PROV5GC: Hardening 5G Core Network Security with Attack
Detection and Attribution Based on Provenance Graphs

Harsh Sanjay Pacherkar
Department of Computer Science
Binghamton University
Binghamton, New York, USA
hpacher1@binghamton.edu

ABSTRACT

As 5G networks become part of the critical infrastructures whose
dysfunctions can cause severe damages to society, their security has
been increasingly scrutinized. Recent works have revealed multiple
specification-level flaws in 5G core networks but there are no easy
solutions to patch the vulnerabilities in practice. Against this back-
drop, this work proposes a unified framework called PROV5GC to
detect and attribute various attacks that exploit these vulnerabilities
in real-world 5G networks. PROV5GC tackles three technical chal-
lenges faced when deploying existing intrusion detection system
(IDS) frameworks to protect 5G core networks, namely, message
encryption, partial observability, and identity ephemerality. The
key idea of PROV5GC is to use provenance graphs, which are con-
structed from the communication messages logged by various 5G
core network functions. Based on these graphs, PROV5GC infers
the original call flows to identify those with malicious intentions.
We demonstrate how PROV5GC can be used to detect three differ-
ent kinds of attacks, which aim to compromise the confidentiality,
integrity, and/or availability of 5G core networks. We build a pro-
totype of PROV5GC and evaluate its execution performance on
commodity cluster servers. We observe that due to stateless instru-
mentation, the logging overhead incurred to each network function
is low. We also show that PROV5GC can be used to detect the three
5G-specific attacks with high accuracy.

CCS CONCEPTS

« Security and privacy — Mobile and wireless security.

KEYWORDS
5G networks, provenance graphs, attack detection and attribution

ACM Reference Format:

Harsh Sanjay Pacherkar and Guanhua Yan. 2024. PROV5GC: Hardening 5G
Core Network Security with Attack Detection and Attribution Based on
Provenance Graphs. In Proceedings of the 17th ACM Conference on Security
and Privacy in Wireless and Mobile Networks (WiSec °24), May 27-30, 2024,
Seoul, Republic of Korea. ACM, New York, NY, USA, 11 pages. https://doi.
org/10.1145/3643833.3656129

This work is in part supported by the US National Science Foundation under award
CNS-1943079.

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

WiSec "24, May 27-30, 2024, Seoul, Republic of Korea
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0582-3/24/05.
https://doi.org/10.1145/3643833.3656129

Guanhua Yan
Department of Computer Science
Binghamton University
Binghamton, New York, USA
ghyan@binghamton.edu

1 INTRODUCTION

As 5G networks are becoming part of the critical infrastructures, it
is of crucial importance to harden their security. Although 5G stan-
dards released by the 3rd Generation Partnership Project (3GPP)
have incorporated enhanced security features to protect user pri-
vacy and data security, we have witnessed increased efforts on
scrutinizing potential vulnerabilities in 5G core networks recently.
Formal analysis has revealed new vulnerabilities in the 5G Au-
thentication and Key Agreement (5G-AKA) protocol which allow
impersonation attacks [20, 26]. Multiple slicing attacks unique to 5G
networks have been explained in detail in a whitepaper published
by AdaptiveMobile Security [16]. Using model checking techniques,
Akon et al. [17] have discovered five new types of vulnerabilities
related to the access control mechanisms in 5G core networks.
Moreover, as 5G networks are gradually rolled out worldwide, we
expect to see an increasing number of penetration testing or fuzz
testing efforts on real-world 5G core networks [1, 41].

As many 5G core network vulnerabilities discovered are due
to specification-level flaws, there are no easy solutions to patch
them in practice. Therefore, there is an urgent need for a unified
framework that can detect and attribute attacks exploiting these
vulnerabilities in real-world 5G core networks. To this end, we
first attempt to deploy existing Intrusion Detection Systems (IDSes)
such as Snort [8] and Zeek [11] to identify the key technical chal-
lenges. We observe that three main hurdles affects the effectiveness
of these IDS frameworks in protecting 5G core networks. First, com-
munication messages among different 5G core Network Functions
(NFs) are encrypted by the Transport Layer Security (TLS) protocol,
which renders it difficult for IDSes to perform deep packet inspec-
tion for attack detection. Second, the partial observability from a
single vantage point within a 5G core network is insufficient for
effective attack detection due to lack of 5G call flow semantics. Last
but not least, identifiers observed within a 5G core network, such as
IP addresses and 5G Global Unique Temporal Identifier (5G-GUTI),
can be ephemeral, which complicates attack attribution.

To tackle these challenges, this work proposes the PROV5GC
framework to detect and attribute various attacks targeting 5G
core networks based on provenance graphs. Provenance graphs
have been widely used to characterize causal relationships exist-
ing among the events (represented as edges) occurring to various
entities (represented as nodes) in a complex system [37, 58]. 5G
core networks adopt a Service-Based Architecture (SBA) where call
flows are implemented by stitching the services provided by indi-
vidual network functions (NFs) through service request/response
messages exchanged among them [50]. It is thus natural to model
these NFs as nodes and their communication messages as edges

https://doi.org/10.1145/3643833.3656129
https://doi.org/10.1145/3643833.3656129
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3643833.3656129

WiSec 24, May 27-30, 2024, Seoul, Republic of Korea

in a provenance graph. Based on this provenance graph, we can
infer 5G call flows to identify various attack activities conducted
by either misbehaving NFs or malware-infected mobile devices.
In a nutshell, our contributions in this work can be summarized
as follows. (1) We analyze the technical challenges in deploying
existing IDS frameworks such as Snort and Zeek to protect 5G core
security. (§3). (2) We design a new framework called PROV5GC
to facilitate attack detection and attribution based on provenance
graphs, which are constructed from logged messages by 5G core NFs
(§4). (3) Within the PROV5GC framework, we develop detection
algorithms to identify three types of attacks against 5G networks
from the confidentiality, integrity, and availability perspectives,
respectively. (§5). (4) Using the 5G core NFs within an existing 5G
network security testbed, we implement a prototype of PROV5GC
(§6). We perform experiments to study the execution performance
of PROV5GC as well as its detection accuracy. Our results show that
the logging overhead is low as the average CPU usage and memory
usage increases by less than 15% and 12%, respectively, for the
resource-intensive core NFs. For the two signature-based detection
schemes developed, we observe a detection accuracy of 100%, while
the anomaly detection technique used to identify signaling storm
attacks achieves a precision of 100% and a recall of 69.3% (§7).

2 BACKGROUND

A typical 5G network is comprised of access networks and a core
network. An 5G access network can be a Radio Access Network
(RAN), which includes a number of cooperating base stations which
are called gNodeBs (gNBs). A User Equipment (UE) (e.g., a mobile
phone) communicates with a 5G network through a gNB or other
non-3GPP access technologies. The data plane of a 5G network is
implemented by User Plane Functions (UPFs). The control plane of a
5G core network follows a SBA, whereby various NFs communicate
with each other through well-defined interfaces. Key NFs in a 5G
core network include Access and Mobility Management Function
(AMF), Session Management Function (SMF), Authentication Server
Function (AUSF), Unified Data Management (UDM), NF Repository
function (NRF), Network Slice Selection Function (NSSF), and Policy
Control Function (PCF).

The security architecture and procedures for 5G networks have
been described in 3GPP TS 33.501 [15]. Even with enhanced secu-
rity features, 5G networks still face various security challenges [40].
This work considers three different kinds of attacks that aim to
compromise the availability, integrity, and/or confidentiality of 5G
core networks: SMS signaling storm attacks abuse the delivery of
SMS messages within the control plane of a 5G core network to
cause denial or degradation of service, Packet Forwarding Con-
trol Protocol (PFCP) attacks spoof the UDP-based PFCP messages
between SMF and UPF to inject malicious control messages, and
slicing attacks exploit 5G core’s flawed access control mechanisms
to obtain user-sensitive data or cause DoS attacks.

SMS signaling storm attacks: The SMS-over-NAS feature in-
troduced in 5G networks can be abused to create signaling storm at-
tacks. SMS-over-NAS allows SMS messages to be delivered through
the control plane only, which opens the opportunity for overload-
ing 5G AMFs with pulsating SMS message delivery requests within
a short period of time. To launch an SMS signaling storm attack,

Harsh Sanjay Pacherkar & Guanhua Yan

the attacker can use a mobile botnet to send SMS messages simul-
taneously. Due to the attack, a surging number of Service Request
messages and/or Uplink NAS transport messages for SMS delivery
can arrive at the AMF within a short period of time. As the AMF
is involved in many of the signaling call flows in a 5G network,
overloading it can degrade 5G network performances significantly.

= R s O s B e R

PFCP Session Report Request

PFCP Session Report Response

PFCP Session
Deletion/Modification Request

Session
Deletion/Modification Connection to

Network is retained

GTP-U channel
dropped

PFCP Session PDU session dropped

Deletion/Modification Response

Figure 1: Illustration of PFCP DoS attacks

PFCP attacks: The PFCP protocol is used for communications
over the N4 interface between an SMF and a UPF in the 5G core
network. Particularly, session-related PFCP messages enable an SMF
to establish, modify, or delete a PFCP session at an UPF. However,
the PFCP protocol works on UDP over default port number 8805,
suggesting that its packets can be easily spoofed. A successful attack
only needs to guess correctly the Session Endpoint Identifier (SEID),
which is used to uniquely identify a PFCP session at the IP address
of a PFCP entity. Motivated by this idea, the work in [18] presents
a few PFCP Denial of Service (DoS) attacks, which are illustrated
in Figure 1.

In a session deletion attack, a spoofed SMF sends a PFCP Session
Deletion Request message to the UPF, requesting to delete a PFCP
session with a targeted SEID and its associated rules. If the SEID is
guessed correctly, the UPF deletes its session with the UE affected,
while the connection between the UE and the gNB is still retained.
After the attack, the GTP-U channel between the gNB and the UPF
is dropped, and the Packet Data Unit (PDU) session between the
UE and the data network is also dropped, effectively causing a
DoS attack against the victim UE. Thereafter the UPF sends back
a response message to the spoofed SMF. A session modification
attack can be performed similarly, with the spoofed SMF sending a
PFCP Session Modification Request to the UPF.

Slicing attacks: AdaptiveMobile Security has published three
types of slicing attacks, which can cause leakage of sensitive user
data or denial of service against another NF [16]. As illustrated in
Figure 2, all these attack scenarios involve the NRF, a misbehaving
NF belonging to Slice 2 (NF A), and an NF which is shared by both
Slices 1 and 2 (NF B).

Type-I: A Type-I slicing attack is performed as follows. (1) NF A
sends a Nnrf_AccessToken_Get request to the NRF, requesting a
token to access the service provided by NF B, with Slice Identifier
Jj = 1.(2) As NF B is shared by both Slices 1 and 2, the NRF approves
the request. (3) The NRF replies back to NF A with a valid token
for Slice 1 to access NF B. (4) NF A requests a service from NF B,
using the access token obtained from the NRF. (5) NF B accepts the
token as it is valid and thus executes the service requested. (6) NF
B replies to NF A with the service response.

PROV5GC: Hardening 5G Core Network Security with Attack Detection and Attribution Based on Provenance Graphs

NF A:
Misbehaving

NRF Consumer

NF B:
Producer

NF Serving
both Slices 1
and 2

NF Belonging
to Slice 2

1. Nnrf_AccessToken_Get
Request (Slice id = j)

2. Authorize consumer NF;
generate access token

3. Nnrf_AccessToken_Get
Response (access token
requested for Slice j)

4. NF Service Request
(access token issued for Slice j)

5. Verify access token;
execute requested service
6. NF Service Response

Figure 2: Illustration of slicing attacks

Type-1I: A Type-II slicing attack is aimed at causing denial
of NF B’s service to Slice 1. Its first three steps are the same
as those in a Type-I attack, except that Slice Identifier j in the
Nnrf_AccessToken_Get request message is 2. As there is no foul
play here, NF A obtains a valid token from the NRF for Slice 2 to
access NF B. In Step 4, NF A uses this token to access NF B’s service,
while the service request includes an Overload Control header (i.e.,
3gpp-Sbi-Oci) for Slice 1. As the token is valid, NF B continues to
process the 3gpp-Sbi-Oci header. Given the misinformation, NF B as-
sumes that Slice 1 was overloaded and thus should not be contacted,
effectively leading to a DoS attack.

Type-III: A Type-III slicing attack assumes that NF B is an AMF.
The first three steps are the same as those in a Type-II slicing attack.
In Step 4, NF A uses the token to request a UE’s sensitive data from
NF B with the UE belonging to Slice 1. As the token is valid, NF
B assumes that the NRF has already authorized the access. NF B
can leak sensitive UE data from Slice 1 to NF A if it does not check
whether the UE belongs to Slice 2 for which the token is valid.

3 THREAT MODEL AND CHALLENGES

5G core networks are vulnerable to various attacks due to security
flaws in 5G protocol specifications [17, 49], insecure software im-
plementation [3, 4], supply chain attacks [2], and malware-infected
UEs [25, 29]. The threat model assumed by this work includes ac-
tive attacks against 5G core networks from either compromised 5G
core NFs or malware-infected UEs. As a compromised NF can always
perform passive attacks (e.g., sniffing packets passing through it),
its existence is difficult, if not impossible, to detect if it does not
deviate from its normal behavior. Our threat model also rules out
collusion attacks from multiple 5G core NFs, as it can be difficult
for a malicious party to control multiple NFs in practice, but it is
assumed that coordinated attacks are possible from a collection
of malware-infected UEs. Our work assumes that the NRF is not
compromised as it plays a central role in enforcing access control
within the 5G core networks. This assumption allows us to develop
a detection framework that can be seamlessly integrated into the
SBA of an existing 5G core network.

Our goal in this work is to develop a unified framework to detect
and attribute attacks that exploit 5G core network vulnerabilities.
We encounter the following challenges when applying existing IDS
frameworks such as Snort [8] and Zeek [11] for this purpose.

WiSec "24, May 27-30, 2024, Seoul, Republic of Korea

Message encryption: In order to detect the slicing attacks il-
lustrated in Figure 2, it is necessary to understand the semantic
meanings of the messages, such as message types and slice IDs,
transmitted among the NRF, NF A, and NF B. According to 3GPP
Technical Specification 33.501 [15], HTTP/2 communications inside
the control plane of a 5G network should be protected using the
TLS protocol. Snort ignores encrypted traffic for performance pur-
poses and to minimize false alarms. Although Zeek provides limited
support to handle encrypted traffic, doing so requires the necessary
key materials available and thus complicates key distribution and
management in 5G core networks.

Partial observability: The PFCP messages between the SMF
and the UPF, which are transmitted over UDP packets, are not
encrypted by TLS and thus open to analysis by Snort and Zeek.
However, observing only PFCP messages is insufficient for these
tools to decide whether the packets are sent by legitimate NFs or
spoofed by malicious parties. To identify whether the source IP
address in a PFCP message corresponds to the Fully Qualified Do-
main Name (FQDN) of a legitimate NF, an IDS can monitor the
Domain Name System (DNS) packets to derive the mappings be-
tween FQDNSs and IP addresses. However, such DNS packets can
also be spoofed by the attacker to poison the mappings obtained by
the IDS. Another possibility is to monitor the NF registration proce-
dure, where the FQDN and the IP addresses appear in nfProfile Json
object of the Nnrf NFManagement service messages. Unfortunately
the signaling packets used by this procedure are protected by the
TLS protocol as discussed above, suggesting that these fields are
invisible to the IDS without proper decryption keys.

Identity ephemerality: To detect SMS signaling storm attacks,
it may be possible for an IDS to monitor the spike in the traffic vol-
ume destined to the AMF. As Non Access Stratum (NAS) messages
between the UEs and the AMF are encrypted in 5G networks, the
IDS deployed in between cannot recognize the NAS messages used
for SMS delivery to detect directly SMS signaling storm attacks.
Supposing that the IDS resorts to a coarse-grained detection model,
which monitors the volume of NAS messages destined to the AMF
to detect flooding attacks, attack attribution is still difficult because
of the following reasons. First, the N2 interface between the gNB
and the AMF can sometimes be protected by IPSec, whose existence
can obscure the true IP addresses of the UEs that participate in the
flooding attacks. Second, even if the N2 traffic is not encrypted
by IPSec or the IDS is deployed after the packets are decrypted, it
can still be difficult to map from the IP addresses to the permanent
identities of the UEs (e.g., Subscription Permanent Identifier (SUPI)).
In a 5G network IP addresses are dynamically assigned to the UEs
by the SMF based on the DHCPv4 protocol. Therefore, a UE may
use different IP addresses over time, or the same IP address can be
assigned to distinct UEs during different periods.

4 PROV5GC ARCHITECTURE

To overcome the aforementioned challenges, we propose the
PROV5GC framework, whose architecture is shown in Figure 3.
Each 5G core NF is instrumented to selectively log key information
contained within communication messages that it is going to send
or has just received. As an outgoing message is logged by the send-
ing NF before its encryption by the TLS protocol and an incoming
one is logged by the receiving NF after it has been decrypted by

WiSec "24, May 27-30, 2024, Seoul, Republic of Korea

Core Network
PDF Workflow

Log parsing and
verification

Provenance

graph
construction

Attack detection

Module 1
—— Signaling
-=-> Logflow | Module N |

Figure 3: Architecture for attack detection and attribution
based on provenance graphs in 5G networks

the TLS protocol, it overcomes the message encryption challenge
faced by the existing IDSes like Snort [8] and Zeek [11].

All logged messages are transmitted to a new SBA-compliant
NF called Provenance-Based Detection Function (PDF) for attack
detection and attribution. By constructing a provenance graph
from the logged messages, the PDF is able to achieve a global view
of all the call flows that have occurred in the 5G core network.
The rich semantics contained with the provenance graph enables
the PDF to detect various activities that deviate from the normal
behavioral patterns of the core NFs or the UEs, which can be difficult
to recognize based on the observations from a single vantage point.

Within a 5G core network, the same UE can be referred by dif-
ferent identifiers, such as SUPI, Subscription Concealed Identifier
(SUCI), 5G-GUTI, IP address, and so on. A core NF can also be
identified by its IP address and FQDN. Some identifiers may have
limited lifespans, which complicates attack attribution. By analyz-
ing the call flows within the provenance graph, the PDF can track
how these identifiers are created and used to establish the correct
correspondences among the various identifiers observed over time.

In our design PROV5GC should be deployed on a Public Land
Mobile Network (PLMN) basis, as the collaborative relationships
established among each PLMN’s core NFs can be naturally extended
for cooperative attack detection in practice. Moreover, as PDF it-
self is implemented as an NF in the 5G SBA, its deployment can
leverage the existing security enforcement mechanisms in 5G core
networks, which include mutual authentication and transport se-
curity between NFs based on the TLS protocol and token-based
authorization for access of NF services using OAuth 2.0 [39].

In order for an NF to report its logs to the PDF, it needs access
tokens from the NRF. As it is assumed that the NRF is not compro-
mised in our threat model, the attacker cannot arbitrarily inject
spoofed logs to the PDF. However, it is possible that an existing NF
compromised by the attacker intentionally adds, deletes, or modi-
fies the logs reported to the PDF. PROV5GC catches such abnormal
behaviors by comparing the logs of the same message from the
respective sender and receiver NFs.

4.1 Stateless NF instrumentation for logging

To minimize performance overhead, each NF is instrumented in a
stateless manner, which means that the NF does not need to add
extra states in its implementation for logging. For each message
sent or received by an NF, the NF is instrumented to log the follow-
ing information: TimeStamp (the local time at which the message is

Harsh Sanjay Pacherkar & Guanhua Yan

sent or received), Role (whether the message is logged by the con-
sumer or the provider NF), SenderID (the identifier of the sender),
SenderType (the type of the sender), ReceiverID (the identifier of the
receiver), ReceiverType (the type of the receiver), MessageType (the
type of the message as described in 5G specifications), MessageData
(important data included in the message stored as key-value pairs),
MessageHash (the hash value of the message body) and RequestHash
(the hash value of the request message).

Due to stateless logging, not all the above fields are known when
a message is logged. We thus consider the following different cases
when a message is logged by NF A. (i) NF A is an AMF and it
is receiving a NAS message: The SenderID is set to be the 32-bit
AMF-UE-NGAP-ID IE (Information Element) in the message, which
uniquely identifies the UE association over the NG interface within
the AMF [14] and the SenderType is UE. The ReceiverID is set to be
the 128-bit NF instance ID of the AMF, while ReceiverType is AMF.
(ii) NF A is sending a message: SenderID is set to the 128-bit NF
instance ID of NF A [13] and the SenderType is NF A’s type. Both the
ReceiverID and ReceiverType fields are filled with their respective
values if they are known, or special bits (e.g., all 1’s) otherwise.
(iii) NF A is receiving a message: the ReceiverID is set to the
128-bit NF instance ID of NF A and the SenderType is its type. Both
the SenderID and SenderType fields are filled with their respective
values if they are known, or special bits (e.g., all 1’s) otherwise.

While the MessageHash field is logged by both the sender and
the receiver of the same message to ensure that neither behaves
anomalously, the RequestHash field allows to establish the corre-
spondence between the request and the response messages. Due to
the SBA nature of the 5G core network, communications among its
NFs follow a HTTP/2-based client-server model where two typical
types of messages are used: request/response and subscribe/notify.
For the same pair of request/response messages, the hash value of
the request message is logged as its RequestHash field for both mes-
sages, which can thus be used to establish their correspondence. For
subscribe/notify messages, the RequestHash field can be ignored.

4.2 Discovery and negotiation with the PDF

When the PDF starts, it first registers itself at an NRF where other
NFs can discover its service. When an NF other than the PDF starts,
it contacts the NRF to obtain an JSON Web Token (JWT) to access
the service provided by the PDF. Using this token, the NF further
contacts the PDF and requests to upload its logs to it. After the
NF acquires the access token from the NRF, it sends a Connection
Request to the PDF along with the token. The PDF checks the va-
lidity of the token and, if the token is valid, responds with an OK
message. Thereafter the NF sends a Negotiation Request message to
the PDF with the mode of log transmission, indicating whether the
logs should be transmitted in a streaming fashion or in a batch man-
ner. The request data also contains a randomly generated integrity
key kﬁf , which will be used later to ensure the integrity of logs.
The corresponding response message contains a public key k£ zB;F ,
which later will be used to encrypt logs during their transmissions.

In a distributed environment, there may exist clock skews among
different NFs. During the negotiation phase, the PDF also estimates
the clock skew of the requesting NF, say, NF A. We borrow the
idea from the Network Time Protocol (NTP) [45] as follows. The
PDF first sends Message 1 to NF A at its local time TlA. When the

PROV5GC: Hardening 5G Core Network Security with Attack Detection and Attribution Based on Provenance Graphs

NF receives this request, it records its local time as TZA and sends
back a response to the PDF at local time TA, where the response
message contains both TZA and T3A. When the PDF receives the
response message at its local time T2, it estimates the clock offset
as ((TZA - TIA) + (T3A - Tf))/Z, assuming that the reverse path (from
NF A to the PDF) takes the exactly the same time as the forward
one (from the PDF to NF A). The round trip time between the PDF
and NF A can be estimated as (Tf - TIA) - (T;\ - T;‘).

4.3 Log transmission and commitment
Logs are encrypted with the PDF’s public key k;: quF to achieve

confidentiality and integrity-protected with kf\r{f . The NF sends
the logs to the PDF in a streaming or batch mode, as negotiated
between it and the PDF in the previous phase. For each NF A, we
denote its batch period (i.e., how long the logs should be buffered
in a batch before being transmitted) as y. If the streaming mode
is used, y4 can be simply set to be 0.

For each logged message m received, the PDF first checks
its validity before committing it to the provenance graph Gproo,
which keeps all logged information extracted so far. (1) If
m.ReceiverType = AMF and m.MessageType indicates that this is
a NAS message, logged message m should be transmitted from
the receiving AMF. Hence, the PDF simply verifies whether the
NF whose instance Id is m.ReceiverID is indeed an AMF according
to Gprov. The information that this NF should be an AMF can be
derived from earlier messages when the AMF requests an access
token from the NRF to access the PDF’s service, where the request
message must include the NF type of the consumer NF. (2) For each
message transmitted between two NFs, its validity is ensured only
after two logged messages received from both the consumer and
producer NFs, respectively, are matched based on their TimeStamp,
SenderID, SenderType, ReceiverID, ReceiverType, MessageType,
and MessageHash fields.

Uncommitted logged messages are sorted based on their adjusted
time stamps and wait in queue Qy,. to be matched later. Detection
modules can be developed to scan this queue for those that have
not been committed for an excessively long period.

4.4 Provenance graph construction

Once a logged message is committed, all its unknown fields should
be resolved. Its information is then added to the provenance graph
Qprou. A node in mev represents a continuous state of a UE or
an NF recognized by the core network. Its type attribute indicates
whether it is a UE or a particular type of NF nodes (e.g., AMF). Its
idmap attribute maps one of the node’s identity names to a list
of (value, startTime, endTime) triples, where value is the identity
value while startTime and endTime are the identity’s start time
and end time recorded by the core network, respectively. (1) A UE
node is first created when a message of type Initial UE_Message is
received from an AMF that carries a Registration Request from the
UE. A UE’s possible identity names include SUPI, SUCL, 5G-GUTI,
S-TMSI (S-Temporary Mobile Subscriber Identity), PEI (Permanent
Equipment Identifier), IP_ADDR (IP address), RAN_UE_NGAP_ID,
AMF_UE_NGAP_ID, and SNSSAI (slice identifier). The correspon-
dences among the same UE’s identities can be established by ana-
lyzing the relevant call flows such as UE registration. The idmap

WiSec "24, May 27-30, 2024, Seoul, Republic of Korea

is updated by parsing the MessageType fields as well as the in-
formation stored in the MessageData fields in the log. (2) An NF
node is created when it registers itself with the NRF through the
Register_NF service request message. An NF node’s identity names
include InstancelD (instance ID), IPAddr (IP address), FQDN, and
SNSSAI (slice identifier), and their values are extracted from Regis-
ter_NF service request messages. Each identity’s start (end) time is
set to the time when the NF is registered (deregistered) at the NRF.

For each committed message, a directed edge is added to Gprou
from the node representing its sender to the one its receiver. Each
edge includes three attributes, time, type and data. The time attribute
gives the receiving time of the message, adjusted based on the PDF’s
local clock, and the latter two are copied from the MessageType and
MessageData fields of the logged message, respectively. For each
directed edge e, we let e.tail and e.head denote its tail and head
node, respectively. Figure 4 shows an example provenance graph.

type - AMF Node
idmap : {
InstancelD : [(aaxx, 166, -)]
) Edge FQDN : [(pt1.5gnetwork, 166, -)]
time - 1664950750 SNSSAI - [(sst-2sd-2, 166,)]
type : Register_NF IP_ADDR " [(192.xXX, 166, -]
data " {)
FQDN : pt1.5gnetwork
SNSSAI - sst 2502 A
} N Edge
time * 1664950750
type - NRF Node ;yar:: \{n\t\aLUEiMessage
idmap : {
InstancelD - [(84xx, 166,)] %':I—‘iEENGAP—'D 449,
FQDN : [(nrf.5gnetwork, 166, -)]
SNSSAI- [(None, -,)] }

IP_ADDR - [(192x xx, 166, -)]
}

type UE Node
idmap : {
AMF_UE_NGAP_ID: [(25, 166, -]
TMSI: [(448, 166, -)]
GUTI: [(5g-guti-9, 166,)]

RAN_UE_NGAP_ID: [(44, 166, -)]
SUPL (-, -, -)]

IP_ADDR: [(-, -, -)]

SNSSAL (-, -, -1

Figure 4: Provenance graph example. The hyphen symbol
(i-e.,’-’) means that the value is unknown yet.

4.5 Periodic persistence of provenance graph

There can be so many messages logged in a 5G network that Gpro0
becomes too big to be stored entirely in the memory. By dividing
time into epochs, we can partition the provenance graph temporally
to subgraphs, each containing only the edges whose time attributes
fall into a certain epoch. At the end of each epoch, its corresponding
provenance subgraph is dumped from the memory onto the disk.
When an epoch ends, a logged message whose time attribute
falls into this period may not have been received by the PDF yet
due to its transmission latency from the sender NF and the possible
batching latency at the sender NF. To circumvent this issue, the
PDF always waits for Ag,y extra time units after the end of an
epoch before dumping the current provenance subgraph onto the
disk, where Agpy can be configured as follows. Recall that the
round trip time between the PDF and NF A can be estimated as
(Tf - Tl“‘) - (T3A - TZA) during the negotiation phase. We define:

A -1 - (T - T
Ay = max o R 2)+yA+e, (1)
AeF:A.type=x 2
where 7 is a set including all NFs in the 5G SBA, € provides suffi-
cient cushion for latency jitter from any NF to the PDF, and y* is

WiSec 24, May 27-30, 2024, Seoul, Republic of Korea

the batching period of NF A. Hence, Agpy provides an upper bound
on the latency of each logged message from all NFs.

5 DETECTION MODULES

In this section we describe the detection modules for the three at-
tacks discussed in Section 2. Let G; be the provenance subgraph for
the i-th logging period. We use G = (V" E") and G;j = (Vid, E;i)
to denote G; stored in memory and on the disk, respectively.

5.1 SMS signaling storm attack detection

We consider the non-parametric CUSUM method [23] as it does
not need to know the distribution of the random process before
or after the change occurs. A non-parameter CUSUM scheme uses
two key parameters: drift r and threshold h. Let X = (x1,x3, ...)
denote the observed random sequence with mean «a(X) under its
normal operation. To detect if there is an abrupt change in X’s
mean value, we transform it to a new sequence Z = (z1, 23, ...)
where z; = x; —r. Drift r should be chosen in such a way that Z has
a negative mean before the change point but has a positive mean
after it (i.e., r > a(X)). The non-parametric CUSUM method can
run in an online fashion:

Yo =0 (2)
Y = max{0, yx_1 + 2}, (3

where an alarm is raised at step k if y; exceeds threshold h. After
an alarm is raised, we do not reset y to 0 in order to achieve high
detection accuracy [31].

We consider online detection of SMS signaling storm attacks
where the CUSUM-based detection algorithm runs periodically ev-
ery 6 time units. The detection scheme needs only logged messages
from AMFs. As these messages may vary in their arrival times
at the PDF, for each detection interval [t,t +) we postpone the
single-step execution of the online CUSUM detection method until
t+0+ Ay, where Ay, ¢, as shown in Eq. (1), provides the upper
bound on the latency of each logged message from any AMF node.

Therefore, online detection of SMS signaling storm attacks can
be performed as in Algorithm 1. Due to different latency, logged
messages whose timestamps belong to different detection intervals
can arrive at the PDF at the same time. Hence, two different sets of
states are used: x and w are used for the current detection interval
while X and w are for the next one. Both x and x are initialized to
be 0. Both w and w are initialized to be an empty set. Variable #;,,
stores the last time a single step of CUSUM is executed.

The Detect_Single_Step method in Algorithm 1 is invoked
every 0 time units. It applies a single step of the CUSUM method
to detect abrupt changes (Line 2) and then reset x, w, and t;,5;
(Line 3). If an alarm is raised by CUSUM, the method marks the last
detection period as an attack interval (Line 5) and perform attack
attribution to identify UEs participating in the attack (Line 6).

The Update_Edge method is called whenever there is a new edge
is added to GJI". If the corresponding message is used for SMS de-
livery over NAS, its timestamp is checked to see if it belongs to the
current detection interval [#145: —Dam s tast +0—Dam), or the next
one [tjq5p+0—Damf, tast +20 = Dgpm)- In the former case, states in

Harsh Sanjay Pacherkar & Guanhua Yan

Algorithm 1: Online detection of SMS signaling storm
attacks from the in-memory provenance subgraph

Input: GI', x, X, W, W, tjges, I, h
Output: Alarms for SMS signalling storm attacks
1 Function Detect_Single_Step(X, W, r, h):
2 Treating x as xj, apply a single step of CUSUM;

3 tprev < tlast> tiast < current wallclock time;

4 if an alarm is raised by CUSUM then

5 Mark [tpreo, t1qs¢] @s an attack interval;

6 Perform attack attribution based on edges in set w;
7 X — X, W — w;

8 return;

9 Function Update_Edge(e):
10 if (e.head.type = “AMF"’) A (e.type =
“UE_Init_NAS"") A (edata[“msgType’’] = “SMS’")

then
11 if (g — Aamf < e.time < tjge + 0 — Aamf) then
12 ‘ xe—x+1,wewU/{e}
13 else if (5 +0 — Ay < e.time < tjgq; + 0) then
14 Lf<—5€+l,\7‘v<—ﬁu{e};
15 else
16 L Report logging time error in e;
17 return;

x and w are updated, while in the latter one, states X and W are up-
dated. Note that in the latter case, the timestamp in the logged mes-
sage should not exceed the next time when Detect_Single_Step
is called (i.e., t;,5; + 6). When a previous detection period ends,
states X and W are carried over to X and w for the next detection
period, respectively (Line 7 in the Detect_Single_Step method).

Attack attribution: Each edge e in set w is an SMS-over-NAS
message, which uses AMF_UE_NGAP_ID to identify the UE that sends
the SMS. It also includes a timestamp (i.e., e.time) indicating the
time when the message is observed. Although the AMF_UE_NGAP_ID
can be ephemeral over time, we can query the provenance graph
for the SUPI of the UE that uses AMF_UE_NGAP_ID at time e.time.

Evasion robustness: To evade the CUSUM-based detection, the
attacker can limit the flooding rates of SMS-over-NAS messages
from malware-infected devices. Although such stealthy attacks can
still drain the resources in the targeted 5G core networks, their
attack effects become less obvious to the legitimate users.

5.2 Slicing attack detection

Algorithm 2 presents how to detect the three types of slicing at-
tacks discussed in Section 2 from on-disk provenance subgraphs.
Without loss of generality, we assume that subgraphs (Gf, e Gfll)
are considered. The algorithm checks every edge in the current
provenance subgraph to identify slicing attacks. The helper logic
function, Find(J, L, t), is defined as:

djeJ,leL:j=Ilvalue AlstartTime <t < l.endTime.

For Type-I slicing attacks, Algorithm 2 examines each edge
destined to an NRF node (Line 8); if the edge type indicates an
Nnrf_Access_Token_Get message, it checks whether the slice IDs

PROV5GC: Hardening 5G Core Network Security with Attack Detection and Attribution Based on Provenance Graphs

Algorithm 2: Offline detection of slicing attacks

Input: G = (Gd, Gfll)
Output: Instance IDs of misbehaving NFs
1 Function Detect_Slicing_Attacks(G):
2 Qamyf < Service requests to AMF returning UE

information;
3 foreach i € 1..n do
4 Load Gld into memory as Glm;
5 sbi « “3gppSbiOci”;
6 foreach e € E* do
7 w « e.tail.idmap[“SNSSAI"'];
8 if e.head.type = “NRF” then
9 if (e.type = “Nnrf_AccessToken_Get"") A

(Find(e.data[“SliceIDs"], w, e.time) =
False) then

10 ‘ Report a Type-I slicing attack;

11 else if (sbi € (e.data.keys())) A
(Find(e.data[sbi][“SliceIDs"’], w, e.time) =
False) then

12 L Report a Type-II slicing attack;
13 else if
(e.head.type = “AMF"") A (e.type € Qqms)
then
14 foreach u € V" do
15 foreach (y, 15, 1) €
u.idmap|e.data[“UE_ID_Type’’]] do
16 if (e.data[“UE_ID_Value'] =
y) A (ts < e.time < tp) then
17 J <« 0
18 foreach
s € u.idmap[“SNSSAI"’] do
19 if s.startTime < e.time <
s.endTime then
20 L ‘ J <« JU {s.value};
21 if Find(J, w, e.time) = False
then
22 Report a Type-III slicing
| attack;
23 L Remove Glm from memory;
24 return

requested (i.e., e.data[“SliceIDs"’]) match any of the slice IDs that
the requesting NF (i.e., e.tail) belongs to at the request time (i.e.,

e.time) (Line 9). If the check fails, a Type-I slicing attack is reported.

For Type-II slicing attacks, the algorithm checks if there is any
3gppSbiOci data in the logged message data. If so, it checks whether
the slice IDs requested for overload control in the message match
any of the requesting NF’s slice IDs that are valid at the request

time (Line 11). If none is found, a Type-II slicing attack is reported.

For Type-III slicing attacks, the algorithm considers only edges
destined to AMF nodes; these edges should also correspond to

WiSec "24, May 27-30, 2024, Seoul, Republic of Korea

service request messages that are likely to reveal sensitive UE infor-
mation (i.e., Qg at Line 13). For each such edge discovered, the
algorithm uses the UE’s identifier type and value, which are given
by UE_ID_Type and UE_ID_Value in the message data, to search for
the UE node in the provenance subgraph. During the search, each
UE identity’s lifetime is used to ensure that at the time of service
request (i.e., e.time) the UE identity should be valid (Lines 14-16).
When such a UE node is found, the algorithm further obtains all
its slice IDs which are valid when the service request occurs (Lines
17-20). The algorithm checks if any of these slice IDs of the UE
matches the requesting NF’s Slice IDs at the service request time;
if none is found, a Type-III slicing attack is reported (Lines 21-22).

Evasion robustness: The slicing attack detection algorithm
exploits the mismatches between the attacking NF’s slice IDs and
those requested by it. To evade the detection, the attacker can re-
quest to join the victim NFs’ slices using NFUpdate service requests,
which, however, need approval from the Operations, Administra-
tion, and Maintenance (OAM) in a 5G network.

5.3 PFCP attack detection

PFCP DoS attacks as described in Section 2 are powerful because
they only need to spoof a legitimate SMF instead of compromising
and controlling it. However, they can be easily detected within the
PROV5GC framework, because the spoofed SMF is unable to send
logged PFCP Session Deletion/Modification Request messages that
match those reported from the UPF.

Algorithm 3: PFCP attack detection Algorithm

Input: Qy¢ (waiting queue of uncommited messages), ¢
(current local time)

Output: PFCP attack attempts
1 Function Detect_PFCP_Attacks(Qyc, t):
2 foreach m € Q¢ do
3 if
(m.ReceiverType = “UPF’”) A ((m.MessageType =
“PFCP_Session_Deletion_Request”’ Vv
(m.MessageType =
“PFCP_Session_Modification_Request’”))) A (t —
m.TimeStamp > Agp,f) then
4 B ‘ Report a PFCP attack;

5 return

Algorithm 3 presents the algorithm to detect PFCP at-
tack attempts illustrated in Figure 1. Its Detect_PFCP_Attacks
method is called periodically, which scans for uncommit-
ted messages of type either PFCP_Session_Deletion_Request or
PFCP_Modification_Request reported by UPFs in the waiting queue
Quc- If such a message has stayed in the waiting queue for more
than Ay, ¢ time units, a PFCP attack is reported. Note that Ay, ¢
provides an upper bound on the latency of each logged message
received from any SMF.

Evasion robustness: The effectiveness of the PFCP attack detec-
tion scheme builds upon the observation that spoofed PFCP request
messages from the SMF to the UPF are logged by the UPF but not
the SMF, leading to uncommitted messages in the waiting queue.

WiSec 24, May 27-30, 2024, Seoul, Republic of Korea

To evade the detection, the adversary has to compromise the UPF
and prevent it from reporting the spoofed PFCP request messages
to the PDF. However, the adversary who is able to hijack the UPF
can cause the same kind of attack damages without using spoofed
PFCP requests. Another way of evading detection is to spoof the
logged PFCP request messages from the SMF to the PDF, which,
however, is hard to achieve as a valid authorization token issued
by the NRF is needed for an NF to report its logs to the PDF.

6 IMPLEMENTATION DETAILS

PROV5GC is developed based on the 5G core NFs in VET5G [55], a
testbed focused on 5G network security. The testbed implemented
the essential features of core NFs shown in Figure 3. To validate
that their implementations follow 5G specifications, we tested their
interoperability with three UE/RAN configurations: (1) modified
Android emulator and OAI-emulated gNB [7]; (2) UEs and gNBs
emulated by UERANSIM [10]; and (3) Google Pixel 6 and srsRAN-
emulated gNB with aid of USRP B210 [9].

As all VET5G NFs except UPF (part of UPF is written in the P4
programming language) are implemented in Rust, we use Rust to
instrument each NF for message logging. The PDF is also imple-
mented in Rust. The communications between the PDF and other
NFs are implemented based on the ZeroMQ messaging library [12].
We use the ZeroMQ PUSH/PULL sockets for many-to-one mes-
sage transfer because they allow the PDF to receive the logs from
the queue in order. PROV5GC uses the Curve25519 Elliptic Curve
Cryptography (ECC) scheme provided by ZeroMQ for data encryp-
tion, while log integrity is ensured by the keyed-hash message
authentication code (HMAC) scheme based on SHA256.

We choose the UERANSIM tool [10] to emulate both gNBs and
UEs in our experiments because it allows us to simulate large-scale
attack scenarios. To simulate user activities in UERAMSIM, we use
an ON/OFF model based on Pareto distributions. When a UE starts
up and performs registration, the UE starts with an ON period.
During the ON period the UE is in a CM_CONNECTED state with
the AMF. After this ON period the UE transitions to an OFF period,
during which the UE stays in a CM_CONNECTED state with the
AMF until the gNB deems the UE to be idle for too long, which thus
invokes the call flow to transition the UE into a CM_IDLE state.
After the inactivity period the UE transitions back to an ON period
by performing a service request. To randomize the UE registration
time, we let each UE start initially after a random period whose
length follows an exponential distribution.

An established PDU session can be used for applications such as
video streaming and web surfing. We do not model user activities
during this stage as the user data are transmitted in the data plane.
They have limited impact on the operations of the control plane
except that some usage reporting events may be triggered by the
UPF to notify the SMF through the N4 interface.

7 EXPERIMENTS

Our experiments use two machines. (1) Machine 1 is a Linux work-
station running Ubuntu 22.04 LTS. It has an Intel i9-10850K CPU
with 10 hyper-threaded cores and 32GB RAM. (2) When we emulate
a large number of UEs in an experiment, we use Machine 2, which
runs Debian 11. The machine has an Intel Xeon Gold 6338 CPU
including 64 hyper-threaded cores and a total RAM of 512GBs.

Harsh Sanjay Pacherkar & Guanhua Yan

7.1 Logging overhead

In the first set of experiments, we measure the logging overhead for
each NF instrumented. For each NF type, only one instance is used.
Each experiment simulates a 5G network with 50 thousand UEs.
Each UE is simulated by an ON/OFF model with Pareto distributions.
The mean of each ON or OFF period is 500 seconds. When there is
a transition from an OFF state to an ON one, a UE randomly picks
another one as the destination to send an SMS message. Machine 2
is used for these experiments. We allocate 16 CPUs to all the NFs in
the core network, excluding the PDF. We use the Docker stats [5]
to measure the resources used by each NF.

We run the experiment 10 times. Figure 5 shows the average
CPU and memory usage with and without logging enabled by the
core NFs. The NF with the highest CPU and memory usage is AMF.
Without logging, the mean CPU usage is 5.4% and the mean memory
usage is 1.7GBs. By contrast, with logging enabled, the mean CPU
usage is 6.1%, an increase of 13.0%, and the mean memory usage is
1.9GBs, an increase of 11.8%.

Comparing CPU and memory usages of different NFs with and
without logging in Figure 5, we can conclude that logging overhead
is low. For all those resource-intensive NFs (i.e., AMF, SMF, SMSF,
and UDM), the average CPU usage increases by less than 15% while
the average memory usage increases by less than 12%.

7.2 Signalling storm attack detection

Using Machine 1, we simulate 10,000 UEs based on the ON/OFF user
activity model. Each UE’s initial waiting time before its registration
request follows an exponential distribution with a mean time of
1000 seconds. The ON/OFF user activity of the UE is simulated
with a Pareto distribution with a mean of 400 seconds. When UE
transitions from an OFF to an ON state, it sends an SMS message
to another randomly picked UE. 500 UEs are infected by the bot
malware. Each bot-infected UE is commanded to send five SMS
messages in a spurt to another random UE at 1800 second in the
experiment. Each experiment lasts an hour and is repeated 10 times.
The Detect_Single_Step() function in Algorithm 1 is invoked
every 30 seconds, while the Update_Edge() function is executed
whenever a new edge is added to the provenance graph.

We fix threshold h and drift r in the CUSUM algorithm to be
100 and 500, respectively. The detection performance is measured
as follows. At each step, a true positive (false positive) is the case
when an alarm is raised and the interval does (does not) have attack
SMS messages from bot-infected UEs. On the other hand, when no
alarm is raised for the current interval, if there are no (at least one)
bot-infected UE sending attack SMS messages in this interval, it is
a true negative (false negative). Assuming that the numbers of true
positives, false positives, true negatives, and false negatives are TP,
FP, TN, and FN, respectively, we have precision = TP/(TP + FP)
and recall = TP/(TP + FN). We observe a precision of 100% and a
recall of 69.3% from our experiments. The missed attack intervals,
which occur during the ramp-up phase of the SMS signaling storm
attack, are understandable as it takes time for the attack to produce
an accumulative effect detectable by the CUSUM algorithm.

Recall that the Detect_Single_Step method in Algorithm 1 de-
tects attack intervals. For attack attribution, we consider all UEs
that send SMS-over-NAS messages during the attack intervals de-
tected as suspicious. A false positive occurs if a normal UE happens

PROV5GC: Hardening 5G Core Network Security with Attack Detection and Attribution Based on Provenance Graphs

6.0 I Without logging 7
5.5 [ZZ2 With logging

INlEEEEEE|
.

S

T

o B

0.0 sl ==

NSSF NRF AUSF AMF SMSF UDM
Network Funtions

[%)
=
3

(1) CPU usage

WiSec "24, May 27-30, 2024, Seoul, Republic of Korea

2100
0 Without logging
18001 EZA Wwith logging 7

e
N U
[N =]
o o

o
o
o

MEM Usage in MBs
[=2]
o
o

w
o
o

o

NSSF NRF AUSF AMF SMSF UDM SMF
Network Funtions

(2) Memory usage

Figure 5: Logging overhead incurred by each NF instrumented by PROV5GC

to send such messages during any of the attack intervals, while a
false negative happens when a malware-infected UE participates in
the SMS signaling storm attack during the attack periods but is not
flagged as suspicious. We observe a precision of 68.8% and a recall
of 100% by this attack attribution method. The relatively high false
alarm rates are understandable as the detection method treats all
UEs sending SMS-over-NAS messages during an attack interval as
suspicious. Due to its high recall, however, this method can be used
as a first line of defense to narrow down the list of UEs that may
have been infected by malware for signaling storm attacks, while
other complementary methods (e.g., host-based IDSes) can be used
to detect which apps installed on these UEs may be malware.

7.3 Slicing attack detection

We use Machine 1 to simulate 10,000 UEs for 6000 seconds. Each
UE has two sets of activities. An exponential distribution with a
mean duration of 500 seconds is used to model both its registered
and deregistered states. During a registered state, each UE switches
between active and idle states, whose durations follow a Pareto
distribution with a mean interval of 100 seconds. We dump the
provenance graph into a persistent storage every 600 seconds. Dur-
ing each interval we simulate a hybrid attack scenario. First, the
attacker NF uses fake slice information to request access token from
the NRF, which is the Type-I slicing attack. It next uses this access
token to request a provide_location_information service provided
by the AMF, which requests the location information of a UE which
belongs to a different slice. This leads to a Type-III slicing attack.
Finally, the HTTP request for provide_location_information has a
3gpp-Sbi-Oci header with fake information, which makes a Type-II
slicing attack.

Slicing attack detection in Algorithm 2 is executed on the on-
disk provenance subgraph immediately after it is dumped from the
memory. For each call to the algorithm, we measure its execution
time. For further in-depth analysis, we measure the size of the graph
file dumped to the disk, as well as the numbers of nodes and edges
in the provenance subgraph stored in it. To the reduce the effects
of random noise, we repeat the experiment ten times to obtain the
mean as well as the standard deviation.

In all the experiments the three types of slicing attacks have
always been detected by Algorithm 2. The execution performance
results are summarized in Figure 6. From Figure 6(1), we observe
that the number of nodes in each provenance subgraph grows over

time until it stabilizes in the fifth one, while the number of edges in
each provenance subgraph peaks in the first epoch and gradually
decreases until the fifth provenance subgraph. The number of edges
is affected by the 5G core network events. The initial spike is caused
by the exponential waiting times of UEs whose mean is 500 seconds.
The probablity density function of the exponential distribution p(x)
monotonically decreases with x, suggesting that a large fraction of
UEs starts their registration procedures within the first 600 seconds.
By contrast, the majority of the nodes are registered UEs in the
network. Hence, unless a UE is deregistered from the network, it
always has a corresponding node in the provenance subgraph.
Figure 6(2) shows that the storage size is highly correlated with
the number of edges in each provenance subgraph. This is unsur-
prising because the number of edges dominates over the number
of nodes by 3 ~ 50 times. Similarly, Figure 6(3) reveals that the
execution time of slicing attack detection is also dominated by the
number of edges in each graph. This is because the detection algo-
rithm needs to traverse every edge to find unique patterns of three
types of slicing attacks (see Algorithm 2). Importantly, less than
one second is needed to detect slicing attacks in each epoch, which
lasts 600 seconds, suggesting that the execution performance of
slicing attack detection is feasible for real-world deployments.

7.4 PFCP attack detection

We use Machine 1 to simulate 10,000 UEs. Each experiment runs
for an hour. For background traffic generation, each UE behaves
similarly as those to evaluate signaling storm attack detection and
slicing attack detection. Before the initial registration request, each
UE waits for a duration following an exponential distribution with
a mean of 1000 seconds. The provenance graphs are dumped from
memory every 600 seconds. During each 600-second interval, the
following PFCP attack is simulated: the attacker sends a precrafted
UDP packet with a random session ID to the UPF at a time randomly
chosen within the interval. Algorithm 3 is executed after a current
provenance subgraph is dumped onto the disk and the pending
queue Qy is checked to clean up uncommitted communication
messages. We repeat the experiment 10 times.

In all our experiments, the PFCP attacks are detected perfectly
without any false alarms. This is expected as our detection algo-
rithm shown in Algorithm 3 leverages the unique signature of
PFCP attacks for their detection. The execution time used by the

WiSec 24, May 27-30, 2024, Seoul, Republic of Korea

Harsh Sanjay Pacherkar & Guanhua Yan

€ 4000 56 700

3 —8— Size in MBs —e— Execution Time

83000 WH—;—H 48 600

n 0

9 2000 a0 500

1000 c £

2 i 2 3 4 5 6 7 8 9 10 =32 £ 400
Graph ID N 0

£ 180K 2 24 £ 300

3 » & 16 F 200

S 120K % =

[¥] N Q

w N\

o 60K \ 8 100

2 ¥ % - xeoxeox-x o 0

1 2 3 4 5 6 7 8 9 10 1 2 3 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Graph ID Graph ID Graph ID

(1) Numbers of nodes and edges

(2) Graph storage size

(3) Execution time

Figure 6: Execution performances of slicing attack detection. Error bars show standard deviations.

Detect_PFCP_Attacks method is short with its mean varying be-
tween 0.08 and 0.14 milliseconds. This is because its time complexity
is linear with the number of uncommitted messages in queue Qye,
whose mean varies between only 22 and 24 in our experiments.

8 RELATED WORK

Cellular network security. There have been many efforts on cellu-
lar network security, leading to important findings about their secu-
rity vulnerabilities, such as denial-of-service attacks [27, 28, 41, 52],
man-in-the-middle attacks [24, 51], linkability and traceability at-
tacks [19, 33, 42, 51], and data charging bypass attacks [48]. There
have been several recent works aimed at finding security vulnera-
bilities of 5G networks. Basin et al. discovered vulnerabilities 5G
AKA protocols due to lack of integrity protection on the serving
network’s identifier [20]. Cremers and Dehnel-Wild used a fine-
grained component-based formal analysis of the 5G AKA protocol
to find possible attacks of impersonating an honest user to a 5G
network [26]. 5GReasoner uses model checkers and a cryptographic
protocol verifier to find possible attacks either between the mobile
device and the base station or between the device and the core
network [36]. Model checkers were also used to reveal 5G core
networks’ access control mechanisms [17]. Bitsikas et al. developed
a new framework based on open5GS [6] and srsRAN [9] to eval-
uate the security vulnerabilities of 5G standalone UEs [22]. Yang
et al. proposed a protocol-independent fuzzing system to identify
5G RRC vulnerabilities [56]. While these previous works aim to
identify potential vulnerabilities in 5G networks, our work focuses
on detection and attribution of attacks targeting 5G core networks.
Attack detection and attribution based on provenance
graphs. For host-based intrusion detection, provenance graphs can
be extracted from system event logs collected by either the built-
in audit systems of modern operating systems (e.g., Linux Auditd
and Windows ETW [44]) or third-party event collectors [30, 46]. To
trace sophisticated cyber attacks such as advanced persistent threats
(APTs) within an opaque computer system, researchers have been
developing various fine-grained system-level provenance graphs
methods [21, 34, 35, 38, 43, 47, 53]. Provenance graphs have also
been used to detect or explain abnormal behaviors in various net-
worked and/or distributed systems [32, 54, 57]. Although our work
has been motivated by these previous efforts, it aims to harden the
security of 5G core networks based on provenance graphs.

9 CONCLUSIONS AND DISCUSSIONS

In this work, we have proposed the PROV5GC framework for attack
detection and attribution within 5G core networks based on prove-
nance graphs. We have identified three key technical challenges in
applying existing IDSes for attack detection and attribution in 5G
core networks. We have discussed the architecture and workflow of
PROV5GC and presented the algorithms to detect three 5G-specific
attacks within this framework. We have implemented a prototype
of PROV5GC based on an existing 5G network security testbed and
evaluated both its logging overhead and its detection performances
for the three 5G-specific attack scenarios.

In our future work we plan to address the following limitations
of PROV5GC. First, PROV5GC requires cooperative logging efforts
by various NFs in a 5G core network to catch abnormal behaviors.
If both sender and receiver NFs are compromised and they col-
lude to manipulate the logged messages transmitted between them,
PROV5GC is incapable of detecting such attacks. Also, the NAS
messages transmitted between the UEs and the AMFs are logged
only by the AMFs in PROV5GC as it is infeasible to require indi-
vidual UEs to log these messages. Hence, if a compromised AMF
manipulates the logged NAS messages, such behavior cannot be
detected by PROV5GC.

Second, we have built a prototype of PROV5GC and evaluated
its performances based on the VET5G testbed [55]. Although we
have validated its implementations of 5G core NFs using different
UE/RAN configurations, it lacks some features that exist in real-
world 5G core networks. Therefore, the relative logging overheads
seen in our experiments may differ from those in a real-world
deployment. Moreover, to simulate a large number of UEs in our
experiments, we used the UERAMSIM tool [10], which ignores the
low-level protocol layers between the UEs and the gNBs. Given that
SMS signaling storm attacks can also affect the RANSs, such attack
effects were not taken into consideration in our experiments.

Third, PROV5GC requires instrumentation of all NFs in a 5G
core network to log its communications messages. Both logging
and log transmissions incur extra workloads to the NFs.

Last but not least, this work considered only three 5G-specific
attacks. We plan to extend PROV5GC to detect other attacks against
5G core [17, 20, 26] as well as those targeting their operational
environments (e.g., the cloud where the 5G core network runs).

PROV5GC: Hardening 5G Core Network Security with Attack Detection and Attribution Based on Provenance Graphs

REFERENCES

[
[

O

]
1
3]

[19]

[20

[21]

[22]

[23

[24]

[27]

[28]

[29]

[30]

[31

https://www.plsec.com/corp/2021/12/31/pentesting-5g-core-networks/.
https://www.softeq.com/blog/how-to-ensure-5g-supply-chain-security.
CVE-2021-45462. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-
45462.

CVE-2022-43677. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-
43677.

Docker Stats: Endpoint for live stream of a container’s resource usage statistics.
https://docs.docker.com/engine/api/v1.41/tag/Container/operation/Contain
erStats.

open5gs. https://www.open5gs.org/.

Openairinterface. https://www.openairinterface.org/.

Snort. https://www.snort.org/.

srsRAN - Your own mobile network. https://www.srsran.com/.

UERANSIM: An Open Source State-of-the-Art 5G UE and RAN (gNodeB) Simula-
tor . https://github.com/aligungr/UERANSIM.

Zeek. https://zeek.org/.

ZeroMQ: An open-source universal messaging library. https://zeromq.org.
3GPP. 5G; 5G System; Common Data Types for Service Based Interfaces; Stage 3
(3GPP TS 29.571 version 16.6.0 Release 16). https://www.etsi.org/deliver/etsi_ts/
129500_129599/129571/16.06.00_60/ts_129571v160600p.pdf.

3GPP. 5G; NG-RAN; NG Application Protocol (NGAP) (3GPP TS 38.413 version
16.7.0 Release 16). https://www.etsi.org/deliver/etsi_ts/138400_138499/138413/16.
07.00_60/ts_138413v160700p.pdf.

3GPP. 5G;Security architecture and procedures for 5G System (3GPP TS 33.501
version 16.3.0 Release 16). https://www.etsi.org/deliver/etsi_ts/133500_133599/
133501/16.03.00_60/ts_133501v160300p.pdf.

AdaptiveMobile Security. A slice in time: Slicing security in 5G core networks.
https://info.adaptivemobile.com/5g-network-slicing-security.

M. Akon, T. Yang, Y. Dong, and S. R. Hussain. Formal analysis of access control
mechanism of 5G core network. In Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, pages 666—680, 2023.

G. Amponis, P. Radoglou-Grammatikis, T. Lagkas, W. Mallouli, A. Cavalli,
D. Klonidis, E. Markakis, and P. Sarigiannidis. Threatening the 5G core via
PFCP DoS attacks: the case of blocking uav communications. EURASIP Journal
on Wireless Communications and Networking, 2022(1):1-27, 2022.

M. Arapinis, L. Mancini, E. Ritter, M. Ryan, N. Golde, K. Redon, and R. Borgaonkar.
New privacy issues in mobile telephony: fix and verification. In Proceedings of the
2012 ACM conference on Computer and communications security, pages 205-216,
2012.

D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stettler. A formal
analysis of 5G authentication. In Proceedings of the 2018 ACM SIGSAC conference
on computer and communications security, pages 1383-1396, 2018.

A. Bates, D. J. Tian, K. R. Butler, and T. Moyer. Trustworthy whole-system
provenance for the Linux kernel. In 24th USENIX Security Symposium (USENIX
Security 15), pages 319-334, 2015.

E. Bitsikas, S. Khandker, A. Salous, A. Ranganathan, R. Piqueras Jover, and C. Pép-
per. Ue security reloaded: Developing a 5G standalone user-side security testing
framework. In Proceedings of the 16th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, pages 121-132, 2023.

E.Brodsky and B. S. Darkhovsky. Nonparametric methods in change point problems,
volume 243. Springer Science & Business Media, 1993.

M. Chlosta, D. Rupprecht, T. Holz, and C. Pépper. LTE security disabled: mis-
configuration in commercial networks. In Proceedings of the 12th Conference on
Security and Privacy in Wireless and Mobile networks, pages 261-266, 2019.

E. Cozzi, P.-A. Vervier, M. Dell’Amico, Y. Shen, L. Bilge, and D. Balzarotti. The
tangled genealogy of IoT malware. In Proceedings of Annual Computer Security
Applications Conference, pages 1-16, 2020.

C. Cremers and M. Dehnel-Wild. Component-based formal analysis of 5G-AKA:
channel assumptions and session confusion. In Proceedings of Network and
Distributed System Security Symposium. Internet Society, 2019.

W. Enck, P. Traynor, P. McDaniel, and T. La Porta. Exploiting open functionality
in SMS-capable cellular networks. In Proceedings of the 12th ACM conference on
Computer and communications security, pages 393-404, 2005.

K. Fang and G. Yan. Paging storm attacks against 4G/LTE networks from regional
Android botnets: rationale, practicality, and implications. In Proceedings of the
13th ACM Conference on Security and Privacy in Wireless and Mobile Networks,
pages 295-305, 2020.

A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner. A survey of mobile
malware in the wild. In Proceedings of the 1st ACM workshop on Security and
privacy in smartphones and mobile devices, pages 3-14, 2011.

A. Gehani and D. Tariq. SPADE: Support for provenance auditing in distributed
environments. In Proceedings of the 13th ACM/IFIP/USENIX International Middle-
ware Conference, pages 101-120. Springer, 2012.

L. M. Hall and]. P. French. A modified CUSUM test to control postoutbreak false
alarms. Statistics in Medicine, 38(11):2047-2058, 2019.

(32]

(33]

(34]

(37]

[38

@
20,

[40

[41]

[42

[43]

[44

=
i)

[46]

[47]

(48]

N
)

[50]
(51]

[52

[57]

(58]

WiSec "24, May 27-30, 2024, Seoul, Republic of Korea

W. U. Hassan, L. Aguse, N. Aguse, A. Bates, and T. Moyer. Towards scalable
cluster auditing through grammatical inference over provenance graphs. In
Network and Distributed Systems Security Symposium, 2018.

B. Hong, S. Bae, and Y. Kim. GUTI reallocation demystified: Cellular location
tracking with changing temporary identifier. In Proceedings of Network and
Distributed System Security Symposium, 2018.

M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete, R. Gjomemo, R. Sekar, S. D.
Stoller, and V. Venkatakrishnan. SLEUTH: Real-time attack scenario reconstruc-
tion from COTS audit data. In Proceedings of USENIX Security Symposium, pages
487-504, 2017.

M. N. Hossain, S. Sheikhi, and R. Sekar. Combating dependence explosion in
forensic analysis using alternative tag propagation semantics. In IEEE Symposium
on Security and Privacy, pages 1139-1155. IEEE, 2020.

S.R. Hussain, M. Echeverria, I. Karim, O. Chowdhury, and E. Bertino. 5GReasoner:
A property-directed security and privacy analysis framework for 5G cellular
network protocol. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pages 669-684, 2019.

M. A. Inam, Y. Chen, A. Goyal, J. Liu, J. Mink, N. Michael, S. Gaur, A. Bates,
and W. U. Hassan. SoK: History is a vast early warning system: Auditing the
provenance of system intrusions. In Proceedings of IEEE Symposium on Security
and Privacy, pages 307-325. IEEE Computer Society, 2023.

H. Irshad, G. Ciocarlie, A. Gehani, V. Yegneswaran, K. H. Lee, J. Patel, S. Jha,
Y. Kwon, D. Xu, and X. Zhang. Trace: Enterprise-wide provenance tracking for
real-time APT detection. IEEE Transactions on Information Forensics and Security,
16:4363-4376, 2021.

C. Jost and B. Smeets. Security for 5G service-based architecture: What you need
to know. https://www.ericsson.com/en/blog/2020/8/security-for-5g-service-
based-architecture, 2020.

R. P. Jover and V. Marojevic. Security and protocol exploit analysis of the 5G
specifications. IEEE Access, 7:24956-24963, 2019.

H. Kim, J. Lee, E. Lee, and Y. Kim. Touching the untouchables: Dynamic security
analysis of the LTE control plane. In Proceedings of IEEE Symposium on Security
and Privacy, pages 1153-1168. IEEE, 2019.

K. Kohls, D. Rupprecht, T. Holz, and C. Popper. Lost traffic encryption: finger-
printing LTE/4G traffic on layer two. In Proceedings of the 12th Conference on
Security and Privacy in Wireless and Mobile Networks, pages 249-260, 2019.

S. Ma, X. Zhang, and D. Xu. ProTracer: Towards practical provenance tracing
by alternating between logging and tainting. In Proceedings of Network and
Distributed System Security Symposium, 2016.

Microsoft. Event Tracing for Windows (ETW). https://learn.microsoft.com/en-
us/windows-hardware/drivers/devtest/event-tracing-for-windows--etw-, 2021.
D. Mills, J. Martin, J. Burbank, and W. Kasch. Network time protocol version 4:
Protocol and algorithms specification. https://datatracker.ietf.org/doc/html/draft-
ietf-ntp-ntpv4-algorithms-01, 2010.

T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer, and J. Bacon.
Practical whole-system provenance capture. In Proceedings of the 2017 Symposium
on Cloud Computing, pages 405-418, 2017.

T. Pasquier, X. Han, T. Moyer, A. Bates, O. Hermant, D. Eyers, J. Bacon, and
M. Seltzer. Runtime analysis of whole-system provenance. In Proceedings of ACM
Conference on Computer and Communications Security, pages 1601-1616, 2018.
C. Peng, C.-Y. Li, H. Wang, G.-H. Tu, and S. Lu. Real threats to your data bills:
Security loopholes and defenses in mobile data charging. In Proceedings of ACM
Conference on Computer and Communications Security, pages 727-738, 2014.
Positive Technologies. 5G standardalone core security research. https://positive-
tech.com/knowledge-base/research/5g-sa-core-security-research/.

S. Rommer, P. Hedman, M. Olsson, L. Frid, S. Sultana, and C. Mulligan. 5G Core
Networks: Powering Digitalization. Academic Press, 2019.

D. Rupprecht, K. Kohls, T. Holz, and C. Ppper. Breaking LTE on layer two. In
Proceedings of IEEE Symposium on Security and Privacy. IEEE, 2019.

A. Shaik, R. Borgaonkar, N. Asokan, V. Niemi, and J.-P. Seifert. Practical at-
tacks against privacy and availability in 4G/LTE mobile communication systems.
Proceedings of the Network and Distributed System Security Symposium, 2015.

X. Shu, F. Araujo, D. L. Schales, M. P. Stoecklin,]. Jang, H. Huang, and J. R. Rao.
Threat intelligence computing. In Proceedings of ACM SIGSAC conference on
computer and communications security, pages 1883-1898, 2018.

Q. Wang, W. U. Hassan, A. Bates, and C. Gunter. Fear and logging in the Internet
of things. In Proceedings of Network and Distributed Systems Symposium, 2018.
Z. Wen, H. S. Pacherkar, and G. Yan. VET5G: A virtual end-to-end testbed for
5G network security experimentation. In Proceedings of the Workshop on Cyber
Security Experimentation and Test (CSET’22), 2022.

J. Yang, Y. Wang, T. X. Tran, and Y. Pan. 5G RRC protocol and stack vulner-
abilities detection via listen-and-learn. In Proceedings of the IEEE Consumer
Communications & Networking Conference, pages 236-241. IEEE, 2023.

W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr. Secure
network provenance. In Proceedings of ACM Symposium on Operating Systems
Principles, pages 295-310, 2011.

M. Zipperle, F. Gottwalt, E. Chang, and T. Dillon. Provenance-based intrusion
detection systems: A survey. ACM Computing Surveys, 55(7):1-36, 2022.

https://www.p1sec.com/corp/2021/12/31/pentesting-5g-core-networks/
https://www.softeq.com/blog/how-to-ensure-5g-supply-chain-security
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-45462
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-45462
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-43677
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-43677
https://www.open5gs.org/
https://www.openairinterface.org/
https://www.snort.org/
https://www.srsran.com/
https://github.com/aligungr/UERANSIM
https://zeek.org/
https://zeromq.org
https://www.etsi.org/deliver/etsi_ts/129500_129599/129571/16.06.00_60/ts_129571v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/129500_129599/129571/16.06.00_60/ts_129571v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/138400_138499/138413/16.07.00_60/ts_138413v160700p.pdf
https://www.etsi.org/deliver/etsi_ts/138400_138499/138413/16.07.00_60/ts_138413v160700p.pdf
https://www.etsi.org/deliver/etsi_ts/133500_133599/133501/16.03.00_60/ts_133501v160300p.pdf
https://www.etsi.org/deliver/etsi_ts/133500_133599/133501/16.03.00_60/ts_133501v160300p.pdf
https://info.adaptivemobile.com/5g-network-slicing-security
https://www.ericsson.com/en/blog/2020/8/security-for-5g-service-based-architecture
https://www.ericsson.com/en/blog/2020/8/security-for-5g-service-based-architecture
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/event-tracing-for-windows--etw-
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/event-tracing-for-windows--etw-
https://datatracker.ietf.org/doc/html/draft-ietf-ntp-ntpv4-algorithms-01
https://datatracker.ietf.org/doc/html/draft-ietf-ntp-ntpv4-algorithms-01
https://positive-tech.com/knowledge-base/research/5g-sa-core-security-research/
https://positive-tech.com/knowledge-base/research/5g-sa-core-security-research/

	Abstract
	1 Introduction
	2 Background
	3 Threat model and challenges
	4 PROV5GC Architecture
	4.1 Stateless NF instrumentation for logging
	4.2 Discovery and negotiation with the PDF
	4.3 Log transmission and commitment
	4.4 Provenance graph construction
	4.5 Periodic persistence of provenance graph

	5 Detection modules
	5.1 SMS signaling storm attack detection
	5.2 Slicing attack detection
	5.3 PFCP attack detection

	6 Implementation details
	7 Experiments
	7.1 Logging overhead
	7.2 Signalling storm attack detection
	7.3 Slicing attack detection
	7.4 PFCP attack detection

	8 Related Work
	9 Conclusions and discussions
	References

