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Abstract—Recent works on embedded system security, which
is becoming increasingly important, claim that dynamic voltage
and frequency scaling (DVFS) supports a natural defense against
power analysis attacks. In this paper, however, we design a new
DVFS-aware attack that 1) identifies the voltage and frequency
values used for DVFS and 2) performs power analysis to
extract cryptographic keys. Further, we propose a simple yet
effective defense against DVFS-aware power analysis attacks: we
generate noise against power analysis attacks by running random
cryptographic instructions in slack time (if any) generated when
a real-time task (e.g., an engine control task) finishes earlier
than its worst-case execution time. To analyze the effectiveness
of the new proposed attack and defense technique, we undertake
a simulation study using a cycle-accurate micro-architectural
simulator and an advanced power model. In the simulation study,
our DVFS-aware power analysis attack increases the accuracy of
secret key extraction by 1-22% compared to most existing power
analysis attacks unaware of DVFS. Moreover, our defense policy
decreases the success rate of the DVFS-aware power analysis
attack by 2-22% compared to state-of-the-art approaches that
use DVFS as a countermeasure against power analysis attacks.

Index Terms—Embedded Systems; Security; DVFS; Power
Analysis Attack; Countermeasure;

I. INTRODUCTION

The importance of security in embedded systems is in-
creasing fast due to the dramatic growth of the Internet of
Things (IoT) and cyber-physical systems (CPS) [1], [2], [3],
[4]. Traditionally isolated embedded systems, e.g., heating,
ventilation, and air conditioning (HVAC) systems in buildings,
home automation systems, and electronic control units (ECUs)
in automobiles, are increasingly connected to the Internet.
In this paper, we consider power analysis attack—one of
the most powerful side channel attacks—against embedded
systems. It analyzes power consumption patterns to infer
cryptographic keys that lay a foundation for cyber security,
such as encryption, authentication, and digital signature [5],
(61, [71, [8].

Earlier work on differential power analysis [5], [6], [7],
[8] applied statistical techniques to steal keys from relatively
simple embedded devices, e.g., smart cards [9], [10], [11],
[12], based on the observation that executing a cryptographic
algorithm, e.g., an encryption algorithm, using different keys
consumes different amounts of power. Recently, advanced
machine learning techniques are applied for more effective
power analysis attacks [13], [14], [15]. Dynamic voltage and
frequency scaling (DVFES) [16] is provided in most modern

processors to reduce the power/energy consumption by dy-
namically adjusting the voltage and frequency at runtime.
Recent works [17], [18] claim that DVFS is an effective
defense against power-analysis attacks, since the frequency
and voltage may change significantly due to DVFS while
the processor executes thousands of instructions to encrypt
a single byte using a standard encryption algorithm, such as
Advanced Encryption Standard (AES). In this paper, we show
that the DVFS-based defense mechanisms [17], [18] provide
a false sense of security by devising a new power-analysis at-
tack, called C-DVFS (Circumventing-DVFS), which generally
works as follows:

1) C-DVFS first identifies the voltage and frequency values
used for DVFS by applying fundamental digital signal
processing and machine learning techniques;

2) it normalizes the power consumption data of the identi-
fied voltage and frequency values with respect to the
common voltage and frequency (e.g., the maximum
voltage and frequency provided by a specific processor);
and

3) it applies power analysis attacks based on machine
learning [13], [14], [15] to the power consumption data
denoised and normalized in the previous steps.

In general, devising a new attack can advance security research
by shedding light on overlooked vulnerabilities and potential
threats that could be devastating if exploited by attackers.
Despite the importance, relatively little work has been done
to analyze whether DVFS widely used in embedded systems
for power/energy efficiency can serve as a power-analysis
countermeasure except for [17], [18] that claim DVFS provides
a strong defense. In this paper, however, we show that C-
DVEFS can considerably decrease the effectiveness of DVES
as a defense against power analysis attacks.

In addition, we propose a new approach to mitigate the
potential impact of C-DVFS attacks. To meet stringent timing
constraints, real-time tasks are usually scheduled based on
their worst-case execution times (WCETs) known a priori;
however, they often complete before the WCETs, producing
slack time [19]. The key idea of our defense against C-
DVEFS is to extend the earliest deadline first (EDF) scheduling
algorithm [19] by executing random instructions similar to
the instructions frequently used in cryptographic algorithms
during the slack time (if any) to insert noise to power con-



sumption data, while missing no deadlines of the real-time
tasks, e.g., control tasks in ECUs, implanted medical devices,
or factory automation. Thus, our approach, called security-
enhanced EDF (S-EDF), can mitigate the threat of C-DVFS
without adversely affecting the timeliness important in real-
time embedded systems. Also, it is relatively easy to deploy,
since it requires no extra circuitry to hide power consumption
patterns. Although we do not claim our approach is fully
secure or reliable, it is a stepping stone to more advanced
research to address C-DVEFS that is an important yet under-
explored problem.

To evaluate the effectiveness of the C-DVFS attack and the
mitigation technique, we conduct a simulation study using a
cycle-accurate micro-architectural simulator, gem5 [20], and
an advanced power model, called McPAT [21], to realistically
model the power consumption and power analysis attack.
In the simulation study, C-DVFS increases the accuracy of
distilling secret keys for AES by 1-22% compared to well-
known power analysis attacks, e.g., [13], [14], [15], which are
based on machine learning but unaware of DVFS. Thus, we
observe that the proposed C-DVFS attack is a serious threat.
Moreover, our defense policy, S-EDF, decreases the success
rate of C-DVFS by 2-22% compared to the state-of-the-art
approaches [17], [18] that use DVFS as a countermeasure.

The rest of the paper is organized as follows. Related work
is discussed in Section II. Section III describes the real-time
task model and threat model considered in this paper. In
Section IV, the C-DVFS attack is described. Our approach
to mitigate the attack (S-EDF) is discussed in Section V. In
Section VI, the proposed attack and mitigation schemes are
evaluated in comparison to the approaches representing the
state of the art. Finally, Section VII concludes the paper and
discusses future work.

II. RELATED WORK

Simple power analysis (SPA) and differential power analysis
(DPA) were first introduced in [5], [8]. SPA analyzes power
signals directly, while DPA considers statistical correlations
between the key and power signals. Template-based DPA [7],
[12] takes a more advanced step by storing the probabilistic
distribution as templates and matches power signals to the
stored templates. These attack methods are applied to distill
secrete key used by cryptographic algorithms such as DES
[22], AES [23], and RSA [24]. For example, AES and DES
implemented in smart cards or ASIC are attacked [9], [10],
[11], [12], [25].

More recently, machine learning techniques have been ap-
plied to power analysis attacks [13], [14], [26]. In these
approaches, feature selection is performed to select relevant
features out of massive power consumption data to reduce the
computational complexity and the impact of irrelevant features
on the model. The power consumption data is divided into the
training set and test set to train and evaluate different models to
extract secrete keys via power analysis attacks. Popular feature
selection algorithms in machine learning, e.g., the Pearson
correlation coefficient and principal component analysis (PCA)

[15], [27], were found to be effective for feature selection
in power analysis attacks. In [14], the effectiveness of well-
established supervised learning models, e.g. decision tree and
random forest [28], [29], self-organizing map [30], and support
vector machine [31], [32], for power analysis attacks is eval-
uated. Besides, [26] proves that power analysis via machine
learning can successfully attack masked AES. However, most
existing approaches to power analysis do not consider potential
noise produced by DVFS.

The principle of countermeasures against power analysis
attacks is to break the correlation between the processed
data (keys) and power consumption [33]. Masking and hid-
ing are two main approaches. Masking dynamically changes
the power consumption characteristics of devices, while hid-
ing randomizes the intermediate processing. Countermeasures
could be implemented in different layers in software [17], [18],
[33] or hardware [11], [25]. In [17], [18], DVES is shown
to be effective against most existing power analysis attacks
that are unaware of the potential noise injected into power
consumption data by DVFS. In this paper, however, we show
that DVFS may give a false sense of security by devising a
new DVFS-aware power analysis attack, C-DVFS, and propose
S-EDF—a countermeasure in embedded systems.

III. REAL-TIME TASK MODEL AND THREAT MODEL

In this paper, we consider that there is a task set I,
which consists of N sporadic tasks, in the real-time embedded
system. A task 7; € I' is associated with the worst-case
execution time (WCET), C;, and period, 7;, that defines the
minimum inter-arrival time between two consecutive instances
(jobs) of a task. In real-time embedded systems, it is assumed
that C; and T; are known a priori to meet all deadlines
[19]. The utilization of 7; is U; = C;/T;. For the sake of
simplicity, we assume that 7;’s deadline, D;, is equal to 7T;
(implicit deadline). We assume the tasks are scheduled via the
earliest deadline first (EDF) algorithm, which is an optimal
real-time scheduling algorithm. (Our approach is not limited
to a specific real-time scheduling algorithm. For example, the
rate monotonic algorithm [19] can be used instead.) In EDF, all
deadlines will be met if the total utilization U = Zivzl U; <1
[19]. In addition, we assume that DVFS is supported to save
power/energy, while meeting all deadlines. The real-time task
model above and DVFS in real-time embedded systems are
well studied and widely accepted [19], [34].

We assume that a subset of the tasks I'y C I' are required
to execute a cryptographic algorithm, for example, to encrypt
or digitally sign certain data. In this paper, we consider
AES, which is one of the most widely used cryptographic
algorithms. In our threat model, we assume the following:

e When a sporadic task 7; € I's is released, it performs

a specified task and executes AES. We assume that the
time for 7; to process the AES algorithm is included in
its WCET, Cj;.

e A correct implementation of a strong encryption algo-

rithm is not necessarily secure due to potential informa-
tion leakage through side channels, e.g., power consump-



tion in this paper, not considered in the cryptographic
algorithm design.

o Attackers can apply powerful machine learning tech-
niques publicly available as libraries/tools, e.g., R [35]
or Tensorflow [36], to process power traces and extract
secret keys.

¢ An attacker can acquire (e.g., purchase) target embedded
devices and create a set of random keys and plaintext
data to design and train power analysis models offline.
(Although the knowledge of plaintext is not required,
knowing both plaintext and ciphertext usually expedites
the cryptanalysis [37].)

o Alternatively, side-channel power analysis attacks can be
performed without physical access to target embedded
systems. For example, embedded operating systems based
on Linux provide procfs (the /proc file system) that
stores a broad range of system information, e.g., the
CPU utilization, memory usage, cache latency, and power
consumption [2]. Most processes in the system can freely
access them to enhance the performance and energy
efficiency. Thus, an attacker can penetrate IoT networks,
which often lack strong security [1], to download power
traces stored in the background without being detected.

o An attacker’s computational system, a desktop machine
or server, is more powerful than embedded devices are.

Considering the current practice in IoT and the general avail-
ability of computational resources and machine learning tools,
our threat model is very realistic.

IV. C-DVFS: DVFS-AWARE POWER ANALYSIS ATTACK

In [17], [18], DVFS was shown to mitigate power analysis
attacks, since frequency or voltage variations directly change
the power consumption and, therefore, power analysis attacks
based on pre-built models or statistical templates may fail
to extract keys. In practice, many processors have many
DVES profiles enabled, further increasing the challenge. In
this section, we describe the C-DVFS attack that can filter out
noise in power traces produced by DVFS for power analysis
attacks.

In general, the power signal of a DVFS-enabled system in
the i** measurement period, P(i), is a tuple that consists of
the time, frequency, voltage, and power consumption when the
it" measurement is taken:

Conceptually, building a power trace database that consists
of the collected power signal tuples is the first step in any
power analysis attacks. Using the power trace database, the
C-DVES attack proceeds in three stages illustrated in Figure 1
and summarized below.

o Stage 1: Divide the power data trace into a training set
and test set. Train the frequency model, M, and voltage
model, M, that will be used to identify the frequency
and voltage values used by DVFS (using the training set).
In addition, normalize the power consumption data to
the power consumption of a single common frequency
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Fig. 1. C-DVEFS Flow

and voltage setting, e.g., finqe and vp,q, (the maximum
frequency and voltage of the target processor), used for
differential power analysis in C-DVFS.

o Stage 2: Train the key prediction model, M, that distills
keys based on the transformed power trace acquired in
Stage 1. Further, test the trained models, My, M, and
M, using the test set.

o Stage 3: Perform a power analysis attack to identify the
voltage and frequency used by DVFS, normalize power
consumption data, and extract keys in the victim system
using My, M, and M, trained and tested in the previous
stages.

When DVES is used for power/energy efficiency, power data
cannot be used to directly train the machine learning models
and estimate keys, since there are many combinations of volt-
age and frequency that consume different amounts of power.
Also, the voltage and frequency may change anytime, posing
more challenges for power analysis attacks. For example, if a
processor has 25 possible frequency and voltage profiles (5x5
frequency and voltage settings) and runs 1,000 instructions to
encrypt data, a brute-force approach should consider 100023
combinations. Thus, finding a secrete key in the huge search
space is infeasible.

To address the challenge, in Stage 1, C-DVES trains the
frequency model, My, to identity the frequencies, f; at time
t in (1), used by DVFS. Next, C-DVFS trains the voltage
model M, to identify the voltage, v; at time ¢ in (1), used by
DVEFS. In Stage 2, the key prediction model, M, is trained
using the power consumption data, p; in (1), normalized to
fmaa and vy,4,. Finally, in Stage 3, C-DVEFS distills keys
using the trained models, My, M, and M. In the following
subsections, our approaches to training My, M,, and M, as
well as C-DVEFS attack using the trained models are discussed.

A. Training the Frequency Model

The dynamic power consumption of a processor at time ¢
is proportional to the frequency and the square of the voltage
[16]:

P(t) = CV2f 2)

where C' is the dynamic power dissipation capacitance. The
voltage and frequency can be configured independently as
specified by the manufacturer.

To extract frequency features, we convert the power con-
sumption signals to the frequency domain using the fast
Fourier transform (FFT) as depicted in Figure 1. Thus, we
derive the frequency f used at time ¢ from the power con-
sumption data at time ¢, P(t):

f=FFT(P(t)) 3)



By performing FFT, we divide power consumption data into
the corresponding frequency components independent of the
voltage to greatly simplify the frequency modeling.

Also, we apply the support vector machine (SVM) algo-
rithm, which is a powerful machine learning algorithm for
classification, to classify f into the closest discrete frequency
provided by the target processor. In this way, we train the
frequency model M:

M; = SVM(f) Vf € power data trace “4)

where f is detected via FFT in (3).

B. Training the Voltage Model

After training My, we use M to process power data to
group the power signals with the same frequency f but with
potentially different voltages together and use them to train the
voltage model M, in C-DVFS. In particular, we apply SVM
as illustrated in Figure 1 to classify the power signals with
the same frequency f into the signals with a fixed number of
discrete voltage levels in the target processor:

M, & SV M(f,v;) Vv; provided by the processor.  (5)

C. Training the Key Prediction Model

After training the frequency and voltage models, we train
the key estimation model based on the identified frequency
and voltage as shown in Figure 1. To train the key estimation
models, we normalize the power consumption data to the
power consumption by f,.. and v,,4. as discussed before.
(A detailed description is given in Section IV-D.) Further, to
efficiently train the key prediction model M, we select most
relevant features only, since a large number of CPU cycles
are used to encrypt data using a sophisticated cryptographic
algorithm such as AES. Also, many instructions performing
non-cryptographic algorithms are relatively irrelevant. Thus, it
is required to select relevant features to improve the training
performance by reducing the impact of irrelevant features on
the model.

There are many techniques to select relevant features in
machine learning [38]. Among them, the principal component
analysis (PCA) technique [39], [40] is a well established
technique. PCA utilizes orthogonal transformation to convert
a set of features to linearly uncorrelated variables, called
the principal components (PCs) [40]. Each PC is a linear
combination of the original features. Thus, the least square
method can be applied to project data on the PCs. As a
result, the PCs become the lower-dimensional representations
of the original features that can be used to select features for
training models. (A detailed discussion of PCA for dimen-
sionality reduction in power analysis attacks is omitted due
to space limitations.) After dimensionality reduction via PCA,
the remaining training process of M), is similar to leading-
edge power analysis techniques, e.g., [13], [14], [15], which
are DVFS-agnostic.

D. Performing a C-DVFS Attack

When all the models, My, M,, and M, are trained, an
attacker verifies them using the test set as discussed before.
(If the result of the test is not satisfactory, s/he may perform
more training.) If the models provide sufficient accuracy, an
attacker mounts an attack on the target system. Our proposed
attack, C-DVFS, is summarized in Algorithm 1 and discussed
in the subsection.

Algorithm 1: C-DVFS Attack

1 while attack in progress do

2 while data collection do

3 slide the window to identify the next time
interval, [tstqrt, tend], in Which the same
frequency f and voltage v are employed by
DVFS based on My and M,;

4 for t € [tstart, tend] do
5 derive power data P(t) with respect to f,q4
and vy,q, using (6);

6 Apply PCA;
| Apply M), to extract secret keys;

During the data collection phase, C-DVFES identifies all the
frequencies and voltages employed by DVFS using a sliding
window based on our frequency and voltage models, i.e., My
and M,, to identify every time interval where DVFEFS uses a
pair of a specific frequency f and voltage v, e.g., IGHz and
1.1V, in Lines 2-3 of Algorithm 1.

Since f and v are constant in [ts¢qrt, tend), We can transform
the power consumption by f and v with respect to f,,4, and
VUmaxz aS follows:

> f max ’U2
P(t) = P(tstart + (t - tstart) X ) X ng
f v
because the instructions executed between [tgiqrt,t] would
have been completed earlier at tsiort + (¢ — tstart) X fmfm
if fiae instead of f had been used. Also, the impact of
voltage scaling is handled in (6) by transforming the power
value with respect to v,,q,. Thus, the processed signal P(t)
is characterized with the unified f,,,. and v,,qz.

After computing P(t) for every discrete time in [ts¢art, tend)
in Lines 4-5 in Algorithm 1, C-DVFS repeats Lines 3-5 in
Algorithm 1 for the next time interval that uses f/ and v’
where f’ # f and/or v’ # v due to DVFS until enough data
for a power analysis attack are collected.

Once enough data are collected, the C-DVES attack applies
PCA in Line 6 of Algorithm 1 to reduce the dimensionality
and applies M,, to extract secret keys in Line 7 where M,
can be any advanced model for DVFS-unaware power analysis
attacks, e.g., [13], [14], [15], as discussed before.

In summary, C-DVFS is new in that it: 1) identifies the
frequencies and voltages used by DVFS and 2) transforms the
power data trace to characterize them via the unified fi,q.

(6)




and v,,,42, as if no DVFES has been undertaken. Therefore, C-
DVEFS significantly diminishes the effectiveness of DVES as
a defense against power analysis attacks aware of DVFS.

V. S-EDF: MITIGATING THE IMPACT OF C-DVFS
ATTACKS

TABLE I
PERCENTAGE OF MATHEMATICAL INSTRUCTIONS IN AES

[ Instruction [[ Number || Percentage |

add 3581 16.5%
XOr 860 3.9 %
sub 288 1.3 %

Algorithm 2: S-EDF: Secure Real-Time Scheduling for
Mitigating C-DVFES Vulnerabilities

1 while EDF-Q is not empty do

7;5 = head(EDF-Q);

execute 7;; for one time unit;

if 7;; completes after running total c¢; < C; then
slack = C; — ¢;;
while slack > 0 and EDF-Q is empty do
L randomly execute add, sub, or xor;

®w NN R W N

slack = slack - elapsed time;

Cryptographic algorithms usually runs several common
mathematical instructions. For example, Table I lists frequently
used mathematical instructions in AES. As shown in the table,
add, sub, and xor together sum to 22% of the instructions
executed in AES. Based on this observation, our approach,
S-EDF, extends the EDF scheduling algorithm to mitigate
C-DVES vulnerabilities in real-time embedded systems as
summarized in Algorithm 2. In EDF, jobs (periodic instances
of the real-time tasks) are sorted in non-descending order of
deadlines such that the shortest deadline job at the head of
the EDF queue is executed first. Also, the currently running
job is preempted when a new job with a shorter deadline
arrives. EDF is optimal and it can meet all deadlines if the total
utilization does not exceed 1 [19] (discussed in Section III).
Notably, S-EDF meets all deadlines, while alleviating the
potential impact of DVFS-aware attacks, e.g., C-DVFS.

Real-time tasks often finish before their WCETs since
worst-case rarely happens in practice. If a real-time job 7;;,—
the j*" periodic instance of the real-time task 7;—finishes after
executing for total ¢; time units smaller than its WCET Cj,
the slack time C; — ¢; is generated. During the slack time,
we randomly execute add, sub, and xor instructions using
any data in the registers (that are not keys) rather than doing
DVES as described in Algorithm 2. (If there is a secret key in
any register, we replace it with a random data.) In this way,
we insert noise in power traces to reduce the vulnerability
of embedded systems to power analysis attacks, causing no
deadline miss. Our approach can better protect secrete keys in

real-time embedded systems even in the presence of C-DVFS
attacks or other possible power analysis attacks in the future
designed to minimize the effectiveness of DVES in protecting
secrets from power analysis.

The protection of secretes in non-real-time systems against
power analysis attacks can also be enhanced by running an
adapted version of Algorithm 2 when the system becomes
idle or when certain performance reduction due to random
cryptography-like instruction executions is acceptable. A thor-
ough investigation is reserved for future work.

VI. PERFORMANCE EVALUATION

TABLE 11
MCPAT PARAMETERS
[ Parameter [[ Value |

number of cores 1
virtual address width 32 bits
physical address width 32 bits
virtual memory page size || 4096 bytes
instruction length 32 bits
ALU per core 3
FPU per core 1

We evaluate the effectiveness of C-DVFS and Algorithm 2
using gem5 [20] micro-architecture simulator to simulate the
ARM A9 [41] processor. We also use the McPAT power model
[21] to simulate the processor power consumption. Although
our basic power consumption model is similar to [21] as
summarized in Table II, we need to extend McPAT to model
per-instruction power consumption variations based on data
values (e.g., key values).

In McPAT, overall power consumption is calculated based
on the sum of the power consumption of individual instruc-
tions. In McPAT, the power consumption of main process
components and the dynamic, short-circuit, and leakage power
consumption [21] are modeled. McPAT simulates power con-
sumption per instruction that goes through logical units in a
processor, since different logical units have different circuits
and power consumption. It is insufficient, however, for our
simulation, since the power consumption of the same instruc-
tions may vary based on the data values (e.g., key values)
processed by the instructions. Further, power analysis attacks
builds correlations between keys and power traces based on
this observation [13], [14], [15].

To address this issue, we extend McPAT power model by
modeling the power consumption of instruction ¢, p;, as the
weighted sum of p,—the power consumption determined by
MCcPAT based on the type of the instruction—and p, we newly
introduced to consider the power consumption due to operands
as follows:

Pi = Pit + DPio = Dit + a(sum of operands + ;)  (7)

where o < 1 to give a higher weight to p; ; and +y; is a random
number generated using a Gaussian distribution.'

'In our simulation, « = 10~ 7. Also, the Gaussian distribution with mean
= 0 and standard deviation o = 10 is used to generate ;.



Using the extended McPAT power model and the AES
algorithm data encryption, we analyze the accuracy of the
proposed approaches and the baseline that performs DVFS-
unaware differential power analysis attacks to represent the
state-of-the-art machine learning techniques, such as [13],
[14], [15], in the following subsections.

A. Accuracy of Classifying DVFS Profiles

In this experiment, we simulate the power consumption of
AES with different DVFS settings and measure the accuracy
of the classification of the voltage and frequency, which is
the foundation for DVFS-aware power analysis attacks, such
as C-DVFS. For this experiment, we increase the frequency
from 5S00MHz to 1600MHz by 50MHz at a time and change
the voltage from 1.05 to 1.35V by the step size of 0.05V.
We change the frequency and voltage incrementally by a
relatively small step size to make frequency and voltage
detection more challenging. We sample the power data traces
at 3.2GHz (=2 x 1.6GHz) according to the Nyquist—-Shannon
sampling theorem [42]. We have observed that the frequency
and voltage detection accuracy is 100% when the sample
size used for training the frequency and voltage models,
My and M, is 2000 or more. (Approximately 24% of the
samples are used to train My and M,, while the rest of the
samples are used for testing.) We have achieved the complete
accuracy, since FFT readily transforms power trace tuples
into the frequency domain to detect the frequency for every
tuple (Section IV-A) and our voltage classification via SVM
is effective (Section IV-B). These results indicate that DVFS
cannot generate enough noise to considerably decrease the
success ratio of DVFS-aware power analysis attacks, such as
C-DVES attacks, which is further verified as follows.

B. DVFS-Unaware vs. DVFS-Aware Power Analysis Attacks

TABLE III
AES KEY EXTRACTION ACCURACY OF THE DVFS-UNAWARE BASELINE

[ Experiment [[ f1 <> fo (MHz) [[ Accuracy (%) |

1 600 <> 750 24.5

2 750 <> 900 25.9

3 900 <« 1000 21.9

4 1000 <> 1100 23.9

5 1100 +» 1250 25.0

6 1250 + 1400 22.7
TABLE IV

AES KEY EXTRACTION ACCURACY OF C-DVFS

[ Experiment [[ f1 <> fo (MHz) [[ Accuracy (%) |

1 600 <« 750 329
2 750 < 900 26.7
3 900 < 1000 272
4 1000 < 1100 46.3
5 1100 < 1250 44.0
6 1250 < 1400 38.6

In this subsection, we compare the performance of the
DVFS-unaware baseline based on machine learning (similar
to [13], [14], [15]) and C-DVEFS in terms of key distillation
accuracy they achieve via power analysis. The frequency is
randomly alternated between f; and f> as shown in Tables III
and IV, while the voltage is randomly varied between 1.05 and
1.25V with the step of 0.05V to make detecting frequency
or voltage changes relatively hard. In each experiment in
Tables III and IV, we have used 4 different keys to encrypt
128 different data using each key. Among the 128 data entries,
we use 40 entries for training and the rest for testing.

As shown in Table III, the accuracy of the baseline ranges
between 21.9-25.9%. On the other hand, the accuracy C-
DVFS ranges between 26.7-46.3% as summarized in Table I'V.
C-DVEFS increases the accuracy by approximately 1% only
when the frequency alternates between 750 and 900MHz in
Experiment 2; however, it achieves the biggest accuracy in-
crease of about 22% compared to the DVFS-unaware baseline
as the frequency alternates between 1 and 1.1GHz in Exper-
iment 4. Therefore, our DVFS-aware attack, viz. C-DVEFS,
poses considerable security threats. Also, it demonstrates that
DVES is not as reliable against power analysis attacks as
claimed in recent works [17], [18] that have not considered
DVEFS-aware attacks, such as C-DVEFES.

C. Effectiveness of S-EDF

TABLE V
AES KEY DISTILLATION ACCURACY OF C-DVFS UNDER S-EDF

[ Exp. [ f (MHz) [[ Slack (%) [[ Accuracy (%) [[ Energy 1 (%) ]

1 750 19.7 24.5 13.7
2 900 16.4 27.8 12.9
3 1000 14.8 25.0 11.3
4 1100 13.5 24.5 10.3
5 1250 11.8 23.0 8.3
6 1400 10.6 273 7.3

In this subsection, we evaluate the performance of S-EDF
against C-DVFS attacks. In our experiments summarized in
Table V, we consider several different frequencies and (use
the fixed voltage 1.25V). As the frequency is increased from
750MHz to 1.4GHz, the slack time is reduced since the
processor executes more instructions within a unit time. In
our experiments, we have intentionally considered a relatively
small slack times that range between 10-20% approximately.
In this way, we make it more challenging for S-EDF to insert
random cryptography-like instructions to alleviate the potential
impact of C-DVFS attacks. As shown in Table V, the accuracy
of C-DVFES’s key extraction under S-EDF ranges only between
23-27.8%. Recall that, in Table IV, the accuracy of C-
DVFS under EDF with no random insertions of cryptography-
like instructions during the slack time ranged between 26.7—
46.3%. Although the smallest accuracy decrease of C-DVFS
between EDF and S-EDF is only 2% for Experiment 3 as
summarized Tables IV and V, the biggest accuracy decrease
due to S-EDF is roughly 22% regarding the Experiment 4



results (in Tables IV and V). Therefore, we observe that S-
EDF considerably reduces the potential threat imposed by
C-DVFS. A downside of S-EDF is it may consume more
energy as it inserts random encryption-like instructions to
mitigate advanced power analysis attacks instead of doing
DVFS. The additional energy consumption of S-EDF, however,
is acceptable: it ranges between 7.3—13.7%, while the slack
time ranges between 10.6—19.7%. Essentially, there is a trade-
off between energy efficiency and power analysis attacks,
which is another interesting observation of this paper.

D. C-DVFS Parameters

Notably, our attack, C-DVFS, has only two parameters as
specified in Algorithm 1: 1) the sliding window size w, and 2)
the step size steps for moving the sliding window. Thus, it is
easy to mount C-DVFS attacks. In our simulation, the voltage
and frequency detection accuracy reach 100% when w; is
at least 1280 sampled data which is equivalent to 200 CPU
cycles for S00MHz CPU frequency and 560 CPU cycles for
1400MHz CPU frequency from original power consumption
data. In addition, when we set step; = 300 sampled data, our
design can accurately detect the frequency or voltage change.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a new power analysis attack, C-DVFS, that
takes DVFS into account to improve the accuracy of key
distillation is devised. Further, we design a new real-time
scheduling policy, S-EDF, that extends the EDF scheduling
algorithm to improve the resilience of real-time embedded
systems against DVFS-aware C-DVFS. In our simulation
study, C-DVEFS attacks considerably improve the accuracy of
key distillation under EDF, while S-EDF effectively mitigates
C-DVES attacks. Overall, the problem of DVFS-aware power
analysis attacks is under-explored with many open research is-
sues for future work. For instance, S-EDF reduces the accuracy
of key extraction by inserting random instructions; however, it
consumes more energy proportional to the slack time (if any).
Although a novel approach that can minimize both the attack
success ratio and the required energy consumption is desirable,
it is a very challenging problem beyond the scope of this
paper. Other machine learning techniques, e.g., deep learning,
could be applied to further enhance the accuracy of C-DVFS
attacks. Also, a thorough investigation of the applicability
of C-DVFS attacks against other systems, such as could
computing frameworks, is warranted. For example, attackers
might be able to adapt/extend C-DVES attacks by analyzing
power trace data collected by operating systems or power
management schemes in the cloud without requiring physical
access to the cloud. New countermeasures will be needed, if
such attacks turn out to be successful. To summarize, in this
paper, we show that DVFS-aware power analysis attacks pose
a real threat. We also take a first step to mitigating the threat
in the context of real-time embedded systems.
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