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Abstract— Emerging 5G wireless communication technology
is envisioned to significantly enhance the performance. In this
paper, we propose a new algorithm for effective cross-layer
downlink scheduling and resource allocation (SRA) considering
the channel and queue state, while supporting fairness. We also
integrate our cross-layer SRA scheme with filter-bank multicar-
rier/offset quadrature amplitude modulation (FBMC/OQAM)
to leverage the higher spectral efficiency. Our performance
evaluation results show that our SRA method outperforms a
novel SRA algorithm [1] by up to approximately 60%, 2.6%,
and 1.6% in terms of goodput, goodput fairness, and delay
fairness, respectively.

I. INTRODUCTION

The CISCO predicts that the global mobile data traffic
is expected to grows by eight fold from 2015 to 2020. For
example, it increased from 4.4 exabytes per month at the end
of 2015 to 7.2 exabytes per month at the end of 2016 [2]. The
upcoming 5G technology is envisioned to revolutionize mo-
bile services and many industries, e.g., telecommunication,
automobile, health care, and entertainment, by significantly
enhancing the performance, e.g., throughput and latency.
This motivates new research to investigate 5G new radio
technology for high performance and spectrum efficiency
at the data link control (DLC) and physical (PHY) layers.
In 5G, a scheduling and resource allocation (SRA) unit
should effectively allocate resources of the base station (BS),
e.g., time slots and frequency sub-bands (subcarriers). The
importance of SRA is increasing rapidly as the demand and
expectation for performance rise sharply. However, effective
SRA is challenging, since many SRA problems are NP-hard
[3], [4].

Feminias et al. [1] propose a novel cross-layer SRA
framework that incorporates the downlink SRA across the
DLC and PHY layers by extending their previous work
[5]. They aim to optimize the utility, i.e., the weighted
goodput, via effective cross-layer SRA. They provide a cross-
layer optimization over the PHY and DLC layers to support
effective SRA for massive multiple-input and multiple-output
(MIMO) systems by taking advantage of higher bandwidth
[6] and adaptive modulation and coding schemes (MCSs)
[7] in 5G. Their SRA algorithm, however, is greedy. Thus,
it may produce sub-optimal results. To address the problem,
in this paper, we propose an optimal SRA algorithm based
on dynamic programming and show that its time complexity
is polynomial in a practical sense.

For 5G new radio, two dominant waveform technologies
are: 1) orthogonal frequency division modulation (OFDM)
and 2) filter-bank multicarrier/offset quadrature amplitude
modulation (FBMC/OQAM). OFDM is widely deployed in
4G and 802.11. In OFDM, the subcarrier frequencies are
chosen to make the subcarriers orthogonal to each other and
eliminate crosstalk between the subchannels and intercarrier
guard bands [8]. This greatly simplifies the design of the
transmitter and the receiver too, since a separate filter is
not required for each sub-channel. However, OFDM requires
time and frequency synchronization at the receiver, which
is fulfilled by adding a cyclic prefix (CP) at the begin-
ning of the OFDM waveform. Although the CP removes
the inter-symbol interference and inter-channel interference
(ISI/ICI), it considerably increases the spectral inefficiency
[8]. To overcome the spectral inefficiency caused by CPs,
FBMC/OQAM uses a series of filters with a higher spectral
selectivity to minimize crosstalk instead of using CPs [9].

In this paper, we integrate our cross-layer SRA scheme
based on dynamic programming with FBMC/OQAM to ex-
ploit its higher spectral efficiency than OFDM’s. Although
significant work has been done to compare the performance
of OFDM and FBMC/OQAM at the PHY layer [10], [11],
[12], much less work has been done to analyze their per-
formance at both the PHY and DLC layers, considering
cross-layer optimization via SRA [1], [5]. Zhang et al. [13]
compare the link level performance of various advanced
multicarrier waveforms including OFDM and FBMC using
MIMO wireless communication channel models. They found
that FBMC with its linear filtering offered significantly
lower out-of-band emissions than OFDM did. Xenakis et
al. [14] propose a dynamic SRA that allocates a contiguous
collection of resources to the pending users in each step to
improve the throughput and spectral efficiency. The work
of Feminias et al. [1] is closest to our work presented in
this paper in that they propose a unifying cross-layer SRA
framework that incorporates downlink SRA with OFDM and
FBMC/OQAM, respectively.

For performance evaluation, we have undertaken extensive
experiments using three well-established multipath fading,
1) the Extended Pedestrian A; 2) the Extended Vehicular A,
and 3) the Extended Typical Urban models [15] in Matlab.
We have also considered different Doppler frequencies and
channel correlations for thorough performance analysis. The
results indicate that our approach outperforms the greedy



SRA algorithm [1] by up to 60% in terms of goodput (the
total number of bits successfully transmitted per unit time).
In terms of goodput, our approach consistently outperforms
the greedy algorithm [1] in all experiments even under high
channel correlations and Doppler frequencies. Further, in
terms of Jain’s goodput and delay fairness index (JFI) [16],
our proposed algorithm supports 0.96–1 where 1 indicates
perfect fairness. Our goodput and delay JFIs are higher
than those of [1] by up to approximately 2.6% and 1.6%,
respectively.

The remainder of this paper is organized as follows.
Section II formulates the SRA problem. In Section III, our
SRA algorithm is described and the time complexity is
analyzed. In Section IV, the performance of the proposed
SRA algorithm is thoroughly evaluated. Finally, Section V
concludes the paper.

II. PROBLEM FORMULATION

A. Downlink Time-Slotted MIMO System

The overall system architecture and problem formulation
are inspired by [1]. We assume that the BS has NTx transmit
antennas and NRx receiving antennas with total transmission
power PT . The BS offers service to NMS active mobile
stations (MSs) of users. Each MS is equipped with the
same number of receive antennas. Transmissions between
the BS and an active MS are organized in fixed time-
frequency resource allocation units, called resource blocks
(RBs), where one RB consists of a certain number of
resource elements, each of which takes one time slot and
frequency sub-band (subcarrier). In the time axis, each RB
holds a fixed time slot, TPHYs , where PHY represents
either OFDM or FBMC/OQAM symbols. Each of these slots
consists of a fixed number of symbol Nsym of OFDM or
FBMC symbols with duration Tp, and sub-carrier bandwidth
∆f = 1

Tp
.

Since OFDM uses the CP to cancel out ISI, there are
N long
sym OFDM symbols prefixed with a long CP of duration

T longCP and Nshort
sym = Nsym − N long

sym symbols prefixed with
a short CP of duration T shortCP . Thus, for OFDM, the fixed
time slot size is:

TOFDMs = Nsym × Tp +N long
sym × T

long
CP +Nshort

sym × T shortCP

However, for FBMC/OQAM, it is:

TFBMC
s = Nsym × Tp

since FBMC/OQAM uses no CP. Hence, FBMC/OQAM can
enhance the spectral efficiency and improve the network
performance. We assume that the SRA process happens at
the beginning of a transmission time interval (TTI) between
two consecutive time slots, similar to [1].

B. SRA Problem Formulation

Let us assume that the BS has Qu(t) bits in the queue for
MS u at the beginning of TTI t. Also, we assume that the
SRA scheme of the BS allocates Lu spatial streams to user
u and a transmission capacity, ru,l(t,NBu) bits, to spatial

stream l ∈ Lu = {1, ..., Lu} where NBu
is the set of RBs to

user u. At the end of the TTI, the total queue length Qu(t)
of user u at the BS is:

Qu(t+ 1) = Qu(t) +Au(t)− Su(t)

where Au(t) and Su(t) represent the number of the arriving
data bits to transmit to user u during TTI t and that
successfully transmitted to the user, respectively.

When there are NMS mobile stations (users), at the
beginning of TTI t, the SRA unit of the BS is required
to derive the RB allocation set NB = {NB1, ..., NBNMS

},
where NBu is the number of RBs allocated to MS u,
and the MCS allocation set µ = {µ1, ..., µNMS

}, where
µu = {µu,1, ..., µu,Lu} represents a set of MCSs assigned
to each spatial stream l of MS u, to effectively allocate RBs
and MCSs to MSs, respectively.1 We formulate the SRA
optimization problem to maximize the total utility V , i.e.,
the total weighted goodput, as follows:

V = max
NB ,µ

NMS∑
u=1

Lu∑
l=1

wuru,l (NBu)
[
1− BLER

(µu,l)
u,l (NBu)

]
subject to NBk ∩NBj = ∅ ∀k 6= j

Lu∑
l=1

ru,l (NBu) ≤ Qu ∀ (u, l)

BLER
(µu,l)
u,l (NBu) ≤ BLER0 ∀(u, l)

where wu is the weight of user u and BLER
(µu,l)
u,l is the

block error rate of user u’s spatial stream l to which the
MCS µu,l is assigned.

The SRA unit is required to maximize V subject to three
constraints:

• An RB should be exclusively assigned to one user.
• SRA should allocate user u no more transmission ca-

pacity than the number of bits in its queue (frugality
constraint).

• The average BLER of u does not exceed the upper
bound, BLER0, for a minimum quality guarantee.

The proposed methodology in [1] uses an adaptive MCS
[5] for each user u considering its channel state information
(CSI) and queue state information (QSI). Moreover, the
authors propose a suboptimal greedy algorithm to efficiently
allocate RBs to users. Essentially, it allocates the first RB
to the user with the largest utility increase. It repeats this
greedy approach until the set of non-allocated RBs becomes
empty or there is no more active user to allocate RBs to. In
this paper, we propose a cost-effective algorithm based on
dynamic programming to optimally allocate RBs to active
users, while applying the same adaptive MCS scheme used
in [1].

III. SCHEDULING AND RESOURCE ALLOCATION

In general, a greedy algorithm makes a choice deemed best
according to a certain criterion regardless of the choices it

1For simplicity, t is dropped in our problem formulation presented
hereafter.



made before or will make in the future. Although it may
find an effective solution in a reasonable amount of time, it
also results in a suboptimal solution when a series of local
decisions fails to lead to a global optimum. The basic idea
for dynamic programming is to solve subproblems optimally
only once and store the results and look up the stored optimal
solutions to the subproblems instead of recomputing them to
compute the optimal solution for a given problem efficiently
[17].

In this paper, we design a new SRA algorithm by adapting
the dynamic programming method for the 0/1 knapsack
problem to optimize the utility of SRA for allocating RBs
to active users with non-empty queues. It is challenging to
design a cost-effective algorithm for RB allocation, since
the 0/1 knapsack problem is NP-complete in general. In
this section, we design an efficient dynamic programming
algorithm to maximize the utility defined in Section II-B
and analyze the time complexity.

To this end, we first design the recursive structure of utility
function V to optimally allocate free RBs, Nfree

B , to an
arbitrary user u where Qu > 0 as follows:

V [u, k] =


max

(
V [u− 1, k], V [u− 1, k −m[u]]+

w[u]× ru,l(m[u])
)

if m[u] ≤ k;

V [u− 1, k] otherwise.

where k is the number of the available RBs, m[u] is the
number of RBs required by MS u, w[u] is the weight of MS
u, and ru,l(m[u]) is the transmission capacity provided to
MS u by m[u] RBs.

If m[u] ≤ k, MS u can be assigned the required number
of RBs. In this case, our dynamic programming method for
SRA optimizes the total utility by assigning m[u] RBs to MS
u, if V [u− 1, k −m[u]] + w[u]× ru,l(m[u]) > V [u− 1, k]
and updates the total utility as V [u− 1, k−m[u]] +w[u]×
ru,l(m[u]). Otherwise, it does not assign the RBs to MS u
and maintains the utility as V [u− 1, k].

If m[u] > k, however, the RBs required by MS u is
unavailable; therefore, our approach cannot meet the require-
ment of MS u. As a result, the utility remains as V [u−1, k].
We design the dynamic programming algorithm for SRA
based on these recursive properties as shown in Algorithm 1.

The time complexity of Algorithm 1 is O(NMS × Nall)
where Nall is the total number of the RBs in a wireless
communication frame at the BS. In general, when the number
of the items to consider is n and the total capacity of
the knapsack is W , the time complexity of the dynamic
programming algorithm for the 0/1 knapsack problem is
O(nW ). O(nW ) has pseudo-polynomial complexity, since
W may not be a polynomial function of n but could be
arbitrarily large (e.g., exponential with respect to n). In
practice, however, Nall during a wireless communication
frame is a fixed constant known a priori. For example, in
LTE, one frame is 10ms and Nall is 6 and 100 when the
channel bandwidth is 1.4MHz and 200MHz, respectively

Data: Set of active users U := {u|Qu 6= ∅}
NMS : Number of MSs (=|U |)
Nfree: Number of free RBs
m[1..NMS ]: Array of RBs required by MSs
w[1..NMS ]: Array of the MS weights
Result: SRA via Dynamic Programming
knapsack(U,Nfree,m,w) {
for j = 0; j ≤ Nfree; j++ do

V [0, j] = 0; /* no MS */
end
for (u = 1;u ≤ NMS ;u++) do

V[u,0] = 0; /* no RB */
for (k = 1; k < Nfree; k++) do

if (m[u] ≤ k) then
V [u, k] = max

(
V [u− 1, k], V [u− 1, k −

m[u]] + w[u]× ru,l(m[u])
)
;

else
V [u,w] = v[u− 1, w];

end
end

end
}

Algorithm 1: SRA via Dynamic Programming

[18].2 5G standardization is still on-going. As long as Nall
remains to be a constant or is a polynomial function of NMS

in practical implementations of the upcoming 5G standard,
the time complexity of our algorithm is polynomial.

IV. PERFORMANCE EVALUATION

As the 5G standardization is still underway, no standard
5G evaluation procedure is available yet. Hence, we follow
the latest evaluation procedure recommended for LTE [15]
and used in recent 5G research, including [1], [5]. We
compare the performance of our approach to that of the
novel greedy method presented in [1] in terms of goodput,
delay and fairness in a single cell using the LTE toolbox
in Matlab. In the rest of this section, the greedy method
[1] and our dynamic programming approach are called
Greedy and Dynamic for short. Specifically, for performance
comparisons, we consider four approaches:

• Greedy-OFDM: In this baseline, Greedy [1] and OFDM
are used for cross-layer SRA and PHY waveform.

• Greedy-FBMC: Greedy and FBMC are employed in
this baseline. Greedy-OFDM and Greedy-FBMC are
proposed in [1]. In this paper, they are used as the state-
of-the-art baselines.

• Dynamic-OFDM: In this baseline, Dynamic and OFDM
are employed together.

• Dynamic-FBMC: This is our proposed approach that
integrates Dynamic and FBMC to create synergy via
optimal SRA and spectral efficiency supported by Dy-
namic and FBMC, respectively.

2Each RB consists of 84 resource elements when each RB consists of 7
symbols (time slots) in the time axis and 12 subcarriers (15kHz each) in
the frequency axis [18].



For performance evaluation, we use three multipath fading
channel models: 1) the Extended Pedestrian A (EPA), 2) the
Extended Vehicular A (EVA), and 3) the Extended Typical
Urban (ETU) models. The channel models, evaluation
strategy, and chosen parameters summarized in Table I are
as per [15]. As specified in the table, we consider low,
medium, and high correlation at the BS and MS represented
by α and β, respectively. Also, for the EVA and ETU
channels, we consider two different Doppler frequencies
according to [15]. In this paper, we present the average of
1000 Monte Carlo simulations. In the performance result
graphs, the dashed and solid lines represent Greedy and
Dynamic, respectively.

Goodput for Different Channel Models. Figure 1 shows the
goodput for the increasing number of users (MSs) in a cell. In
Figure 1a, Dynamic-FBMC outperforms Dynamic-OFDM,
Greedy-FBMC and Greedy-OFDM by up to approximately
6Mbps (≈11.7%), 13Mbps (≈29.5%) and 17Mbps (≈42.5%)
for three users, respectively. For six or more users, the differ-
ence between Dynamic and Greedy reduces to approximately
2Mbps (≈2.7%), but the difference between Dynamic-FBMC
and Dynamic-OFDM ranges between approximately 7Mbps–
8Mbps (≈10.6%–11.2%). In all the performance evaluation
results, Dynamic-FBMC achieves the highest goodput. In the
remainder of this paper, we mainly compare the performance
of Dynamic-FBMC and Greedy-FBMC that support higher
goodput than Dynamic-OFDM and Greedy-OFDM do, re-
spectively.

In Figure 1b, Dynamic-FBMC outperforms Greedy-FBMC
by up to 16Mbps (≈44.4%) and 15Mbps (≈44.1%) for
the 5Hz and 50Hz Doppler frequency, when four users are
considered respectively. For six or more users, Dynamic-
FBMC enhances the goodput by approximately 1–2Mbps
compared to Greedy-FBMC.

In Figure 1c, Dynamic-FBMC outperforms Greedy-FBMC
by up to 13Mbps (≈31.7%) and 12.5Mbps (≈32.1%) for
the 70Hz and 50Hz Doppler frequency, when four users are
considered respectively. Dynamic-FBMC enhances goodput
by approximately 1–2Mbps compared to Greedy-FBMC for
six or more users.

Further, in Figure 1, we observe that as the number
of users and contention for RBs increase, the spectrum
efficiency provided by FBMC generally becomes more
important in terms of enhancing goodput. Thus, it is
required for the BS to efficiently utilize both the RBs
and PHY waveform to improve goodput across different
situations as done in Dynamic-FBMC.

Channel
Model

Doppler
Frequency (Hz)

Correlation Profiles
Low Medium High
α β α β α β

EPA 5 0 0 0.3 0.9 0.9 0.9
EVA 5, 50 0 0 0.3 0.9 0.9 0.9
ETU 70, 300 0 0 0.3 0.9 0.9 0.9

TABLE I: Channel Model Parameters [15]
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Fig. 1: Average Goodput of Greedy and Dynamic
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Fig. 2: Impact of Correlations on Average Goodput of Greedy
and Dynamic

Impact of Correlations on Goodput. Incoming signals at
the antenna array can be correlated, potentially reducing
the overall network performance. Hence, the correlation
coefficient for any system is important for performance
evaluation. Thus, we use the standard correlation parameters
in Table I accordingly [15]. Figure 2 shows the impact
of correlation on goodput for different numbers of users
in a cell. In Figure 2a, all the tested approaches show
lower goodput for higher correlation. Also, Dynamic-FBMC
consistently outperforms Greedy-FBMC for the increasing
number of users especially for the medium and high
correlation cases. For example, Dynamic-FBMC enhances
goodput compared to Greedy-FBMC by approximately
1-10Mbps under high correlation for 1 - 16 users in Figure
2a. The biggest goodput enhancement is more than 60%
for the two user case (the black solid and dotted curves in
Figure 2a). It improves goodput even more significantly in
a consistent manner as shown in Figures 2b and 2c. (The
biggest improvement is observed for four users in Figures 2b
and 2c.) These results are desirable in that Dynamic-FBMC
achieves consistently higher goodput than Greedy-FMBC
and all the other approaches do in noisy environments that
impose significant challenges for wireless communication.
Overall, we observe that, among the tested approaches,
Dynamic-FBMC provides the highest performance in terms
of goodput in all the experiments.

Jain’s Fairness Index (JFI). SRA should also be fair in
terms of resource allocation. In this paper, we use JFI
matrices [16]. The JFI ranges between 0 and 1 where 1
indicates perfect fairness. Figures 3 and 4 show that the
JFIs provided by Greedy and Dynamic range between 0.96–
1. Moreover, Dynamic consistently achieves higher goodput
and delay fairness than Greedy does when they use the
same PHY waveform as shown in Figures 3 and 4. More
specifically, it enhances the goodput and delay JFIs by
up to 0.026 and 0.016 in Figures 3c and 4a, respectively.
Notably, FBMC considerably enhances goodput as shown
in Figures 1 and 2 by trading orthogonality off for more
spectral efficiency. However, the JFI loss of Dynamic-FBMC
(resp. Greedy-FBMC) compared to Dynamic-OFDM (resp.
Greedy-OFDM) is at most 0.027 (Figure 3c) and 0.02
(Figure 4a).

V. CONCLUSIONS

Emerging 5G wireless communication technology is en-
visioned to significantly enhance the performance. In this
paper, we propose a new algorithm for effective cross-
layer downlink SRA considering the channel and queue
state. Further, we integrate our SRA algorithm with filter-
bank multicarrier/offset quadrature amplitude modulation
(FBMC/OQAM), which supports more spectral efficiency
than OFDM does. In the performance evaluation, our SRA
method outperforms the state-of-the-art greedy algorithm
by up to approximately 60%, 2.6%, and 1.6% in terms of
goodput, goodput fairness, and delay fairness, respectively. In
the future, we will also explore other important 5G research
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Fig. 3: Goodput JFI for Greedy and Dynamic
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Fig. 4: Delay JFI for Greedy and Dynamic

issues, such as index modulation and re-sampling, while
further improving our scheduling and resource allocation
scheme.
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