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TCP is the most widely used transport layer protocol used in the Internet today. A TCP session
adapts the demands it places on the network to observations of bandwidth availability on the
network. Because TCP is adaptive, any model of its behavior that aspires to be accurate must
be influenced by other network traffic. This point is especially important in the context of using
simulation to evaluate some new network algorithm of interest (e.g., reliable multicast) in an
environment where the background traffic affects—and is affected by—its behavior. We need to
generate background traffic efficiently in a way that captures the salient features of TCP, while the
reference and background traffic representations interact with each other. This article describes
a fluid model of TCP and a switching model that has flows represented by fluids interacting with
packet-oriented flows. We describe conditions under which a fluid model produces exactly the same
behavior as a packet-oriented model, and we quantify the performance advantages of the approach
both analytically and empirically. We observe that very significant speedups may be attained while
keeping high accuracy.

Categories and Subject Descriptors: I.6.3 [Simulation and Modeling]: Applications; I.6.5
[Simulation and Modeling]: Model Development

General Terms: Algorithms, Performance
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1. INTRODUCTION
It is impossible to overestimate the importance of the TCP protocol in shaping
Internet traffic. Simulation-based evaluation of new Internet applications or
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protocols must interact with “background traffic” that has TCP characteristics;
ideally the application traffic both affects and is affected by the background
traffic. Consequently it is necessary to have a simulation model of background
traffic that is efficiently executed, captures the salient features of TCP, and
interacts with specific flows of interest even if those flows are packet-oriented.

Mathematical descriptions of traffic offer some hope for efficient generation
of background traffic. The intuition is that abstraction aggregates behavior in a
way that smooths over unessential details, allowing one to express the behavior
using less computational effort. Analysis of fluid models in Markovian contexts
was pioneered by Mitra, a recent application of which is found in Kumaran
and Mitra [2001]. Typically the focus in this type of work is on the behavior
of a network component, such as a buffer. Another interesting approach to
accelerating stochastic network simulations is to use importance sampling (see,
for example, Ridder [1996] and Kesidis and Walrand [1993];) however, this is
unlikely to serve our goals of efficiently generating representative background
traffic as its focus is on fast estimation of statistics (e.g., probability of packet
loss).

Direct efforts to reduce the computational cost of simulating a network
include simulating “packet trains” rather than individual packets [Ahn and
Danzig 1996], simulating fluid models using time-stepping [Yan and Gong
1999], and simulating fluid models using discrete events [Kesidis et al. 1996;
Nicol et al. 1999]. The work reported in this article uses essentially the traffic
model employed in these last two articles, where a traffic flow is described by a
piece-wise constant rate function.

This paper focuses on TCP and its simulation using a fluid model. Formula-
tions of TCP that use differential equations are inherently “fluid-based” in that
these express behavior in terms of rate functions. Sophisticated models have
typically been used to analytically evaluate how TCP behaves. An oft-cited pa-
per [Ott et al. 1996] showed how TCP throughput is related to the packet loss
probability; models using stochastic differential equations (SDE) were used in
Misra et al. [1999] and Altman et al. [2000] to describe TCP behavior as a
function of stochastic loss event models. The SDE approach treats the network
as a generator of loss events and assumes some stochastic structure for the
packet loss event process. Solutions to these equations are expectations (al-
though these may be time-dependent expectations) with respect to the stochas-
tic loss event process. There does not appear to be a direct coupling between
the behavior of TCP modeled by an SDE and its influence on the abstracted
loss event process. Solutions of SDEs typically require the use of sophisticated
numerical algorithms, although these can be found in standard mathematical
packages.

An effort with a goal similar to ours was reported in Yung et al. [2001].
There a packet-oriented simulation model was integrated with a fluid model
(based on the SDE described in Misra et al. [1999]), principally to show how
to make packet and fluid models interoperate. The fluid model was used to
estimate the total queueing delay of a packet as it traverse a region modeled by
fluid approach. While packet flow information was used to provide the input to
the fluid model for a time-step, there was no other direct interaction between
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packet and fluid within the fluid network, nor between packet streams that
simultaneously crossed the fluid network. In the experiments reported, the
granularity of time-step for the fluid network solution needed to be at least
1 s for the hybrid approach to work as fast as an ordinary packet approach.
Speedups of approximately 5 were observed for time-steps larger than 5 s.

The Time-Stepped Hybrid Simulation (TSHS) approach [Guo et al. 2000]
discretizes time into equal size intervals. All packet arrivals within a time-step
are “chunked” together within the interval, and no arrival time information
is saved. “Chunk” versions of routers and TCP are developed. Speedups ap-
proaching 3 are observed (as compared to a packet-oriented ns solution) for
sufficiently large time-steps.

Significant speedups over packet-oriented simulation have been achieved
using an SDE approach, with a mathematical formulation that groups flows
into “classes,” where every flow in a class takes exactly the same route through
the network [Liu et al. 2003]. The key to speedup in this approach is the class-
based aggregation and the ability to compactly represent an entire class with
a simple equation.

We are interested in a different corner of the modeling space. The model
we propose and study needs no explicitly stochastic components; it simulates a
particular sample path of a TCP session. There are a number of notable facets
to the approach we describe:

—Our model is closed-loop—it affects and is affected by other flows.
—We introduce a smoothing technique that provably defeats the well-known

“ripple effect” of event explosions associated with fluid models.
—We are able to analyze the reduction in workload offered by the method (over

a purely packet-based approach) as a function of (i) the length of a TCP
transfer, (ii) the rate at which an application offers data to be transfered,
(iii) the round-trip-time, and (iv) the initial value of ssthresh.

—We intermingle packet-based representations of flows with fluid-based sim-
ulations of other flows.

—We implement a seamless mixture of fluid and packet representations in
the same network simulation package. This model formulation is capable
of working with dynamic routing and other realistic artifacts of network
simulation and analysis.

We described some elements of our approach in a preliminary report [Nicol
2001].

One unique aspect of our work is that we prove mathematically that un-
der certain conditions the method has exactly the same behavior as a packet-
oriented simulation. We emphasize though that our interest is in developing
lightweight but dynamic description of background traffic that behaves like
TCP. Rather than ask (like prior work) how the interior elements of a network
behave within the mixed model, we ask whether a reference packet flow behaves
the same way when mixing with other packet flows as it does when mixing
with fluid representation of those flows. We find the correspondence to be very
good, and find that the simulation requires significantly less computation and
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memory than does a fully packet-oriented simulation. The degree of speedup
depends very much on traffic characteristics.

This paper is organized as follows. Section 2 describes how the dynamics of
a flow may be represented in a discrete event framework, then Section 3 shows
how that framework is applied to model TCP. Section 5 formally shows that in
the absence of loss our techniques are exact; Section 6 develops mathematical
expressions for the reduction in events one may achieve using our formulation.
Section 7 reports on a set of experiments that consider the accuracy and speedup
of the technique, and Section 8 provides the conclusions.

2. A DISCRETE EVENT FLUID MODEL
We model a given traffic flow using a piece-wise constant rate function. In
this view, at any physical point in the network, at any point in simulation
time, the flow’s behavior is described by a constant rate, for example, in bits
per second. That rate may change; when it does, it remains constant for some
additional (and potentially arbitrary) period of time before changing again. This
formulation is ideal for discrete-event simulation, where events describe rate
changes. The advantage of such an approach (as opposed to a time-stepped
approach, such as is used in the solution of fluid models based on differential
equations) is that computation is performed only when, and where, it is needed
to advance the model state. Our choice of model emphasizes computational
speed and simplicity.

Throughout this paper we will denote a function f with generic argument
z, that is, f (z) refers to the function rather than a specific function value. f (s),
f (t), and so on will denote specific values at specific points in simulation time.
A number of quantities of interest in our model are based on piece-wise con-
stant rate functions. Typically, function f (z) (e.g., cwnd(z)) is defined implicitly
through changes in some function λ f (z) = (d/dz) f (z), and λ f (z) is a piece-wise
constant function of z. This means that at any time t

f (t) =
∫ t

0
λ f (s) ds.

In particular, if an event occurs at time a where point f (a) is known or com-
puted, and another event occurs at time b with λ f (s) = c for all s ∈ [a, b], then
f (b) is trivially computed as f (b) = f (a) + c × (b− a). The TCP model is based
on byte indices within a flow; in this context the units of λ f (s) are bytes per
unit time, and f (b) is the byte index of the flow, at the point of observation, at
time b.

2.1 Example of Fluid Model
A simple example illustrates many important points about our modeling ap-
proach. Consider the sequence of steps shown in Figure 1. The model is of a
traffic source which is connected to a buffered server (like a network interface
card), with a latency L between them. Flow rates are shown at the output of
the traffic source, the input to the server’s buffer, and the output of the server.
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Fig. 1. Example of fluid model.

Event (1) of the sequence (at time t0) reflects a state where the source turns on,
emitting traffic at rate λ. At t0 there is no flow entering or leaving the server.
Event (2) illustrates the source changing the traffic rate from λ to γ only L/4
units of time later. This occurs before any of the λ-rate flow reaches the server—
we illustrate this by positioning a flow descriptor on the connection between
source and server. In the simulation this is implemented simply with an event
on the event list marking the leading edge of the flow reaching the server. Event
(3) depicts the state after processing that event. The source continues to emit
traffic at rate γ ; there is an input rate change scheduled for the server (depicted
again as a flow descriptor on an arc), but it is as-yet-unseen; the arrival rate
λ exceeds the service rate µ, so that the output rate of the server is µ and we
therefore expect traffic to build up in the buffer. As part of this event’s process-
ing we also schedule a “buffer full” event to occur in B/(λ − µ) units of time,
where B is the capacity of the buffer. However, before this much time elapses,
the input rate change from λ to γ arrives at the server; Event (4) illustrates
the state of the system after processing this event. In the L/4 units of time
since the server was first presented with a flow, it received Lλ/4 units of traffic
and pushed out Lµ/4 units of traffic. The size of the buffered backlog is thus
L(λ − µ)/4. With the arrival of input rate change γ < µ, we see that in the
absence of further rate changes, the buffer will decrease in size at rate µ − γ ,
becoming empty after L(λ−µ)/(4(µ− γ )) units of time. At this point the server
will have to change its output rate, so an event is scheduled to cause the server
to do just that. Event (5) reflects the state of the system after executing that
event. The system remains in this state until the source turns off the flow at
time t6, illustrated in Event (6). Another L units of time pass before the in-
put change reaches the server; Event (7) illustrates the system state after the
server processes this rate change.
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The important points of this example with respect to fluid modeling in gen-
eral are the following:

—Latency can be modeled just as in packet-oriented simulation. Latency is just
the length of time it takes a bit to cross a communication channel, and so we
can impose latency on a flow descriptor just as we would a packet.

—Events are triggered by input rate changes, or timer firings. When the input
rate to a component changes, it may be necessary to change an output rate
(e.g., Events (3) and (7)). It may also be necessary to analyze the state of the
component, project its future behavior in time, and schedule a timer to trigger
an event when the projected system state encounters some boundary, for
example, when the processing associated with Event (4) schedules Event (5).

—The computational efficiency over packet-oriented simulation depends entirely
on the rates and the length of time between their changes.

The example given takes the system through a certain span of time in seven
events. The number of events required to do this in a packet-oriented version
of this model depends entirely on the number of packets transmitted between
each of the seven epochs described in the example. That might be small (if λ

and γ are small), it might be large. It depends on how often the model reshapes
the flows. In this article we focus on how TCP reshapes such flows.

2.2 Additional Mechanisms
Our implementation of fluid TCP uses some additional mechanisms. One of
these is motivated by the fact that TCP flows carry headers, which affect band-
width consumption. The TCP logic is based on data bytes, while the network
model considers total traffic. Furthermore, the TCP acknowledgment flow can
be contained entirely in headers. We handle this by expressing flows at the
network level in terms of the total bytes, and have the flow descriptor carry a
“logical-to-physical” byte ratio (ρ). This allows us to express some logical flow
(e.g., data bytes, or acknowledged bytes) in terms of a physical flow that imple-
ments it. The product of a flow’s physical rate and its ρ gives the flow’s logical
flow rate. In the case of TCP, the ρ for a data-bearing flow is the ratio of the
number of bytes in a data segment to the sum of header size and data segment
size.

We will also have cause to embed discrete bits of information in a flow, and
have that flow carry it along. We call these additions corks. If a cork is inserted
into a flow at a point and time when byte position b is passing the point of inser-
tion, then that cork appears downstream in the flow whenever and wherever
byte b of that flow appears. We might use a cork to carry identity information
(e.g., source or destination address), flag that a flow has terminated, or declare
a new data segment size. We will use corks to mark where in a flow bytes begin
to be lost. Corks are always attached to flow descriptors; if addition of the cork
does not change any other of the flow’s characteristics, a bit is set to flag this
condition.

We use another mechanism to report the existence and quantity of data loss
in a flow. We associate a “delivered fraction attribute” (τ ) with a flow; it will be
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carried by a cork. A flow’s τ value indicates what fraction of the physical flow
at point of origin is actually passing in the present flow; the τ value at point
of origin is 1.0. If the network model introduces loss into a flow, it modifies the
physical flow rate and decreases the flow’s τ value by multiplying the existing
τ by the fraction of real flow observed at that point which continues to be
delivered. It attaches to the flow descriptor a cork that gives the new flow τ

value. So for example if a flow is reduced by 20% at the first router it encounters,
a τ value of 0.8 is associated with it, and if an additional 10% loss is introduced
by a subsequent router, then τ is changed to 0.8 × 0.9 = 0.72 to reflect the
fact that the flow being delivered is 72% of the flow that was transmitted. An
element of the network can therefore always infer what originally transmitted
byte index corresponds to a flow passing it, at any instant in time. If the flow
descriptor has changed at times s1, s2, . . . , sn with rate λi and delivered flow
attribute τi at time si, the byte index corresponding to the flow passing it at
time t > sn is

n∑

i=0

(si+1 − si)λi/τi

where for notational convenience we define λ0 = 0 and sn+1 = t, and assume that
τi = 1 whenever λi = 0. If we allow for the possibility that one flow descriptor
may contain a different ρ than another, the logical byte index of the flow passing
the point of observation is

n∑

i=0

(si+1 − si)λiρi/τi,

where ρi is the logical-to-physical value associated with the ith flow descriptor.
Taking all of these mechanisms into consideration, a flow in our formulation

has the following attributes:

—physical byte rate (in bytes per unit simulation time),
—ratio of logical to physical bytes (ρ),
—delivered fraction ratio (τ ).

A flow description may contain these, along with a list of corks (possibly empty).

3. FLUID MODELING OF TCP
We view a TCP session in terms of a sending agent and a receiving agent, both
in protocol stacks at their respective hosts. TCP is fully duplex by specification,
and both functions can be simultaneously functioning. For our purposes it suf-
fices to describe the sender and receiver roles separately, understanding that
they can be merged into a single entity. Throughout our discussion we assume
that the TCP sender always sends packets of the maximum segment size (MSS
in TCP parlance). We also assume that the TCP receiver always has sufficient
memory to buffer any transmissions from the TCP sender, and so do not con-
sider the receiver window size as a constraint in this model. Unless specifically
indicated, all rates described here are logical (data byte) rates, not physical
network rates.
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Table I. Functions Used in Fluid TCP Sender Model

Variable Description
LBS(t) Value of LBS at simulation time t
LBA(t) Value of LBA at simulation time t
cwnd(t) Value of cwnd at simulation time t
λapp(t) Maximum data rate from Application at time t
λack(t) Acked byte rate from Application at time t
λsend(t) Data rate sent from TCP at time t
λbw(t) Maximum bandwidth (in data bytes) available to TCP sender
λcwnd(t) Rate at which cwnd is changing at time t

TCP views a transfer in terms of a stream of bytes, indexed from 0, from a
sender to a receiver. The receiver agent provides the data to the protocol layer
above it, in byte sequence order, and without loss. To support this functionality,
TCP puts byte indexing information in headers of the packets it sends, and
requires acknowledgments be sent for received packets (so that the sender can
discard the packet, once it knows that the packet need not be retransmitted).
The TCP protocol imposes flow control rules, in order to avoid sending packets
faster than the network can accept and move them. These rules are expressed
in terms of a few key state variables, listed below.

Variable Meaning
LBS Last Byte Sent
LBA Last Byte Acked
cwnd Congestion window size

ssthresh Mode transition threshold

A sending agent stores in LBS the index of the last byte in the last packet
it sent. It stores in LBA the index of the last byte whose receipt has been ac-
knowledged by the TCP receiving agent. The most basic TCP rule is that “the
next” packet may not be sent if the number of unacknowledged bytes exceeds
threshold cwnd, for example, if LBS − LBA > cwnd. Threshold cwnd is not
static. TCP rules govern how cwnd changes in response to received acknowl-
edgments, and indications of packet loss. In slow-start mode TCP increases
cwnd by a packet length every time a packet is acknowledged. The effect is
that TCP sends out packets in rounds, with the number of packets doubling in
each round, the next round being triggered by the receipt of acknowledgments
from the previous round. Eventually cwnd reaches threshold ssthresh, or TCP
detects a packet loss, in which case it enters congestion avoidance mode. In
this mode TCP increases cwnd more slowly. When TCP sets cwnd to allow K
unacknowledged packets to be sent, it requires K packets to be acknowledged
before it increases cwnd, to allow K + 1 unacknowledged packets. Detection
of packet loss in congestion avoidance mode causes ssthresh to be halved, and
causes a transition back into slow-start mode.

In our fluid formulation the key TCP variables become functions of sim-
ulation time, as given in Table I. All of the λ functions are piece-wise con-
stant functions of simulation time t. Note that (d/dz)LBS(z) = λsend(z) and
(d/dz)LBA(z) = λack(z), which implies that LBS(z) and LBA(z) are piece-wise
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Fig. 2. View of TCP fluid model.

linear functions of z. λcwnd(z) will be a function of the congestion mode. The
big picture is that the TCP sending agent computes flow descriptors defining
λsend(z) and pushes these into the network; the specifics of this description are
a function of input rate functions λapp(z) and λack(z), and available bandwidth
function λbw(z). Of course, λack(z) reflects the behavior of λsend(z) in the past,
and the influence of the network on both the sending stream and the acknowl-
edgment stream.

Figure 2 illustrates our view. It contains representations for the application,
the TCP sender, the Network Interface, and devices we introduce called In-
put Delay Elements (IDE). We will say more about IDEs later; they shift rate
changes in simulation time to account for the time needed to accumulate a full
packet of data. As we will see, they are needed to keep a fluid representation of
a flow in temporal synchronization with an equivalent packet representation
of the flow.

The application maintains a rate λapp(z) of the maximum rate it can pro-
vide data to the TCP sender, independent of how fast the TCP sender actually
takes it. There is a feedback loop reporting rate λsend(z) back to the application,
telling it how fast its data is actually being accepted. The Network Interface
environment can in principle dynamically alter bandwidth available to the ses-
sion through changes in function λbw(z), for example, if multiple sessions share
bandwidth out of a single network interface card.

A change in λapp(z), λack(z), or λbw(z) at time t may cause a change in λsend(z)
at time t. A change in this output can also be triggered by the firing of an
internally scheduled timer at t. From this description it is apparent that the
sender agent can in principle be described as a finite state machine, and we will
shortly do exactly that. The model is better understood, though, if we first work
through details of how TCP behavior may be captured using fluid description.

3.1 Some Simplifications
The methodology we will develop is capable of modeling fairly sophisticated be-
havior of TCP such as fast retransmit, timeouts, and retransmission of lost data.
However, attempts to faithfully represent TCP behavior with respect to data
retransmission significantly complicate the model. Our goal for this model is to
simply capture how network latency and packet loss affects the rate at which a
TCP sender transmits. The model will respond to reports of data loss from the
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network, and move between slow start and congestion avoidance modes appro-
priately. It will retransmit lost data. However, a TCP sender will not detect data
loss either by analysis of acknowledgments, nor expiration of timeout timers.

3.2 Modeling Sender Window Dynamics
Management of the sender window size is the soul of TCP, and is the centerpiece
of our model. We essentially fluidize the discrete description of TCP’s rules. In
our model LBA(z), LBS(z), and cwnd(z) are all piece-wise linear functions of
time. LBA(z)’s behavior is directly defined by λack(z)’s as follows:

LBA(t) =
∫ t

0
λack(s) ds.

LBS(t) is similarly defined. The fluid characterization of cwnd depends on the
congestion mode. When TCP is in slow-start mode, the receipt of one packet’s
acknowledgment increases cwnd by one packet’s worth of bytes. However in the
fluid model, acknowledgment bytes arrive in a stream; the logical continuous
extension is that every bit acknowledged increases cwnd by one bit. The rate at
which cwnd(t) increases is precisely the rate at which acknowledgments arrive.
Thus

λcwnd(z) = d cwnd(z)
dz

= λack(z).

In congestion avoidance mode, real TCP requires K packets to be acknowl-
edged before increasing cwnd from K × MSS to (K + 1) × MSS, where MSS
is the maximum segment size, for example, the packet length. We can emulate
that behavior exactly in the fluidized context. Suppose that on entering conges-
tion avoidance mode at time s, cwnd(s) = K ∗ MSS. If we assume that λack(z)
remains constant, we can initialize a variable wack = K × MSS to store the
amount of acknowledgment fluid needed for cwnd to change, and schedule an
event to increase cwnd(t) to (K + 1) ∗ MSS at time s + λack(s) × wack. If λack(z)
changes at time t before this event occurs, part of processing the acknowledg-
ment rate change will be to subtract (t − s)λack(s) from wack, and reschedule
the cwnd change event to occur after wack × λack(t) units of time. Since cwnd
changes discontinuously, in congestion avoidance mode we define λcwnd(t) = 0.

3.3 Timers
The example we worked through in Figure 1 illustrates how a fluid model’s state
sets off on some trajectory (e.g., toward the buffer becoming full, or toward the
buffer becoming empty), with a timer scheduled to execute an event when the
fluid state encounters a boundary that triggers a change in the fluid model’s
behavior. The same is true modeling the TCP sender. There are critical tran-
sition points where the fluid state of the sender intersects a boundary, which
forces a change in the output λsend(z). Understanding those boundaries and the
means of intersecting them is the key to understanding our formulation of fluid
TCP.

The central constraint of TCP is that LBS(s)−LBA(s) ≤ cwnd(s) at all times
s (except for states brought on by data loss). When LBS(s) − LBA(s) < cwnd(s),
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Fig. 3. Point where LBS(t) − LBA(t) = cwnd(t) found by intersection of two linear functions.

the sender is free to transmit data as fast as possible. When LBS(s)−LBA(s) =
cwnd(s), the sender is constrained to send no faster than cwnd(s) grows. When
LBS(s) − LBA(s) > cwnd(s), the sender is constrained from sending at all.
Thus we see that if LBS(s) − LBA(s) '= cwnd(s), it may be necessary to have a
timer running, to fire (and execute an associated event) precisely at the time
t that LBS(t) − LBA(t) = cwnd(t), provided of course that the sender’s fluid
state (LBS(t)−LBA(t)) is moving toward intersecting cwnd(t). We will call this
timer ConstrainedTimer. In particular, ConstrainedTimer must be running in
states where at time s the inequality LBS(s)−LBA(s) < cwnd(s) holds, and the
window size is moving to intersect cwnd(s), that is, λsend(s) > λack(s) + λcwnd(s).
Likewise, ConstrainedTimer must be running in states where at time s the
inequality LBS(s) − LBA(s) > cwnd(s) holds, and λack(s) > 0 (note that in such
states λsend(s) must always be zero).

Scheduling the firing time for ConstrainedTimer is straightforward. The fluid
state LBS(t) − LBA(t) has a linear trajectory in t, with slope λsend(s) − λack(s).
The fluid variable cwnd(t) has a linear trajectory in t, with slope λcwnd(s). As
illustrated in Figure 3, we are interested in finding their point of intersection.
That intersection occurs at time s + d , where

s + d = s + cwnd(s) − LBS(s) + LBA(s)
λsend(s) − λack(s) − λcwnd(s)

. (1)

In the case illustrated, the result of the timer firing is to adjust λsend(z) so that
for t ≥ s + d , λsend(t) − λack(t) = λcwnd(t).

Other internal factors give rise to additional timers. In slow-start mode, if
at time s we have cwnd(s) > 0, there must be a timer ModeTransition running,
scheduled to fire at the instant t when cwnd(t) = ssthresh. That timer fires at
time

s + d = s + ssthresh − cwnd(s)
λcwnd(s)

. (2)

In congestion avoidance mode we use a timer IncreaseCWND to fire when
enough acknowledgments have arrived to cause an increase in cwnd(t). If we de-
note the value of variable wack at time s by wack(s), then provided that λack(s) > 0,
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cwnd(s) logically increases by MSS at time

s + d = s + wack(s)
λack(s)

. (3)

While a straightforward implementation will make sure that IncreaseCWND is
running for all times s such that λack(s) > 0, there is an important optimization
we can employ. If an increase in cwnd at time t cannot change λsend(t) from
what it would have been without the increase, then there is actually no point
in having IncreaseCWND running, so long as we can always compute what
cwnd ought to be, when needed. Now if LBS(t)−LBA(t) < cwnd(t), an increase
in cwnd at time t cannot affect λsend(t); thus in congestion avoidance mode,
IncreaseCWND is running only at times t where LBS(t) − LBA(t) ≥ cwnd(t).

If we employ this optimization, we can reconstruct cwnd as needed. We re-
member the total volume of acknowledgments received by the instant when
the sender last entered congestion avoidance mode, and remember the value
of cwnd at that instant, say, C. We know that once congestion avoidance mode
is entered, exactly C bytes must be acknowledged before cwnd is increased by
MSS, after which C + MSS more bytes must be acknowledged before cwnd is
increased to C + 2 × MSS, and so on. If % bytes have been acknowledged since
the transition into congestion avoidance mode, we can compute the number of
times n that cwnd is increased. For we know that

% =
(

n−1∑

k=0

(C + k × MSS)

)

+ α,

where n is as large as possible and still have α ≥ 0. We can determine n by
treating it as a real number x, expand the sum above, and solve for x in

% = x × C + MSS × x(x − 1)
2

.

This is a quadratic equation in x; we take n′ as the integer fraction of its positive
root then reconstruct

cwnd = C
n′(n′ − 1)

2
.

3.4 Defining λsend(z)
Next we turn to consideration of λsend(z). The basic observation is that λsend(t)
should always be “as large as possible” at time t. The sending rate is always
constrained by both the maximum rate data that can be drawn out of the appli-
cation, and the maximum rate at which data can be injected into the Network
Interface portion of the model. Thus λsend(t) ≤ min{λapp(t), λbw(t)} at all times t.

At times t where LBS(t)−LBA(t) < cwnd(t), there are no further constraints
on λsend(t). Define the difference '(t) = LBS(t) − LBA(t). When '(t) > cwnd(t),
the sender is prohibited entirely from sending. At times t where '(t) = cwnd(t)
continuously on the right (i.e., there exists ε > 0 such that '(x) = cwnd(x) for
all x ∈ [t, t + ε)), then LBS(x) = LBA(x) + cwnd(x) continously on the right.
The right-hand side of this equality changes at rate λack(x)+λcwnd(x); hence the
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left-hand side does as well. We are led then to define

λsend(s) =






min{λbw(s), λapp(s)} if '(s) < cwnd(s),
min{λbw(s), λapp(s), λack(s) + λcwnd(s)} if '(s) = cwnd(s),
0 if '(s) > cwnd(s).

(4)

3.5 Data Loss
We will require that the network model insert a cork reporting a change in a
flow’s τ value, whenever and wherever that τ value changes. That cork will
always eventually make it back to the flow’s originating sender. Because corks
are carried along in a flow without losing byte position, the recipient of a cork
can calculate that byte position from knowlege of a previous byte position and
measurement of flow and time that has past since that position.

When a TCP sender receives a cork reporting τ < 1.0 on a flow whose τ

value had been 1.0, we arrange that the cork be repositioned at the beginning
of the segment in which the loss occurred. In Figure 2, the IDE between the
Network Interface and the TCP Sender implements this repositioning. Recog-
nizing a new loss, the sender modifies cwnd and ssthresh in accordance with
TCP rules for data loss. We assume that under these transformations cwnd
and ssthresh are both integral multiples of MSS. This will become important
when we analyze the accuracy of the methods. The sender suspends further
output until all transmitted bytes have been acknowledged, employing a timer
LossCleared to fire when this condition is achieved. If the loss is first detected
at time t and if λack(t) > 0, then LossCleared is scheduled to fire at time
t + (LBS(t) − LBA(t))/λack(t). If λack(z) changes before the timer fires, Loss-
Cleared is rescheduled appropriately.

When LossCleared fires ssthresh is set equal to one-half of cwnd, cwnd is
set to reflect MSS bytes, and the mode is set to slow-start. While not modeled
on TCP behavior per se, it is a simple and fast technique for clearing an error
condition.

We do not model timeouts. The flow carries a loss indication back to the
source as quickly as it would be carried by an implementation that uses fast
retransmit. The presumption is that an implementation which supports fast
retransmission rarely identifies loss by timeouts.

3.6 State Space
We can define a state vector for a TCP sender such that given the state, it is
possible to determine which timers are scheduled, when they are scheduled to
fire, and what value λsend(t) has in that state.

One component of the state vector describes the relationship of LBS(z) −
LBA(z) to cwnd(z). We define state component Sw to be “u” (unconstrained),
“c” (constrained), or “e” (exceeded) depending on whether LBS(t) − LBA(t) is
less than, equal to, or greater than cwnd(t) at time t, respectively. We define
another component, named Sm (m for mode) to have value “s” when in slow-start
mode, “a” when in congestion avoidence mode, and “s” when suspended waiting
for a loss condition to clear. Still another component reflects whether the send
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window size is growing, shrinking, or neither with respect to the congestion
window. This component is named Sc (c for change), which is defined to be “+”,
“−”, or “0” depending on the sign of the difference λsend(s)−λack(s)−λcwnd(s), with
“0” reflecting equality. A final component is named Sa (ack indicator) which has
value 1 if λack(s) > 0 at time s, and 0 otherwise. We thus describe the state of a
TCP sender with a four-component vector (Sw, Sm, Sc, Sa). There are 54 unique
state vector values.

A few simple invariants dictate which timers are running, in which states.
ConstrainedTimer is running in every state where Sw = u and Sc = +, or
Sw = e and Sc = −. This is simply a formal statement that the send win-
dow size isn’t identically the congestion window size, and that the difference
between the send window and congestion window sizes is changing to move
the send window size toward the congestion window size. ModeTransition is
running in every state where Sm = s and Sa = 1, which says that in slow-
start mode cwnd(z) is increasing toward ssthresh. LossCleared is running in
every state where Sm = s and Ia = 1. Finally, IncreaseCWND is running in
every state where Sm = c, Ia = 1, and Sw = c. This means that in conges-
tion avoidance mode the sender window size is constrained from growing by
cwnd, but that acknowledgments are actively accumulating to grow wack, and
hence that cwnd(z) will eventually change and that when it does, λsend(z) may
change.

The output and state transitions of the TCP sender finite-state machine are
completely determined by these invariants and Equation (4).

3.7 Input Delay Element
In a packet-oriented simulation, a packet is not considered to have “arrived”
until it is completely received. So for example, a 1K packet sent across a 1-ms
latency 10-Mb link requires 1 ms for the first bit to be received, then 0.1 ms for
the rest of the packet to show up. Consider a fluid flow that passes through a
router which is otherwise idle. In previous models of fluid flow, the instant the
input rate changes at the router, the flow’s output rate changes as well. If the
flow had been completely idle up until that instant, then this is equivalent to
having the first bit of the first packet be immediately routed through. To achieve
an exact correspondence between fluid and model packets, we must model the
packet arrival delay, within the fluid model; we do this with a logical construct
we call an input delay element, or IDE.

An IDE is configured to delay a rate change by the time needed to receive a
given byte volume V , in the packet model. If the bandwidth of the channel into
the IDE is λbw, that delay is d = V/λbw. If λide

in (z) is input rate function to the
IDE, we define the output function of the IDE by

λide
out(s) = λide

in (s − d ).

Thus an input delay element defines a temporal shift in the input flow descrip-
tion. When λbw and V are fixed and the IDE has no other function, the simplest
implementation of the IDE is to add d to the latency imposed on a rate change.
Otherwise it is straightforward to implement an IDE using a queue of received
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flow descriptors, and a timer whose firing releases the one at the front of the
queue.

Our model uses IDEs at the input of every component that receives flow de-
scriptors from some sort of channel. In Figure 2 the IDE between the application
and TCP sender assumes a memory channel bandwidth, and delays by the time
needed to deliver a data segment. IDEs sit in front of a router or switch, and are
configured to delay by the transmission time of a full IP packet. The IDE be-
tween the Network Interface and TCP Receiver likewise delays by the channel
transmission time of a full IP packet, but the IDE between Network Interface
and TCP Sender delays by the transmission time of an IP header only. This one
is specialized, to align loss data corks with the beginning of the header.

3.8 Modeling TCP Receiver Behavior
The only thing a TCP receiver does in our model is to acknowledge data bytes.
There are, however, some subleties to our approach. One is that we have the re-
ceiver acknowledge all intended data bytes, not just delivered ones. As we have
noted earlier, a received data byte rate is transformed into an intended data
byte rate by dividing through by the flow’s τ value. A continuous acknowledg-
ment of intended bytes actually reflects one aspect of TCP behavior, in as much
as it acknowledges every segment received, whether in order or not. In actual
TCP the sender can infer from acknowledgment information when there are
gaps in the received flow, and hence that a received acknowledgment is in re-
sponse to a segment that follows loss. In our model acknowledging all intended
flow accomplishes the same thing.

Our discussion of the TCP receiver assumes that the raw incoming byte flow
is transformed by the network interface into a data byte flow, by scaling the
arrival rate by the flow’s ρ value (logical-to-physical ratio). A receiver essen-
tially acknowledges bytes, rather than segments. Since an actual TCP receiver
does not acknowledge a segment until that segment is completely received, we
likewise require that the receiver begin to acknowledge a segment only after all
of the intended bytes for that segment have been detected. An IDE that delays
the inflow by an intended data segment transmission time gives us precisely
what we need. We denote the time-shifted rate out of this IDE by λr

in(z).
Assuming an asymmetric TCP session, the acknowledgment flow requires

less bandwidth than the received flow. The receiver needs to create a flow whose
logical rate carries the received (intended) data rate. If the TCP header (which
carries the acknowledgment) has α bytes and a TCP data segment has δ bytes,
then the receiver’s offered output rate at time s is

λr
out(s) = λr

in(s) × α

δ
.

This expression scales down the intended data byte flow rate to reflect that
fewer bytes are needed to acknowledge a segment than to send one. A flow
descriptor received from the IDE simply has its rate changed in accordance
with this transformation; this resulting flow has τ = 1 and ρ = δ/α.

A cork on the incoming flow is normally passed back, attached to the same
descriptor (with rates now transformed, as above). However, a cork reporting
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Fig. 4. Fluid TCP receiver organization.

data loss is first marked as having been seen by the receiver. This marking
allows the TCP sender to distinguish between corks reporting data losses on
the send path (to which it responds) from the data losses on the acknowledgment
path (which it ignores).

The final step is to transform the receiver’s offered output flow into an actual
flow. The transformation is needed to deal with the possibility that λr

out(z) is
larger than the bandwidth available to the receiver from the network interface.
To regulate the output flow rate, we direct the offered output flow into a fluid
buffer like the one described in Figure 1. The buffer has service rate µbw(z), a
function regulated by the network interface to reflect the maximum bandwidth
available to the receiver. The buffer has no limits on its capacity. The normal
state will be for the buffer to have no backlog, and λr

out(z) < µbw(z). The final
flow rate function from the fluid buffer is λr

ack(z).
Because the TCP receiver is so tightly coupled with its IDE and fluid buffer,

an implementation can easily merge them all. In normal circumstances the fluid
buffer is empty and a flow descriptor released at time s translates immediately
into a new flow descriptor on the acknowledgment flow. The code implementing
the firing of the IDE timer can transform the flow rates and deal with the fluid
buffer.

Figure 4 depicts this organization of a TCP receiver.

3.9 Ack Processing
We now discuss how a TCP sender processes the returning ack flow. The raw
acknowledgment stream delivered by the network to the network interface (see
Figure 2) reflects network effects on the flow emitted from the receiver with
rate function λrcv

ack(z); the transformed stream’s rate function is λin
ack(z). Just as

an IDE delays the input stream to the TCP receiver by an intended packet
arrival time, the acknowledgment stream to the TCP sender is delayed by an
intended header’s arrival time. The delayed header stream rate is multiplied
by ρ/τ to produce λack(z), a flow whose units are acknowledged intended bytes
per unit time.

The network interface consumes corks that report loss on the acknowledg-
ment flow, but passes along to the TCP sender the corks marked as originating
on the sender-to-receiver flow. The TCP sender can then detect when a flow
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Fig. 5. FCFS modeling of fluid buffer.

it transmitted begins to lose fluid, and as described earlier, suspend further
transmission of that flow until all of its outstanding bytes are acknowledged.

4. FLUID ROUTERS
Our prime motivation for developing a fluid version of TCP is to allow efficient
representation of background TCP traffic on specific packet-oriented flows. Dif-
ferent flow representations interact in routers, and we turn next to issues of
modeling flow interactions in a router.

4.1 Reduction of Ripple Effect
The interaction of fluid flows within a router has already received considerable
attention [Kesidis et al. 1996; Nicol et al. 1999; Liu et al. 1999, 2001]. The
classical approach uses multi-input-flow fluid buffers at each output port, and
models provisioning of FCFS service. When there is no fluid backlog and the
aggregate arrival rate (over all flows) to the buffer is less than the output
service rate, then each flow’s output rate is identical to its input rate. Things
are more complex when there is backlog. This is illustrated by Figure 5. In the
first diagram we see the input rate (12) for a single flow exceeds the buffer’s
output rate (10), and so a backlog has accumulated (illustrated with the black
volume at the head of the queue). The next diagram reflects a time after a
positive arrival rate begins on a second flow. The backlog is a mixture of backlog
built up before the second flow began, and after. In this case the first black
volume has diminished in size, and a mixture of black and white volumes are
accumulating behind it in the queue. According to FCFS modeling, the first
backlog is served before any of the backlog of the second flow is served—even
through the second flow has input rate 8, its output rate is 0. The third diagram
shows the situation after the priority backlog is completely served; the two flows
share the limited output bandwidth in proportion to their relative proportions
in the backlog being served. There are two different proportions of flow mixtures
shown; the first mixture must be entirely worked off before any of the volume
that accumulated after the second flow’s rate change (to 24) occurred.
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A well-known “ripple effect” is associated with this formulation. The effect
of only one input rate changing while the buffer has backlog is to ultimately
change every output rate, because the proportions of fluid arrivals are all altered
by the input rate change. Rather than reduce the number of events needed to
model a flow, the ripple effect can multiply the number of events.

Our model formulation offers one way to mitigate the ripple effects. It is of-
ten the case that a nonzero latency is associated with a channel out of a router.
As we observed in Figure 1, an output rate change does not affect the receiv-
ing component until that latency time has expired. When we use IDEs there
there an additional period of insensitivity, to model the packet transmission.
Within this aggregate period of insensitivity we “smooth” already emitted out-
put rates, before they affect the recipient. We can do so in a way that does not
affect the volume of fluid that is delivered. As before, let L be the latency; let L′

be the latency plus the delay imposed by the receiver’s IDE. We buffer rate
change events between the time they are generated at the output, and de-
livered to the receiver. When a rate change event is produced at the out-
put, the buffer state is checked. If empty, a timer is set to fire after L′ units
of time, and the event is queued. If nonempty the rate change is simply
queued. When the timer fires, there will be some number of changes queued
up, say, at times ti with rates λi, for i = 0, 1, . . . , k, with t0 ≤ t1 ≤ · · · tk .
The timer fires at time t0. We can compute the total volume of fluid to be de-
livered between times t0 and tk , change λ0 to deliver that volume over the
period [t0, tk], and eliminate all but two of the rate change events. That is,
define

V =
k−1∑

i=0

(λi(ti+1 − ti)),

and redefine λ0 = V/(tk − t0). The new rate can be delivered to its recipient, and
the buffer emptied of all change events except the last one, at tk . The timer is
scheduled to fire at time tk + L′.

Using this technique, we can guarantee that no more than two output rate
change events ultimately occur per flow on an output channel in any period of L′

units of simulation time, where L′ is the sum of latency and unit transmission
time.

THEOREM 4.1. Consider any flow out of a router, along a channel with insen-
sitivity L′, and suppose smoothing is applied as described. Then in any period
of L′ units of simulation time, at most two output rate changes are delivered.

PROOF. Suppose not. Let times t0, t1, and t2 be times at which output rate
changes are delivered to the recipient, t0 ≤ t1 ≤ t2, and t2−t0 < L′. Observe that
the smoothing operation does not alter the times at which rate changes occur.
Therefore, the change at time t1 corresponds to a rate change from the router
into the channel. At time t0, therefore, when that rate change is delivered, the
algorithm observes the changes at times t1 and t2, and by its very definition
removes the one at t1. This is a contradiction to the assumption that a rate
change is delivered at time t1
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A direct result of this theorem is that we can bound the total number of fluid
rate changes processed by the simulation. Assuming that IDEs are deployed
by all receivers (or that all channels between fluid components have nonzero
latency), for any period of simulation time T we can put an upper bound on
the number of rate change events that are delivered, across every link in the
model. This smoothing then assures that an uncontrolled exponential explosion
of rippling events cannot occur.

COROLLARY 4.2. For any fluid model, let L′ be the average link insensitivity
(latency plus packet transmission time), let N be the number of bidirectional
links, and let T be the simulation duration time. Then the number of rate change
events received by network components is no greater than 4N L′T.

4.2 Mixing Packet and Fluid Flows
Our approach to mixing packets and fluid flows has two basic components. The
first is to base the decision of whether to drop a packet—and a queueing delay
if it is not dropped—on the state of a joint packet-fluid router. Conceptually
the only difference between what happens to a packet in the mixed model and
a pure-packet model is that the state of the router’s output buffer (which de-
termines whether a packet is dropped and the queueing delay) reflects a fluid
formulation, not a packet formulation. The second component is to additionally
represent the packet flow as a fluid, and have it influence the fluid flows in the
way any fluid flow affects another—through competition for service and storage
in a fluid buffer. In this way the packet stream contributes to the overall state
of the mixed model router.

When considering how to represent a packet stream as a fluid, our twin goals
are to try to be efficient, and to effect the transformation in such a way that
the total volume of fluidized packets that is presented to the fluid queue is in
exact correspondence with the number of packets that arrive at the queue. We
accomplish both goals using a methodology of observing packet arrivals during
one measurement interval, and reporting an arrival rate in the next, based on
the observations. If the measurement interval is large, one rate change might
reflect many packet arrivals (although the flip side is that if the measurement
interval is too large, the packets output rate is not responsive to fast changes).

First, for the purposes of interacting with fluid flows, we can aggregate all
packet flows that share an output fluid buffer, and represented them using
a fluid flow. The transformation is based on observed packet arrivals over a
measurement interval m, defined as follows. If a packet with B bytes arrives
and at least m time has elapsed since the last packet arrival, the packet flow
rate λp is set equal to B/m, and a timer is scheduled to fire in m units of time.
While the timer is running, any new packet arrival is noted; suppose that when
the timer fires that A new arrivals were seen, with an aggregate arrival of BA
bytes. When the timer fires, if BA > 0 then λp is set to BA/m and the timer is
rescheduled to fire again in m units of time. If instead there were no additional
arrivals by the instant the timer fires, then λp is set to 0 and the timer is not
rescheduled. The changes in packet flow rate are treated by the fluid queue just
as would any input flow change of a regular fluid flow.
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By construction, the volume of fluid representing packets presented to the
fluid buffer corresponds exactly to the number of bytes in packets that arrive
to the queue. If m is much less than the packet interarrival time, then every
packet will tend to cause two rate changes—one to turn the packet flow on,
and another to turn it off. Increasing m has the advantage of reducing the
number of rate change events, but the disadvantage of delaying the impact
of new arrivals on the queue. We correspondingly modify m dynamically with
every timer firing. Using an exponentially decayed measured packet arrival
rate, m is set to span the time needed for an estimated τ packets, where τ is
a relatively small parameter (and m is strictly bounded from above to ensure
responsiveness).

4.2.1 Queueing Delay Model. Our model for queueing delay assumes that
packets are served in FCFS order. It maintains a variable tp that records the
instant when the last known packet to enter the buffer will (or has) fully de-
parted. If a new packet arrives at time t < tp, then some other packet is in
queue ahead of the new arrival, else the queue is empty of packets. In the for-
mer case we compute the delay as tp plus the time needed to process all fluid
arrivals since the arrival of the last packet; in the latter case we compute the
delay as the time needed to work through the existing fluid backlog (excluding
the fluidized representation of packets). In both cases tp is reassigned to be the
delay plus the transmission time of the packet.

It may happen that the storage requirements of the new packet arrival exceed
the modeled residual buffer capacity at the instant of arrival. However, we don’t
automatically drop the packet. The mechanics of modeling loss are considered
next.

4.2.2 Packet Loss Model. In the classical formulation of a fluid buffer, when
the buffer is full there is never an instant when the buffer temporarily has
enough residual capacity to accept a bulk arrival like a packet. Mixing packet
and fluid arrivals at a congested buffer so as to accurately capture packet loss
behavior is a delicate operation. The heuristics we’ve developed are just that—
heuristics based on a lot of experimentation, whose principle value is that they
seem to work.

Let tlast reflect the time of arrival of the last known packet, let δlast be the
level of the fluid buffer at that time, and let b be the buffer size. When a new
packet of size A arrives at time t, we project what the level of the buffer would
be at t if the buffer had no capacity limit, and the fluid arrivals had no loss.
This value, say Z , is just δlast plus (t − tlast) times the buffer level growth rate
(assuming no fluid loss). Then

—if a transient measure of relative traffic (to be defined more precisely, mo-
mentarily) indicates that a fraction θ or more of the traffic is fluid, then we
compare Z to b;
—if Z > b, we choose randomly with probability 1 − θ to drop the packet;
—if Z ≤ b, the packet is not dropped;

—if θ or more of the traffic is packet-oriented, then
—the packet is dropped when Z > b,
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—when Z ≤ b and Z + A > b, we drop the packet with probability 1 − (θ −
Z )/A.

The transient measure of arrival rates to the the buffer is based on a rel-
atively short measurement interval. The volume of packet arrivals over this
interval is maintained, as is the volume of fluid arrivals. Rates are constructed
by dividing the aggregate received bytes by the length of the measurement in-
terval. These rates are used to construct the relative fraction of fluid arrivals in
the preceding measurement interval. θ , used above, is a parameter that seems
to work satisfactorily when set to value 0.8.

5. ACCURACY
We are now in a position to analyze the accuracy of the proposed approach. Our
model formulation is designed to keep the TCP portion of the network model
from introducing error related to latency.

Suppose that the first bit of a segment leaves a TCP sender at the same
instant in both the discrete and fluid formulations. If the latency imposed upon
that bit is the same in both models, then the first bit in the fluid model will
reach the input delay element in the TCP receiver at the same instant as the
first bit of the segment in the discrete model. Following this, the time needed
to fully transmit the segment across the last link—the segment length divided
by the bandwidth—elapses before the segment is fully received in the discrete
model. At this instant the entire segment is presented to the TCP receiver
in the discrete formulation, and the first bit of the segement is presented in
the fluid formulation. Notice that precisely the same argument applies for the
transmission of an acknowledgment-bearing header from TCP receiver to TCP
sender. We formalize this observation with the statement of a lemma.

LEMMA 5.1. If the network latency for a bit is the same in both discrete and
fluid models of TCP, and if the first bit of a segment (alt., acknowledgment)
departs a TCP agent at the same instance in both discrete and fluid models,
then the segment (alt., acknowledgment) is recognized by the receiving agent in
the discrete model (if it is not lost) at the same instant that the first bit of the
segment (alt., acknowledgment) is presented to the receiving agent in the fluid
model.

We note in passing that the network latency for a bit will be the same in
both formulations if no packet (or fluid) encounters congestion in any fluid
queue it visits. The exact correspondence between fluid and packet models we
now work to establish is limited to this special case. In light of the fact that
interesting network simulations invariably have congestion and packet loss,
the value of formally establishing the correspondence when it can be shown is
in demonstrating that the fundamental basis for the approach is sound. Real-
life phenomena like congestion will force some of the measures we compute to
be approximations.

The discussion to follow will at times refer to fluid behavior “just before”
a given time t, at a time we denote by t−. Formally, we can always order all
discrete events in a simulation by timestamp, s0, s1, s2, . . . . For any time t, we let
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i(t) be the largest index such that si(t) < t, and define t− (somewhat arbitrarily)
as t− = (t + si(t))/2. The key idea is to identify a time just before t that has no
other system events between it and t.

Next we introduce two definitions describing desirable behavior of the fluid
model.

Definition 5.2. Let λA(t) describe the application data offered rate function,
that is, what the rate function would be if TCP never altered the application
data through the feedback control. We say the fluidized application model is
synchronized with the discrete model if, for every t such that

∫ t
0 λA(s) ds/MSS

is integral and
∫ t−

0 λA(s) ds/MSS is not, then the discrete model offers a full
segment to the TCP agent at time t. Furthermore, for every time t, if λA(t) = 0,
then

∫ t
0 λA(s) ds/MSS is integral.

Effectively, the application offered load function is synchronized with the dis-
crete model if the first bit of a fluidized segment hits the TCP sender at the same
instant that the discrete model releases the discrete version of that packet, and
if transition of the application offered load rate to zero implies that fluid equiv-
alent to an integral number of segments has been offered.

A second definition describes a continuity property of the fluidized network
model.

Definition 5.3. A fluidized network model is said to preserve flow movement
if for every flow f , switch S, and time t, if the flow rate for f out of S at t is
zero, then the flow rate for f into S is also zero, and no fluid for that flow is
buffered.

Flow movement preservation is just a formal way of saying that once a switch
begins to allocate output bandwidth to a flow, it can only withhold all bandwidth
to that flow after its input rate has become zero, and all buffered fluid associated
with that flow has been sent.

The definition of application flow synchrony is a statement about how a
modeler represents the application offered load. However, we need a stronger
statement of synchrony, because the offered load rate function is not the same
as the accepted load rate function—the TCP sender is able, through feedback,
to alter the rate at which the application flow is taken from the source. We need
for that flow to be synchronized in the same sense as the offered load. To see
that it is, we need first the following result.

THEOREM 5.4. Consider a fluid simulation where all application flows are
synchronized with the discrete model, the network model preserves flow move-
ment, and network bandwidth is always available to a TCP sender. For ev-
ery TCP sending agent at every time t, if λsend(t) = 0 and λack(t) = 0, then
LBS(t)/MSS is integral.

PROOF. We can describe a TCP sending agent’s output behavior in terms of
rounds, during each of which λsend(t) > 0 and λack(t) = 0. A round ends at t if
λack(t) = 0 and LBS(t)−LBA(t) = cwnd(t). In the absence of data loss, the rules
governing cwnd evolution clearly indicate that an integral number of segments
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are sent each round, if cwnd starts off being an integral number of segments.
Data loss is detected at segment boundaries; cwnd and ssthresh are modified
upon detecting loss, but remain integer multiples of MSS. Thus, at the end of
every round—even in the presence of data loss—an integral number of segments
have been sent. The theorem’s statement formalizes this observation.

We are prepared now to state the main result.

THEOREM 5.5. Suppose that every fluidized application flow is synchronized
with the discrete model, and suppose that the fluidized network model preserves
flow continuity. Then under the conditions of Lemma 5.1 and when there are no
lost segments, the first bit of every segment departs the application at the same
time in both discrete and fluid models, departs a sending TCP agent at the same
time in both discrete and fluid models, and is acknowledged at the same time in
both discrete and fluid models.

PROOF. The departure times of segments (or acknowledgments) from appli-
cation, TCP sender, or TCP receiver in the model can be ordered by timestamp.
We prove the result by induction on this ordering. For the base case we look
to the first segment, which must be a departure from an application. By syn-
chrony of the application flow, the first bit of the application fluid reaches the
fluid TCP agent precisely at the same instant as the full segment reaches the
discrete TCP agent, proving the base case. For the induction hypothesis, as-
sume there exists n > 1 such that the claim is true for all n − 1 consecutively
ordered segments and acknowledgments, and consider the nth such. There are
three cases to analyze, depending on the departure point of the nth segment.

—Departure from TCP receiver: For an acknowledgment to depart at time t,
it is necessary that the segment being acknowledged be first recognized by
the receiver at time t. By the induction hypothesis, the first bit of that seg-
ment departed the TCP sender at the same time in both discrete and fluid
models; by Lemma 5.1, the first bit of that segment is recognized by the TCP
receiver at the same instant in both models; hence the acknowledgment for
that segment departs at the same time in both models.

—Departure from application: The segment departs the application at time
t, for one of three reasons. (1) If LBS(t) − LBA(t) < cwnd(t) and the last
bit of the last segment sent from this agent left at time s < t, then the
application is the bottleneck, and the segment is being sent because a new
segment is finally available at time t. Since the departure of the previous
segment from the application was synchronized in fluid and discrete models,
by the synchrony property of the application fluid model, the next segment
will as well (because during the epoch from s to t the output flow behavior is
governed by the offered load rate). (2) If however LBS(t) − LBA(t) < cwnd(t)
and the last bit of the last discrete segment departed precisely at time t, the
bandwidth provided to the sender is the bottleneck. This implies that the last
bit of the previous fluidized segment leaves at the same instant as the last
bit of the previous discrete packet, because the first bit left at the same time
in both models (by the induction hypothesis), and the added delay until the
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last bit leaves in both models is the same—the segment size divided by the
bandwidth. (3) If LBS(t−) − LBA(t−) = cwnd(t−) and λack(t−) > 0, then the
TCP sender’s outflow is constrained by the incoming acknowledgment rate.
The rate at which the application data is accepted is identical to the rate at
which the data is sent. Since the last segment sent out was synchronized in
discrete and fluid models, and the application and output rate functions have
been identical since, the fluid and discrete models must be synchronized at
t as well. (4) If LBS(t−) − LBA(t−) = cwnd(t−) and λack(t−) = 0, then the
release of the nth segment in the discrete model is triggered by the arrival of
an acknowledgment at t. Since λsend(t−) = 0, then λapp(t−) = 0 as well. Let s
be the greatest instant less than t such that λapp(s−) > 0 and λapp(s) = 0. The
application is signaled at s to stop because the TCP sender can no longer send.
This implies that λsend(s) = λack(s) = 0, which by Theorem 5.5 implies that
LBS(s)/MSS is integral—but LBS(s) is precisely the amount of traffic that
the application has passed to the TCP sender. Now as a result of the induction
hypothesis and Lemma 5.1, the arrival at t of the acknowledgment in the
discrete model corresponds to the arrival at t of the first bit of the fluidized
acknowledgment in the fluid model. Thus, at t, λapp(t) > 0, producing the
first bit of segment n, as required.

—Departure from TCP sender: This case is identical to the departure from
application case, because a segment departs the application if and only if it
instantaneously departs from the TCP sender.

Thus the nth segment departs in the discrete model exactly at the same instant
as the first bit of the fluidized version of that segment departs, completing the
induction.

6. EVENT REDUCTION
We can quantify the degree to which a fluid formulation of TCP reduces the
number of events needed to simulate a given transfer. Our approach is to count
the number of events needed to simulate a flow of T segments using an ordi-
nary packet-oriented model, versus the number of events needed to simulate T
segments using the fluid flow formulation. Our analysis is based on parameters
R—the round-trip time, assumed for this analysis to be constant, λapp—the of-
fered application data rate (also assumed to be constant, and less than λbw),
and s—the value of ssthresh, in units of MSS-sized segments.

For this analysis we exclude the events needed to simulate the flow in the
interior of the network. These contribute of course to the overall event counts,
but will be considered separately.

In a packet-oriented simulation we count four events for every segment sent:
the segment sent and received, and the acknowledgment sent and received, We
thus take 4 × T as the cost of sending the transfer, assuming no data loss, and
ignoring session setup and teardown costs.

In our fluid flow model, events occur to start and stop flows. As long as
cwnd is a constraint, then the sender will start a flow and let it run until the
number of unacknowledged bytes is cwnd, then stop. A pulse of flow is sent
(two events, started and stopped) and received (two more events), and a pulse
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of acknowledgments is sent and received (four events), for a total of eight events
per pulse.

It will be notationally cleanest to compute the packet and fluid event counts
at the granularity of TCP rounds. Observe that the number of segments sent in
a round increases so long as they are all send before the acknowledgment for the
first of them comes in. There is a transition window size, which we call ns, after
which cwnd ceases to be a constraint. ns is the solution to n × MSS/λapp = R,
that is, ns = R × λapp/MSS.

First consider slow start mode. At the end of the kth round (k = 1, 2, . . .),
exactly 2k − 1 segments will have been sent, requiring 4 × 2k − 1 events in
the packet-oriented case, and 8 × k events in the fluid case. (For simplicity we
assume here that s is a power of two.) In this mode the ratio of the number of
events needed in a packet simulation to the number needed in a fluid simulation
is

r(T ) = 4 × (2log T − 1)
8 log T

= T
2 log T

.

The growth of r(T ) in this region is not quite linear in T . At the end of the
slow-start mode, exactly 2s − 1 segments will have been sent.

Now consider congestion avoidance mode, and transfer lengths at the end of a
complete round; these have the form of the form T = 2s−1+(m−1)s+m(m−1)/2,
for the length at the end of the (log s+m+1)st round, m = 1, 2, . . . . For m small
enough that s+m−1 ≤ ns the pipe is not yet full. The packet-oriented simulator
requires 4T = 2(m2+(2s−1)m+2(s−1)) events, and the fluid simulator requires
8(log s + 1 + m), for a ratio of

m2 + (2s − 1)m + 2(s − 1)
4(log s + 1 + m)

.

The growth of this function is asymptotically linear in m, and m is asymptot-
ically proportional to

√
T , so r(T ) grows in proportion to

√
T in this regime.

Once log s + m − 1 > ns, however, the packet simulator continues to accrue
computational cost at the rate of four events per segment, while the fluid sim-
ulator accrues none, at least until the flow terminates. If we denote by ms the
round number (in congestion avoidence mode) where the pipe fills, we see that
it satisfies ms = ns − log s − 1, at which point Ts = (m2

s + (2s − 1)ms + 2(s − 1))/2
segments have been sent. For T > Ts the ratio of packet events to fluid events
is

r(T ) = T
4(log s + 1 + ms)

,

which is clearly linear in T .
Figures 6 and 7 show plots of r(T ) where the y axis is the ratio of packet

events to fluid events, and the x axis is the transfer length T . Each graph varies
T , and provides curves for values of R that span three orders of magnitude. The
graphs differ in their assumption of s (16 and 256), and λapp (1000 and 100,000
segments/s).
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Fig. 6. Event acceleration of fluid model over packet model, fast application data rate for various
round trip times (RTT).
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Fig. 7. Event acceleration of fluid model over packet model, slow application data rate for various
round trip times (RTT).
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Table II. Transfer Lengths Achieving Event Reductions Factors of 10, 100, and 1000

R = 1 ms R = 100 ms
ssthresh Application rate (seg/s) 10 100 1000 10 100 1000

16 100,000 472 17861 178061 472 76156
256 100,000 255 1655 16055 255 5821

16 1000 21 201 2001 472 17861 178061
256 1000 21 201 2001 255 1655 16055

The relative gain of the fluid model over the packet model is tied very much
to how quickly the pipe can be filled. The relationship ns = R × λapp shows
that small R or small λapp can fill the pipe faster than large R or large λapp
by making the pipe smaller. Situations with large ssthresh lead to pipe fill
faster than situations with small ssthresh because the growth of the congestion
window is so much faster in slow-start mode than in congestion avoidance mode.
These simple facts are reflected in the graphs. Beyond this, the graphs quantify
the intuition that performance gains are modest for short transfers, but are
potentially very significant for long transfers.

Another useful summary of this data gives the transfer lengths (in segments)
necessary to achieve a given acceleration. Table II does exactly this, listing for
R values of 1 ms and 100 ms the transfer lengths needed to achieve event
reductions of factor 10, 100, and 1000. To put the application segment rates into
perspective, recall that a typical TCP segment size is about 1000 bytes. The 1000
segment/s and 100,000 segment/s application rates correspond to 1 Mb/s and
100 Mb/s offered loads, respectively. The smaller of these is quite reasonable,
and we see from the table that in this regime very significant performance gains
are possible with moderate sized transfers.

7. EXPERIMENTS
We next empirically evaluate accuracy and speedup. Our methodology is to
measure the goodput, round-trip time, and packet loss rate of a reference packet
stream, comparing the results when the background traffic is purely packet-
oriented, and when it is fluid-based. We conduct these experiments on two
topologies. The first is the classic “dumbell” topology used for many TCP studies.
The second is a large-scale network with realistic topology; this one contains the
potential for the sort of multihop event explosion characteristic of prior fluid
models. Nevertheless, we find that on all measures the technique is usually
quite good, and provides significant speedup.

7.1 Dumbbell Topology
The dumbbell topology connects a set of servers with a set of clients. Every
server has a direct connection to a common router, every client has a di-
rect connection to a separate common router, and the two routers are con-
nected through a bottleneck link. In each experiment we consider the goodput
(number of delivered bytes per unit time), round-trip delay, and lost packet
rate of a packet-oriented TCP stream that competes for resources with fluid-
oriented TCP streams. Each experiment we conduct with fluid streams we also
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conduct after replacing each fluid stream with an equivalent packet stream.
Comparison of corresponding experiments illuminates differences in the flow
metrics.

One set of experiments uses 10 background flows, another set uses 100 back-
ground flows. In both sets 20% of the flows push 5 Mb/TCP session, and 80%
push 0.5 Mb/session. The “reference” packet flow is a 5.0-Mb transfer. Each flow
source is controlled by an on-off process where a flow is off for exponentially
distributed period of time, with mean 10 s, and is on for as long as it takes to
set up a new TCP session, deliver and have acknowledged the 0.5-Mb or 5.0-Mb
bulk of data it generates, and tear the session down.

Each connection between host and router has a bandwidth of 10 Mb/s, and
has 1-ms latency. We vary the latency of the bottleneck link between 1 ms
and 10 ms; we vary its bandwidth between 1.5, 15, 150, and 1500 Mb/s. For
every experiment, we use the bandwidth-latency product to define the size of
the buffer (in bytes) for access to the bottleneck link. There are 16 combina-
tions of all experimental variables, although the two 1-ms/1.5-Mb/s experiments
are excluded because they do not allocate enough buffer space for even one
packet.

7.1.1 Accuracy. Figure 8 describes the accuracy of packet loss rate and
goodput for the experiments with a 1-ms latency on the bottleneck link; Figure 9
does the same for the 10-ms case. In these (and other graphs) the lines describe
measurements associated with the reference packet stream in the hybrid simu-
lation, while discrete points describe measurements of packet streams from the
pure-packet simulation. A line whose label contains Nbf describes the measure-
ments associated with N background flows. In the 1-ms case the packet and
hybrid measurements are in very close agreement when the bottleneck band-
width is 150 and 1500 Mb. The experiment with 100 background flows shows a
wide spread of packet loss probabilities in the pure packet case, in a range that
lies distinctly lower than in the fluid case. Interestingly, this large difference
in loss rates has very little impact on comparative goodputs in the same ex-
periment, because the system is utterly saturated, and no flow is getting much
bandwidth. The 10-ms case illustrated in Figure 9 is much the same. Recalling
that the buffer size is the latency-bandwidth product, the 10-ms case allows for
a few packets to be buffered with the bottleneck bandwidth at 1.5 Mb. However,
this bandwidth is insufficient to support either 10 or 100 flows, yielding high
loss rates and very low goodput. As before, excellent agreement is achieved on
system configurations that yield better goodput.

Figure 10 shows the round-trip delay for all experiments, where we see that
the model very accurately captures latency.

7.1.2 Speedup. Figure 11 illustrates how much faster the hybrid model
executes than the pure-packet model. We illustrate configurations with one
packet and 10 fluid flows, and one packet with 100 fluid flows. The hybrid model
actually takes longer when the bandwidth is 1.5 Mb; this is not surprising,
because the TCP window sizes are small, and the fluid model gains efficiency
on large windows.
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Fig. 8. Accuracy of hybrid model on bottleneck topology, 1-ms bottleneck latency.

Speedup is affected by the reduction in the number of events needed by a fluid
formulation, but also by the increase in the cost-per-event of the fluid formation.
The latter consideration depends on the mixture of fluid events at hosts and
fluid events at routers, as the costs are not identical. For this particular set of
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Fig. 9. Loss and goodput accuracy of hybrid model on bottleneck topology, 10-ms bottleneck latency.

experiments we estimate that a fluid event costs δ = 2.5 more than an ordinary
packet event. Measurements also show that an average (averaging over the
mixture of transfer lengths) fluid flow costs ε = 0.00555 times the equivalent
packet average. If the cost of a packet event is 1, and K packet events are needed
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Fig. 10. Latency accuracy of hybrid model on bottleneck topology.

Fig. 11. Speedup of hybrid model on bottleneck topology.

ACM Transactions on Modeling and Computer Simulation, Vol. 14, No. 3, July 2004.



Discrete Event Fluid Modeling of Background TCP Traffic • 243

per flow, then for these experiments with F background flows the speedup is
approximately

(F + 1)K
δK (1 + F ε)

= F + 1
δ(1 + F ε)

.

Using the specific values of F ∈ {10, 100}, δ = 2.5, and ε = 0.00555 this formula
predicts speedups of 4.1 for 10 background flows, and 26 for 100 background
flows. These predictions are validated by Figure 11 where values very close to
these figures are observed in uncongested configurations. The speedup equation
also illustrates inherent limits. As F grows, the speedup is limited from above
by 1/(δε) independent of F , in this case 72.

7.1.3 Interaction. We next illustrate that fluid and packet flows interact
with each other in the expected fashion. We use a simplified bottleneck topology
with one packet and one fluid flow. The buffer capacity at the router nearest the
clients is 125K bytes, the capacity at the router nearest the servers is 12.5K.
All links have 10-Mb/s bandwidth; the bottleneck link latency is 100 ms and
the latencies on all other lines are 10 ms. A flow consists of a repeating on-off
process that is off for a random period of time (exponentially distributed with
mean 10), and when on carries 50 Mb.

In each of two experiments, one of the flows begins at time 0, and the other
flow starts at time 900. In such an experiment we consider the behavior of
the congestion window of the flow that started at 0, and the queueing delay of
packets associated with that flow. One experiment starts the packet flow and
examines the impact that the later fluid flow has on it; the other experiment
reverses the roles.

Figure 12 shows the impacts the flows have on each other’s congestion win-
dow sizes. In both cases the base flow’s window grows in accordance with TCP
windowing rules until the window grows so large (before the pipe fills) that
buffer limitations cause a packet loss, triggering slow-start. The “gaps” in the
plots of the fluid flow’s congestion window are artifacts of the samples being
taken only at fluid events. One can see the doubling of the congestion window
in slow-start. Up to time 900 the behavior is the same in both experiments. Af-
ter time 900 the effect of the “other” flow is plainly evident, and the congestion
window behaviors are similar, but not identical.

Figure 13 shows the impacts the flows have on each other’s queueing delays
at the router with smaller buffer capacity. Each tick in the experiment where
the packet flow is the base marks the delay of a packet; each tick in the other
experiment reflects a queueing measurement at the instant a fluid event is
processed. The latter graph is sparser as a result. The two graphs are similar
in exhibiting tall spikes of delay, and in being limited at 0.01 (which is due to the
buffer limit). Here again we see that packet and fluid flows interact intuitively.

7.2 Campus Network
We also evaluated the hybrid technique on a large model called the campus net-
work. This topology was developed for baseline studies in the DARPA Network
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Fig. 12. Interaction of fluid and packet flows: effects on congestion window.

Modeling and Simulation program. The campus is the basic unit of this topol-
ogy, shown in Figure 14. Globally the network consists of campuses in a ring
with some regularly placed chords. A campus has 23 LANs that collectively
hold 504 client hosts, 4 server hosts, and 18 routers. One router connects the
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Fig. 13. Interaction of fluid and packet flows: effects on queuing delay.

whole campus to other campuses in the network. The network is comprised of
20 such campuses.

The traffic pattern in our experiments has every client host establishing a
TCP connection with a server host on a different campus network, more or less
concurrently. All traffic crosses between ASes, and all traffic converges on the
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Fig. 14. Topology of campus.

subnetwork holding a campus’s four servers. The intensity of fluid interactions
radiating out from the servers give rise to conditions where the classical fluid
formulations suffer event explosion. Our experiments vary the bandwidth of
links between campus subnets. Lower bandwidths induce more loss, and hence
less opportunities for fluid formulations to aggregate. Ten percent of the traffic
flows are pure-packet, 90% are fluid. All flows are 0.5 Mb in length.

Figure 15 shows that the error loss and goodput metrics in the fluid model
are accurate in this context as well, on the order of 10% or better. Figure 16
shows that the latency predictions are extremely accurate. Figure 17 reflects
the higher cost of extreme interaction when the pipe between ASes is small,
with a speedup tending toward 7. The limits on speedup here are both the
higher cost of events because of the hybrid formulation and the effects of flows
interacting on links of limited bandwidth.

A final experiment on the campus network clearly shows the potential for
significant speedups using the hybrid model. The intercampus links in this
experiment are all 1 Gb/s. A different traffic mix causes 90% of the flows to
have endpoints in the same AS; half the packet flows are UDP and half are
TCP. Traffic intensity is 1000 packets per client per second, and traffic path
lengths are five hops on average. There are twenty campuses in the network,
which yields a native model activity intensity of approximately 170 million
model state changes per simulation second, where a state change is effected
when a packet leaves or arrives at a new destination. (This estimate includes
the assumption of one ack packet per sent TCP packet.) This model is run on a
parallel computer where a single CPU can execute approximately 500 K events
per second. If a single state transition required one event, and if parallelism
could be exploited perfectly without additional overhead, then a minimum of
340 CPUs would be needed to execute this model so that the simulation clock
advanced faster than a real-time clock.

We affect the amount of work needed to advance the model (and hence the
execution requirements) by using our fluid representation for most of the flows.
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Fig. 15. Loss and goodput accuracy of hybrid model on campus network topology.

We can affect the execution time by varying the fraction of flows that are pure-
packet. Figure 18 expresses slowdown—the ratio of wallclock execution time
to simulation duration for a run—as a function of the percentage of flows that
are purely packet-oriented. The simulation runs are executed in parallel, using
20 CPUs. We see that for packet/fluid mixtures where 1% or less of flows are
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Fig. 16. Latency accuracy of hybrid model on campus network topology.

Fig. 17. Speedup of hybrid model on campus network topology.

pure-packet, the simulation runs faster than real-time. Execution is nearly a
linear function of the fraction of pure-packet flows, which is a reflection on the
scalability of the mixed fluid-packet routers; there is no evidence of the sort of
event explosion that has plagued fluid simulations in the past.
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Fig. 18. Real-time simulation of a campus network with 10,000 concurrent TCP flows. The native
workload intensity is 170 M state changes per simulated second; the simulation is run in parallel
using 20 CPUs.

8. CONCLUSIONS
This article develops new methods for the generation of background TCP like
traffic. Our technique models flows as fluids, but in contrast to most other fluid-
based modeling approaches uses a discrete-event formulation. We show that our
formulation is rigorous exact (as compared to an equivalent packet formulation)
over epochs when a flow suffers no loss. We quantify the reduction in the num-
bers of events used to model a fluid flow as a function of TCP parameters and
effective round-trip time. We describe how fluid flows and packet flows can be
handled together in a router, and study empirically the accuracy and speedup
of our techniques on a classic topology and a large-scale topology. We find that
accuracy is very good in operational regions where TCP typically operates, and
see a factor of 10 speedup on these networks.

The key limiting factor to speedup using our technique is flow conditions
where there is significant packet loss. Our aggregation exploits epochs of time
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when a TCP session sends a round of data at constant rate; packet loss inter-
rupts that round and creates a new event in the fluid description. Another lim-
iting factor is that we represent each background individually; memory restric-
tions limit the number of flows we may represent. Future work in discrete-event
background modeling is best focused on higher-level model abstraction that ef-
ficiently capture flow interruptions caused by loss, and that aggregate multiple
TCP-like flows on a link while maintaining an acceptable level of accuracy.
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