-
lating the allowed overshoot of 1.2% (QoS_Spec). In contrast, average MR0 for Diff-Real
is maintained near zero despite increasing HCR, even when HCR = 100%. In our ap-
proach, transient MR0 is also near zero (discussed in Section 4.6.2). Further, the perceived
freshness requirement is supported in Diff-Real, but violated in Basic-ODU, similar to the
results presented in Section 4.4.



136 KANG ET AL.

Figure 16. Average miss ratio for Class 1.

Figure 17. Average miss ratio for Class 2.

In Figure 16, average MR1 is plotted for increasing HCR values except when HCR =
100%, in which there is neither a Class 1 nor a Class 2 transaction. Both Basic-IMU
and Basic-ODU show significant violations of the specified MR1 threshold (5%) as HCR
increases. In contrast, Diff-Real supports the required MR0 and MR1 by achieving near zero
average MR0 and MR1 as shown in Figures 15 and 16. As shown in Figure 17, our approach
also shows the lowest MR2 among the tested approaches, similar to the results presented in
Sections 4.4 and 4.5. In Figures 16 and 17, for a few cases MR1 and MR2 decrease when
HCR increases from 60% to 80%. As HCR increases, more Class 0 transactions arrive
and could be already in the system. As a result, lower priority transactions have relatively



REAL TIME DATA SERVICES FOR E-COMMERCE 137

Figure 18. Average utilization.

small chances to get admitted and the deadline miss ratio for those admitted ones may
decrease.

As shown in Figure 18, for Basic-IMU and Basic-ODU the utilization is near 100% lead-
ing to many deadline misses. In contrast, the utilization for Diff-Real is between 80–90%
satisfying the required utilization, similar to the results discussed in the previous section.
In Diff-Real, the utilization decreases slightly as HCR increases as shown in Figure 18.
This is because MR_LOOP1 may request relatively large utilization reductions due to the
increasing Class 0 workload, which can incur the transient MR1 increase. The utilization
increases again when HCR = 100%, in which MR_LOOP1 does not request any utilization
reduction, since no Class 1 transactions are generated.

4.6.2. Transient MR0 and MR1 for Diff-Real Regarding transient performance, we
only have to consider Diff-Real. For Basic-IMU and Basic-ODU, the specified average
MR0 and/or MR1 are already violated as shown in Figures 15 and 16. Consequently, tran-
sient MR0 and MR1 for Basic-IMU and Basic-ODU also violate the required overshoot and
settling time (QoS_Spec).

In Figure 19, we compare MR0 and MR1 of Diff-Real for HCR = 80%, which shows the
largest gap between MR0 and MR1 among the tested HCR values. As shown in Figure 19,
transient MR0 and MR1 are differentiated due to the scheduling and concurrency control
in favor of Class 0. MR0 is near zero through the experiment, i.e., no MR0 overshoot. As
a result, the specified overshoot and settling time requirements for MR0 are automatically
satisfied.

As shown in Figure 19, MR1 showed an overshoot of 6.5% at 80 sec. However, it is
below the allowed MR1 overshoot, i.e., 7.5% as required in QoS_Spec, and it decayed
within one sampling period, i.e., 5 sec, meeting the required settling time of 40 sec. An-
other MR1 overshoot of 5.46% is observed at 135 sec, but it also decayed in one sampling
period. Since MR2 is not managed by feedback control, the corresponding overshoot is



138 KANG ET AL.

Figure 19. Transient MR0 and MR1 for Diff-Real.

much higher, reaching up to 14%, and recurrent.2 To summarize, Diff-Real can guarantee
the required per-class miss ratios and perceived freshness by applying feedback control,
adaptable update, and admission control schemes even in the presence of unpredictable
workloads and access patterns.

5. Related work

Service differentiation techniques have been studied in various computational systems such
as Web servers, network routers, and proxy caches [Bhatti and Friedrich, 5; Christin, Liebe-
herr, and Abdelzaher, 6; Dovrlois, Stiliadis, and Ramanathan, 7; Eggert and Heidemann, 8;
Lu et al., 15; Lu, Saxena, and Abdelzaher, 18]. By providing preferred services to the high
priority class(es), limited system resources can be effectively utilized, especially under
overload conditions. Despite the increasing demand for real-time data services, the related
research for service differentiation is relatively scarce in real-time databases possibly due
to the inherent complexity such as unpredictable data/resource conflicts and potentially
conflicting timing/freshness constraints.

Existing service differentiation models can be categorized as: basic model [Bhatti and
Friedrich, 5; Eggert and Heidemann, 8], proportional differentiation model [Dovrlois, Stil-
iadis, and Ramanathan, 7; Pang, Carey, and Livny, 21], absolute guarantee model [Lu et al.,
15], or hybrid model [Christin, Liebeherr, and Abdelzaher, 6; Lu et al., 15]. In the sim-
plest service differentiation model, called basic model in this paper, a high priority class
receives better services. However, no QoS guarantee is provided and the performance
difference among the service classes is usually unknown.

In the proportional differentiation model such as [Dovrlois, Stiliadis, and Ramanathan,
7], the ratio of service delays between service classes can be maintained roughly as a
constant, however, no upper bound is specified on the service delay. By an intelligent
memory management, a proportional service differentiation is provided in real-time data-
bases [Pang, Carey, and Livny, 21]. Given enough memory, queries can be processed
in time. Otherwise, temporary files should be used during the query processing to save



REAL TIME DATA SERVICES FOR E-COMMERCE 139

the intermediate results. As a result, the query processing may slow down. In this way,
query response time was differentiated among the service classes. Admission control and
real-time scheduling schemes are applied to manage potential overload. However, in their
approach no upper bound is provided on the average or transient miss ratio. Neither data
freshness issues are considered.

In the absolute guarantee model, some subsets of all service classes can receive certain
delay guarantees. In [Lu et al., 15], limited system resources, i.e., Web server processes,
are allocated according to the priority of the class to guarantee the Web server connection
delay. Conceptually, our approach can be considered to provide absolute guarantees for
Classes 0 and 1 in terms of average/transient miss ratio. However, Diff-Real considers not
only timing constrains but also database performance issues such as data freshness.

Hybrid models such as [Christin, Liebeherr, and Abdelzaher, 6; Lu et al., 15] can provide
both the absolute and proportional service differentiation. In [Lu et al., 15], initially a
proportional differentiation is provided. As the load increases, it is switched to an absolute
guarantee model. However, the performance can fluctuate during the switching from one
service differentiation model to another due to the delayed switching to provide a smooth
transition. A hybrid model is also provided in the context of network routers [Christin,
Liebeherr, and Abdelzaher, 6]. These work [Christin, Liebeherr, and Abdelzaher, 6; Lu
et al., 15] consider Web server connection scheduling and network routing, and therefore,
are not directly applicable to real-time databases.

Trade-off issues between response time and data freshness are considered in [Adelberg,
Garcia-Molina, and Kao, 3; Labrinidis and Roussopoulos, 13]. Stanford Real-Time In-
formation Processor (STRIP) [Adelberg, Garcia-Molina, and Kao, 3] introduced several
algorithms to schedule temporal data updates and user requests in a balanced manner.
In [Labrinidis and Roussopoulos, 13], trade-off issues between response time and data
freshness are considered in the context of the Web server. Dynamically generated data
are materialized at the Web server and continuously refreshed by the back-end database.
Response time can be improved if more views are materialized, however, data freshness
can be reduced, and vice versa. They presented an adaptive view selection algorithm to
improve the response time and data freshness. However, in [Adelberg, Garcia-Molina, and
Kao, 3; Labrinidis and Roussopoulos, 13] no performance guarantee is provided. In con-
trast, our approach provides guaranteed real-time data services in terms of data freshness
and (differentiated) miss ratio.

Various aspects of the real-time database performance other than data freshness can
be traded off to improve the miss ratio. In [Ozsoyoglu, Guruswamy, and Hou, 20] and
[Vrbsky, 29], the correctness of answers to database queries can be traded off to enhance
timeliness by using the database sampling and milestone approach [Lin, Natarajan, and
Liu, 14], respectively. In these approaches, the accuracy of the result can be improved
as the sampling/computation progresses, while returning an approximate answers to the
queries, if necessary to meet their deadlines. In replicated databases, consistency can be
traded off to reduce the response time. Epsilon serializability [Pu and Leff, 24] allows a
query processing despite the concurrent updates, while the deviation of the answer to the
query can be bounded. An adaptable security manager is proposed in [Son, Mukkamala,
and David, 26], in which the database security can be temporarily traded off to enhance



140 KANG ET AL.

timeliness. Note that none of the work presented in [Ozsoyoglu, Guruswamy, and Hou,
20; Pu and Leff, 24; Son, Mukkamala, and David, 26; Vrbsky, 29] provide performance
guarantees in terms of both data freshness and miss ratio. Neither, service differentiation
is considered.

Recently, feedback control has increasingly been applied to QoS management and
real-time scheduling because of its robustness [Christin, Liebeherr, and Abdelzaher, 6;
Lu et al., 17; Lu, Saxena, and Abdelzaher, 18; Steere et al., 27]. However, none of them
considered service differentiation issues in real-time databases regarding both timing and
data freshness constraints.

6. Conclusions

The demand for real-time data services is increasing in e-commerce applications. In many
e-commerce applications, it is desirable to process user service requests within their dead-
lines using fresh data. However, it is very challenging to satisfy this fundamental require-
ment due to possibly time-varying workloads and data access patterns. Further, timeliness
and freshness requirements could conflict with each other. In Diff-Real, a database admin-
istrator can explicitly specify the required database QoS including the desired data fresh-
ness and differentiated miss ratios. To support the required real-time database QoS, we
apply the feedback-based miss ratio differentiation, admission control, and adaptable up-
date policy. According to the experimental results, our approach can achieve the required
QoS, while the baseline approaches fail to support the specified miss ratio and/or fresh-
ness requirements in the presence of unpredictable workloads and access patterns. Our
approach also showed the relatively low miss ratio in the less privileged class(es) com-
pared to the baseline approaches, thereby reducing potential starvation. The significance
of our work will become more evident as the demand for (and importance of) real-time
data services increases in e-commerce applications.

In the future, we shall further investigate service differentiation/performance guarantee
issues for real-time data services. Currently, secure real-time transaction processing with
timing guarantees is under investigation. We shall also explore QoS management issues in
distributed real-time databases.

Notes

1. We have deleted the actual stock symbols for security purposes.
2. Transient MR2 is measured, but not plotted for the clarity of presentation.

References

[1] Abbott, R. and H. Garcia-Molina. (1989). “Scheduling Real-Time Transactions with Disk Resident Data.”
In Proc. of Conf. on Very Large Databases.

[2] Abbott, R. and H. Garcia-Molina. (1992). “Scheduling Real-Time Transactions: A Performance Evalua-
tion.” ACM Transactions on Database System 17, 513–560.



REAL TIME DATA SERVICES FOR E-COMMERCE 141

[3] Adelberg, B., H. Garcia-Molina, and B. Kao. (1995). “Applying Update Streams in a Soft Real-Time Data-
base System.” In Proc. of ACM SIGMOD.

[4] Baulier, J. et al. (2000). “DataBlitz Storage Manager: Main Memory Database Performance for Critical
Applications.” In Proc. of ACM SIGMOD—Industrial Session: Database Storage Management, 2000.

[5] Bhatti, N. and R. Friedrich. (1999). “Web Server Support for Tiered Services.” IEEE Network 13(5).
[6] Christin, N., J. Liebeherr, and T.F. Abdelzaher. (2002). “A Quantitative Assured Forwarding Service.” In

Proc. of IEEE INFOCOM, June 2002.
[7] Dovrlois, C., D. Stiliadis, and P. Ramanathan. (1999). “Proportional Differentiated Services: Delay Differ-

entiation and Packet Scheduling.” In Proc. of ACM SIGCOMM, August 1999.
[8] Eggert, L. and J. Heidemann. (1999). “Application-Level Differentiated Services for Web Services.” World

Wide Web Journal 3(2).
[9] Hsu, M. and B. Zhang. (1992). “Performance Evaluation of Cautious Waiting.” ACM Transactions on Data-

base Systems 17(3), 477–512.
[10] Kang, K.D., S.H. Son, and J.A. Stankovic. (2002). “Service Differentiation in Real-Time Main Memory

Databases.” In Proc. of 5th IEEE International Symposium on Object-Oriented Real-Time Distributed Com-
puting, April 2002.

[11] Kang, K.D., S.H. Son, J.A. Stankovic, and T.F. Abdelzaher. (2002a). “A QoS-Sensitive Approach for Time-
liness and Freshness Guarantees in Real-Time Databases.” In Proc. of 14th EuromicroConference on Real-
Time Systems, June 2002.

[12] Kang, K.D., S.H. Son, J.A. Stankovic, and T.F. Abdelzaher. (2002b). “FLUTE: A Flexible Real-Time Data
Management Architecture for Peformance Guarantees.” Technical Report CS-2002-17, Computer Science
Department, University of Virginia, VA.

[13] Labrinidis, A. and N. Roussopoulos. (2001). “Adaptive WebView Materialization.” In Proc. of Fourth In-
ternational Workshop on the Web and Databases, held in conjunction with ACM SIGMOD, May 2001.

[14] Lin, K.J., S. Natarajan, and J.W.S. Liu. (1987). “Imprecise Results: Utilizing Partial Computations in Real-
Time Systems.” In Proc. of Real-Time System Symposium, December 1987.

[15] Lu, C., T.F. Abdelzaher, J.A. Stankovic, and S.H. Son. (2001). “A Feedback Control and Design Method-
ology for Service Delay Guarantees in Web Servers.” Technical Report CS2001-6, Computer Science De-
partment, University of Virginia, VA.

[16] Lu, C., J. Stankovic, T. Abdelzaher, G. Tao, S. H. Son, and M. Marley. (2000). “Performance Specifications
and Metrics for Adaptive Real-Time Systems.” In Proc. of Real-Time Systems Symposium, Orlando, FL,
November 2000.

[17] Lu, C., J.A. Stankovic, G. Tao, and S.H. Son. (2002). “Feedback Control Real-Time Scheduling: Frame-
work, Modeling and Algorithms.” Journal of Real-Time Systems, Special Issue on Control-Theoretical Ap-
proaches to Real-Time Computing 23(1/2).

[18] Lu, Y., A. Saxena, and T.F. Abdelzaher. (2001). “Differentiated Caching Services; A Control-Theoretical
Approach.” In Proc. of 21st International Conference on Distributed Computing Systems, Phoenix, AR,
April 2001.

[19] Moneyline Telerate. “Telerate plus.” Available at http://www.futuresource.com/.
[20] Ozsoyoglu, G., S. Guruswamy, K. Du, and W.-C. Hou. (1995). “Time-Constrained Query Processing in

CASE-DB.” IEEE Transactions on Knowledge and Data Engineering, 865–884.
[21] Pang, H., M. Carey, and M. Livny. (1995). “Multiclass Query Scheduling in Real-Time Database Systems.”

IEEE Transactions on Knowledge and Data Engineering 7(4), 533–551.
[22] Phillips, C.L. and H.T. Nagle. (1995). Digital Control System Analysis and Design; 3rd Edition. Englewood

Cliffs, NJ: Prentice-Hall.
[23] Polyhedra Plc. http://www.polyhedra.com.
[24] Pu, C. and A. Leff. (1991). “Replica Control in Distributed Systems: An Asynchronous Approach.” In Proc.

of ACM SIGMOD International Conference on Management of Data, May 1991.
[25] Ramamritham, K. (1993). “Real-Time Databases.” International Journal of Distributed and Parallel Data-

bases 1(2).
[26] Son, S.H., R. Mukkamala, and R. David. (2000). “Integrating Security and Real-Time Requirements Using

Covert Channel Capacity.” IEEE Transactions on Knowledge and Data Engineering 12(6), 865–879.



142 KANG ET AL.

[27] Steere, D.C., A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J. Walpole. (1999). “A Feedback-Driven
Proportion Allocator for Real-Rate Scheduling.” In Proc. of Third Symposium on Operating Systems Design
and Implementation, 1999.

[28] TimesTen Performance Software. (2001). TimesTen White Paper. Available at http://www.timesten.com/
library/index.html.

[29] Vrbsky, S. (1993). “APPROXIMATE: A Query Processor that Produces Monotonically Improving Approx-
imate Answers.” PhD Thesis, University of Illinois at Urbana-Champaign, IL.


