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Abstract—Recently, tuning the clear channel assessment (CCA) threshold in conjunction with power control has been considered for
improving the performance of WLANs. However, we show that, CCA tuning can be exploited by selfish nodes to obtain an unfair share
of the available bandwidth. Specifically, a selfish entity can manipulate the CCA threshold to ignore ongoing transmissions; this
increases the probability of accessing the medium and provides the entity a higher, unfair share of the bandwidth. We experiment on
our 802.11 testbed to characterize the effects of CCA tuning on both isolated links and in 802.11 WLAN configurations. We focus on
AP-client(s) configurations, proposing a novel approach to detect this misbehavior. A misbehaving client is unlikely to recognize low
power receptions as legitimate packets; by intelligently sending low power probe messages, an AP can efficiently detect a misbehaving
node. Our key contributions are: 1) We are the first to quantify the impact of selfish CCA tuning via extensive experimentation on
various 802.11 configurations. 2) We propose a lightweight scheme for detecting selfish nodes that inappropriately increase their
CCAs. 3) We extensively evaluate our system on our testbed; its accuracy is 95 percent while the false positive rate is less than

Index Terms—Wireless networks, carrier sensing, clear channel assessment threshold, denial of service, selfish behavior,

*

1086
5 percent.
experimentation, analysis.
1 INTRODUCTION

IT is well known that the distributed coordination function
(DCF) of the IEEE 802.11 MAC protocol provides long
term fairness to users that are in the proximity of one
another and share the wireless medium [1]. Recently, there
have been many approaches that advocate the joint tuning
of the transmission power and the clear channel assessment
(CCA) threshold to improve spatial reuse and thereby, the
achievable capacity in a WLAN [2], [3]. Tuning the CCA
threshold opens the door for a new kind of selfish or
malicious behavior. By increasing the CCA threshold, a
“misbehaving” user' will cause the carrier sensing at the
MAC layer to ignore the transmissions of other users with
which it shares the medium. As a consequence, 1) it may
initiate transmissions when other transmissions are in
progress thereby increasing collisions and, 2) it will not
freeze its back off counter while other nodes are transmit-
ting packets; as a consequence it is able to access the

1. We use the terms misbehaving, cheating, greedy, and selfish
interchangeably. We also use the terms user, node, and client
interchangeably.
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medium much more frequently than other users and thus,
enjoy a higher unfair share of the bandwidth. Given these
adverse effects, it is critical to understand and quantify the
extent to which fairness suffers from CCA manipulations in
802.11 networks. For this reason, we first examine the
effects of such behavior on isolated links. This provides a
fundamental understanding of the behavioral nuances of
carrier sensing on real hardware.

Having acquired the above basic understanding we focus
on AP-client configurations and we further examine such
scenarios in more detail. As our main contribution, we
propose a novel approach for detecting misbehaving clients
with high accuracy. There are two observations that drive
our approach. First, a misbehaving node that increases its
CCA threshold is likely to have a good “link” to the AP to
begin with. If this is not the case increasing the CCA can
compromise the connectivity of the node. Second, by
increasing the CCA threshold toward gaining an unfair
share of the throughput, the misbehaving node implicitly
raises the bar with regards to the Received Signal Strength
Indicator (RSSI) required for correct decoding. The receiver
circuitry only tries to decode packets that are received with
an RSSI that is higher than the CCA threshold.

Based on the above observations, we design the Carrier
sensing Misbehavior Detection (CMD) system. The key
insight, evident from the above observations, is that a node
that has increased its CCA threshold is likely to ignore low
power transmissions from the AP. Thus, by sending low
power probes, the AP can potentially detect such nodes
with high accuracy. In order to reduce the overhead that
will be incurred due to such probes, CMD first identifies a
set of possible badly behaving nodes. This set consists of
those nodes that are enjoying a significantly higher share of
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the throughput than their counterparts that are within the
same cell. The probe messages are then only sent to the
members of this set. Note here that, under saturated
conditions where this problem is likely to be most critical,
this set naturally excludes nodes that are at the periphery of
the cell or nodes with poor links.

In more detail our contributions in this paper are as
follows:

e We experimentally characterize the operation of
CSMA /CA on commodity wireless NICs, by exam-
ining the effects of CCA tuning on isolated links. We
further quantify the impact of selfish CCA tuning on
the overall network performance of a WLAN. This is
the first study that quantifies the extent to which,
fairness suffers if this functionality were to be used
inappropriately.

o We design and implement CMD for detecting such
misbehaving clients in WLANs. CMD consists of
two subcomponents: 1) The Throughput Monitor-
ing Module (TMM), which identifies a candidate
set of possible misbehaving nodes and 2) The Low
power Probing Module (LPM), which transmits the
low power probes to effectively detect the real
misbehaving nodes from among this candidate set.
The implementation of CMD does not require any
modifications to the IEEE 802.11 driver or firm-
ware and can be implemented in the user space in
its entirety.

e We analytically compute system parameters for
CMD such that low false positive (wrongly classifying
a well-behaved node) and false negative (not recog-
nizing a misbehaving node) probabilities are
achieved. We validate our analytical results through
measurements.

e We perform extensive experiments to evaluate
CMD on an indoor WLAN testbed, with various
configurations. Our experiments show that CMD
detects misbehaving nodes with extremely high
accuracy (95 percent) with a very low false positive
rate (<5 percent).

e  We discuss possible strategies to mitigate the impact
of misbehaving nodes after detection. In particular
we propose and experimentally evaluate a simple,
yet seemingly promising technique.

We provide guidelines for possible mitigation
schemes. We further examine a technique based on
transmission power control from the AP. Our
experimental results show the applicability of the
proposed approach.

Our work in perspective. Selfish behaviors that target
802.11 functionalities have been considered and addressed
previously. In particular, there have been many efforts that
try to overcome behaviors where greedy nodes manipulate
the back off timers with 802.11 [4], [5], [6], [7], [8], [9]. While
a misbehaving node can enjoy lower back off times by
manipulating the CCA threshold (fewer instances of
freezing the back off counter), we wish to point out that
the two attacks are not the same. In particular, unlike the
other attacks, tuning the CCA threshold is protocol
compliant; the 802.11 standard [10] does not specify a
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value for the CCA threshold. In fact, different wireless
network interface cards (NICs) have slightly different CCA
thresholds. Although currently, tuning the CCA threshold
is a functionality that these cards implement in the
firmware, there are ongoing efforts toward enabling this
functionality [11]. There have already been research efforts
that advocate the tuning of this threshold for performance
improvements [2], [3]. In addition, GNU software defined
radios [12], [13] are expected to fully support 802.11 soon;
such coexisting platforms that allow CCA tuning could be
misused to pilfer a higher share of the throughput.

We only consider uplink traffic since one might expect
that the APs, which are usually controlled by service
providers, are unlikely or do not have the incentive to cheat;
stated otherwise, it is unlikely that downlink traffic will be
prone to such misbehaviors. Furthermore, the uplink traffic
of a WLAN is not a negligible percentage of the total AP
traffic anymore [14]. The increasing popularity of p2p
applications result in the generation of a high proportion
of uplink traffic in commercial hotspots.

The rest of the paper is organized as follows: In Section 2,
we discuss relevant CSMA /CA functionalities in brief and
related work. In Section 3, we describe our testbed at UC
Riverside. Our measurements for understanding carrier
sensing and CCA tuning on isolated links are presented in
Section 4. Section 5 examines the effects of selfish CCA
tuning on WLAN:Ss. In Section 6, we present the design and
implementation of CMD; we analyze its performance in
Section 7. In Section 8, we discuss the results of our
evaluations of CMD. Possible mitigation schemes and
miscellaneous issues are deliberated upon in Section 9.
Our conclusions form Section 10.

2 BACKGROUND AND RELATED WORK

In this section, we provide a brief description of relevant
CSMA/CA functions and describe related work.

2.1 Relevant 802.11 Functions

802.11’s access policy is based on CSMA/CA. Each user
needs to sense the medium idle for a specified time prior to
transmitting data [15]. Whenever the perceived power on
the medium is higher than the CCA threshold, a node must
defer its transmission and enter the back off state. Upon
reaching this state, a node initiates a back off counter with a
random value. For each time slot that the medium is free,
the counter is decremented; for each time slot that the
energy on the medium is higher than the CCA threshold,
the value of the counter is left unchanged (or frozen). When
the counter value is decremented to zero, the node senses
the medium again. If the power on the medium is lower
than the CCA threshold (medium is idle) it transmits its
packet; otherwise, it reenters the back off state and the
expected counter value is now doubled.

When a misbehaving node increases its CCA threshold,
it can result in the following effects:

e It can now ignore those signals that it senses, but are
lower than this new increased threshold. Therefore,
many of the signals on the medium have now no
effect on the transmission opportunities of the node.
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e  Other nodes that use the default CCA will sense the
transmissions of the selfish node and will defer their
own transmissions for longer periods.

e If a transmission of the misbehaving node is not
successful, it will enter the back off state. However,
since its CCA threshold is increased, it is more likely
that it will not have to freeze its back off counter; this
is a consequence of the node sensing the medium to
be idle even if there are ongoing transmissions.

2.2 Related Studies

While there have been prior efforts on overcoming attacks
that manipulate 802.11 functionalities, the attack considered
in this paper has not received prior attention.

Attacks that violate the 802.11 back off timers.
Kyasanur and Vaidya [4] consider selfish behaviors where
nodes deviate from the standard back off mechanism of
802.11. They propose a mitigation scheme where the
receiver explicitly assigns the back off value to the sender.
Konorski [9] proposes a misbehavior-resilient back off
mechanism. Cagalj et al. [7] use a game theory to develop a
simple, localized, and distributed protocol that guides
multiple selfish nodes that deviate from the back off
mechanism to a Pareto-optimal Nash equilibrium. Radosa-
vac et al. [5] present a framework based on the Sequential
Probability Ratio Test (SPRT) for detecting nodes that
deviate from the back off mechanism. Finally, Queseth [8]
shows that it is hard to discourage selfishness by punish-
ment if we cannot quickly detect these behaviors. All these
studies however, are primarily related to the exploitation of
the back off mechanism, which is not the focus of our
work. Note that in the considered setting, a node only
increases its CCA threshold and does not directly violate
the back off policies; thus, these previously considered
methods will not be effective.

Detecting other selfish behaviors. Raya et al. [6]
propose and implement DOMINO, a system for detecting
various selfish behaviors in WLANs. DOMINO detects
nodes that do not adhere to the standard back off
mechanism, send out data without waiting for the standard
DIFS period, use an oversized NAV to retain the medium
for a longer time, or intentionally corrupt frames to obtain
unfair access to the wireless medium. In the attack
considered, misbehaving nodes increase their CCA; none
of the above behavioral trends are observed (as an example,
the DIFS periods followed by the selfish nodes are
legitimate). DOMINO cannot accurately detect an attack
where nodes “do not” freeze their back off counters due to
ongoing transmissions. Consequently, DOMINO cannot
detect possible CCA manipulations. Note that our approach
can be complementary to DOMINO.

To the best of our knowledge we are the first to
experimentally examine the selfish behaviors of nodes that
try to increase their throughput by exploiting the CCA
threshold functionality. Recently, Paul et al. [16] proposed a
passive monitoring technique to detect users that do not
adhere to carrier sensing at all. They follow a centralized
approach and require the deployment of separate monitor-
ing nodes. Their evaluations through ns2 simulations
illustrate the potential of the approach; the approach
however in its current form relies on some simplified
assumptions in its current form.
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Fig. 1. The UCR wireless testbed.

3 EXPERIMENTAL SETUP

In this section, we provide a brief description of our testbed
and the experimental methodology that is followed.

3.1 Testbed Description

Our wireless testbed (Fig. 1) is located on the third floor of
Engineering Building II at UC Riverside and consists of 42
Soekris net4826 nodes [17]; the nodes mount a Debian
Linux distribution with kernel v2.6, over NFS. Each node is
equipped with two miniPCI 802.11a/g WiFi cards, an
EMP-8602 6G with Atheros chipset, and an Intel-2915. We
use the MadWifi driver [18] for the EMP-8602 6G cards.
We use a proprietary version of the ipw2200 AP and client
driver/firmware of the Intel-2915 card. With this version
we are able to tune the CCA threshold parameter. Up to
date information on our current testbed set up can be
found in [19].

3.2 Experimental Methodology

The misbehaving clients exclusively use our Intel cards,
since these cards allow CCA tuning. The default value for
the CCA threshold is —80 dBm. AIl nodes use the
maximum power (18 dBm). Our experiments span a large
number of communications pairs (more than 80). In
addition, we perform measurements with more than two
clients associated with the same AP (up to four clients
associated with a single AP), accounting for different levels
of cross traffic. We conduct our experiments by mainly
utilizing 802.11a, in order to be able to perform controlled
experiments avoiding interference from colocated WLANs
operating at 2.4 GHz. However, we have verified, that our
findings hold with 802.11 g as well (unless otherwise
stated). We provide more details on every experiment in
the following sections.

4 EFFeCTS OF CCA MANIPULATION ON AN
ISOLATED LINK
Key to our study is understanding the effects of CCA

tuning. The way that carrier sensing operates is crucial for
both 1) inferring the effects of selfish exploitation of the
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Fig. 2. Throughput as a function of CCA on isolated links.

CCA tuning mechanism, as well as, 2) designing an
accurate detection scheme. We want to emphasize that
providing a detailed understanding on the real world
performance of carrier sensing is not the main focus of our
work. An interesting experimental study, complementary to
ours and in a different direction, of how carrier sensing
works in practice can be found in [20].

For the purposes of our study we activate one link at a
time and we progressively increase the CCA at its two end
points, monitoring at the same time the achieved through-
put. Fig. 2 depicts the representative results for two links
on our testbed. The remaining links exhibited the same
qualitative performance.

We observe that slightly increasing the CCA, does not
have any effect on the throughput enjoyed by the link; it
remains practically constant. However, increasing the
threshold above a specific value’—different for every
link—results in a significant and sudden throughput
degradation; eventually zero throughput is observed on
the link as can be seen from Fig. 2.

In order to understand the reasons behind this perfor-
mance, we need to recall that most commodity cards set the
receiver’s sensitivity equal to the CCA threshold [2], [3],
[21]. This means that at some point—when we keep
increasing the CCA value—the RSSI at the receiver’s
circuitry will be lower than its increased CCA /sensitivity,
and this will result in compromised connectivity; the
receiver will ignore the packet and regard it as noise.

From these experimental results, we conclude that we
cannot keep blindly increasing the CCA threshold on a
link; we need to take the above effect into account when
understanding the attack and designing a countermeasure.
One could argue that we could increase the CCA only at
the sender side, in order to avoid discarding the packets
at the receiver. However, successful 802.11 communica-
tions involve MAC layer ACKs. As a result, even if only
one side of the link increases its CCA threshold, a similar
performance is observed. In fact, we have experimented
with such scenarios and we present a sample result in
Fig. 3. Notice that the CC Ay is different depending on
which side of the link is using an increased CCA value.
This is an artifact of the asymmetry on the wireless links.
Using the terms CCAcyof-r, and CCAypopp-, for the cases
where the receiver or transmitter only, respectively,
increases its threshold, we get

CCA(:utoff = min (CCAcutoff—m ) CCAcutoff—tf ) . ( ]-)

2. We refer to this value as CC A ytof7-
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Fig. 3. Increasing the CCA on one end of the link only, has the same
effect (link 22-31).

As mentioned earlier the CC A s value is different for
every link and depends on

the environment,

the distance spanned by the link,

the transmission power, and

the propagation characteristics (e.g., frequency
used).

L=

Figs. 4a and 4b present the empirical statistics (CDF and
PDF/histogram) of the CCA.,f; for the links on our
testbed, when the maximum power is employed and
channel 60 (5.3 GHz) is used.

In the rest of this paper, we focus on selfish behaviors
considering uplink traffic in WLANSs. The selfish client
should not expect the AP to cooperate and increase its CCA
too. As a result, our case study involves situations where
only the sender, increases its carrier sensing threshold. The
greedy entity needs to consider the tradeoff between
ignoring ongoing transmissions and not being able to decode
the MAC layer ACKs from the AP, when increasing its CCA.
In the rest of the paper, we will focus on aggressive selfish
strategies, that is, greedy users will use the maximum
possible CCA that does not degrade the link quality to the
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AP. In Section 9, we will briefly examine the effects and the
detection of less aggressive cheating strategies.

5 SELFISH CCA TUNING ON WLANSs

The 802.11 MAC protocol, as discussed earlier, provides
long term max-min fairness to nodes that share a link.
Under saturated conditions all the nodes that share a link,
essentially access the medium with the same probability.
By increasing the CCA threshold, a node can pilfer a
higher share of the medium than it is entitled to, from the
other users. To reiterate, transmissions that arrive at the
receiver circuitry with an RSSI lower than the CCA
threshold are ignored. By increasing the threshold, a node
can ignore a significant fraction of the transmissions that
occupy the medium.

As described before, this not only causes an increased
number of collisions but also allows the misbehaving node
to reduce the fraction of the time that it spends in the back
off state.

Our objective in this section is to study in more detail the
effects of this greedy behavior in a WLAN setting. We
experiment with various configurations (with varying
locations of the APs and clients), different traffic patterns
and various transport protocols, and we measure the
throughput gains of the selfish clients relative to their fair
share of throughput under normal operating conditions.

Experiments with saturated traffic. We depict our first
results in Fig. 5. The x-axis represents the throughput gains
of the selfish clients and the y-axis represents the
percentage of occurrences of this throughput gain (the
gains are quantized into three levels); we vary the number
of clients connected to the AP. We observe that in most
cases (more than 85 percent of the 90 scenarios considered
in total) the cheating user is able to gain significantly over

147
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Fig. 6. Topology affects cheating gain.
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the well-behaved clients affiliated with the same AP—at
least a 5 Mbps gain from its fair share is seen.

In some scenarios though (in fewer than 5 percent of the
considered scenarios), the selfish client is unable to pilfer
more than 2 Mbps from the other clients. These cases arise
when the selfish client is far from the AP (e.g., node 36 is
the AP and node 22 is the selfish client) and as a result
cannot increase its CCA to very high values; doing so
would result in its disassociation from the AP. These
studies suggest that a selfish node is likely to choose a
location that is as close to the AP as possible.’

In order to illustrate the effect of the cheater’s position on
the achievable throughput gains, we experiment with two
clients associated with the AP. Fig. 6 presents the
throughput gain, as a function of the cheater’s distance
from the AP d.,p, and the cheater’s distance from the
legitimate client d.;. In this figure, the area covered from
each point is proportional to the cheating gain observed.
Thus, points that cover a larger area, correspond to higher
cheating gain. It is clear, that when d.4p is small (e.g., less
than 4.5 m), the cheating gain is large (~11-13 Mbps).
Slightly lower gains are observed if the cheating node
resides further from the AP, but d.; is kept large (>10 m).
Finally, for a larger d.-4p in conjunction with a small d.;, the
cheating gains are diminished. We would like to emphasize
that, the above mapping is much more complicated than it
seems. There are multiple factors that affect the cheating
gain and the dependencies between these factors are
complex. Distance is important but not dominant; for
example, two nodes that are physically close to each other
may have different communication channel due to envir-
onmental factors (e.g., obstacles). In this work, we focus on
scenarios where cheating via manipulating CCA thresholds
is feasible. Providing a definitive model that predicts the
cheating gains is beyond the scope of this work.

In Fig. 7, we present the temporal variations in
throughput from a representative experiment. In particular,
we use node 31 as an AP and nodes 22 and 14 as clients
(Fig. 1). We initiate fully saturated uplink traffic from both
clients using iperf for 30 seconds. During the first 10 seconds,
both clients enjoy the same share of the throughput; this is
a direct artifact of the fairness due to CSMA/CA. In the
period between the 10th and the 20th seconds, node 14
misbehaves by increasing its CCA threshold from —80 to
—50 dBm. We notice from Fig. 7 that this results in a

3. Note that well behaved users may also exhibit similar behaviors in
terms of the qualities of their links to the AP; closer locations can result in
higher RSSI values and thus, higher transmission rates can be sustained.
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dramatic increase in the throughput of node 14. Meanwhile,
node 22’s throughput degrades significantly.

We observe that if the misbehavior is temporary, the
effects are not long-lasting. As soon as the selfish user
restores its default settings, the throughput of the rest of the
clients quickly returns to the values under benign condi-
tions. To understand this effect, recall that the selfish user
follows the standard back off mechanism with 802.11. After
the settings are restored, within a short period of time, the
greedy client enters the back off state (senses energy on the
medium). Then, the other users begin reducing their back
off counters; they gain access to the medium when their
counter has reached the value of zero and at this point in
time, fairness is restored.*

Note also that even during the period where there is a
selfish behavior, the well-behaved nodes still obtain some
throughput; this is directly attributed to the above reason,
i.e., packet losses can still occur for the misbehaving node
and it can still enter the back off phase.

Behavior with unsaturated UDP selfish traffic. Before
examining the performance with TCP, we want to examine
the impact of the varying volume of the cheating node’s
traffic load. In particular, we are interested into scenarios
where the cheating node is not backlogged. When the
uplink traffic demand of the selfish entity is low, one would
expect that the effect (if any) on the other legitimate clients
in the cell, is minimal. In order to showcase this, we
perform experiments under different traffic conditions, but
with the same topology. Fig. 8 depicts our results for a
representative experiment. Node 51 is configured as an AP
with three associated clients (nodes 58, 32, and 34). Node 58
is the selfish user. We examine the following three scenarios:
1) All nodes use their default CCA settings. Nodes 32 and
34 have saturated uplink traffic, while node 58 has a traffic
demand of 5 Mbps. 2) Node 58 increases its CCA threshold
to —50 dBm, while the traffic patterns are the same as in
scenario 1. 3) Node 58 keeps the increased CCA threshold
and sends saturated traffic to the AP. As our results
suggest, when the selfish user is not backlogged, increasing
its CCA does not provide any throughput benefits as
compared to that with default settings. The reason is that
the cell has enough capacity to satisfy the user’s demands.
On the contrary, when node 58 is backlogged, more
frequent medium access is required from its part to satisfy

4. The speed with which this process occurs depends on the quality of
the link between the AP and the misbehaving client. If this link is lossy, the
misbehaving client is likely to experience a packet loss quickly and enter the
back off state.

DETECTION OF SELFISH MANIPULATION OF CARRIER SENSING IN 802.11 NETWORKS
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its uplink traffic demands. Consequently, the remaining
users will suffer (nodes 32 and 34) as already seen. In
general, with a higher traffic demand, the cheating node
will access the channel with a higher frequency. Our
experiments indicate that well-behaved clients suffer from
unfairness and thus, receive a much reduced share of the
throughput in such cases.

Behavior with TCP traffic. The use of TCP results in two
somewhat conflicting effects from the perspective of a well-
behaved user. On the one hand, since the selfish user
accesses the medium more often (as discussed above), the
TCP packets experience longer delays and round trip times
(RTT); thus, the TCP congestion window does not increase
as rapidly as one might expect under normal operations
and the overall throughput suffers. On the other hand, the
selfish client itself might experience loss of packets and this
causes its TCP connection to reduce its congestion window.
In other words, since with TCP the data rate is regulated by
the congestion window, the selfish user will access the
medium less often than it did in the UDP scenario when
packet losses occur.

In order to quantify the impact of CCA tuning on TCP
traffic, and in general the performance with different
combinations of transport layer protocols, we conduct a
large number of experiments. We use 90 different topolo-
gies using 15 different APs with two clients associated with
each (a selfish client S and a legitimate client G) and
consider all possible combinations of the two commonly
used transport layer protocols, TCP and UDP. The
misbehaving node employs its greedy strategy for the
entire 30 second period (abnormal operation). The results
are presented in terms of the average throughputs of the
well behaved and the selfish nodes in Fig. 9; 95 percent
confidence intervals are also shown. We also show the
performance during normal operations where both clients
are using default settings. Note here that the measurements
presented in Fig. 9 encompass a large number of different
topologies. However, all these topologies are homogeneous,
in the sense of consisting of two clients with good quality
links to the AP. Each client under benign settings gets a fair
share of the medium (around 12 Mbps each).

From the above results, it is evident that when the
misbehaving client is sending UDP traffic its throughput
gains are large. As one might expect, the impact is even
higher when the well-behaved client is using TCP. The
results show that significant gains are possible even if the
link between the selfish user and the AP is lossy; this is
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because UDP does not reduce its sending rate upon
experiencing packet losses. At the well behaved client, a
lot of time-outs are triggered with TCP and the application
throughput is extremely low (a few Kbps). When the
misbehaving node uses TCP and the well-behaved node
uses UDP, the former is unable to achieve a significant gain
in the throughput. This is a direct consequence of two
factors 1) TCP regulates the sending rate thereby limiting
the access opportunities for the selfish client and, 2) by
increasing its CCA threshold, the selfish user can send more
frequently, but when losses are experienced its TCP source
backs off, whereas the UDP source at the well-behaved user
does not reduce its rate. When both the well-behaved node
and the selfish node use TCP, the latter benefits. Both TCP
sources back off when there are losses; however, the selfish
node is able to recover much faster since it is able to access
the channel much more frequently. Fig. 10 depicts the
number of bytes sent per client for a representative
configuration (AP-node 44, selfish client-node 13, well
behaved-node 19).

To summarize, our experiments demonstrate that
increasing the CCA threshold can lead to significant
throughput benefits for the selfish client while hurting
the other well-behaved clients, in a majority of the cases
and with different transport layer protocols.

Network-wide experiments. It is interesting to examine
what happens when all clients competing for the medium
adopt the greedy strategy. In order to quantify the network
wide degradation or improvement from such a strategy we
perform a new set of experiments and we use the concept
of the Price of Anarchy (POA) borrowed from game theory
[22]. POA is a measure of how well/bad the players of a
game do, when they play selfishly (e.g., increasing their
CCA threshold), instead of according to a central authority
(in our case using the default CCA threshold). POA can be
defined using the following equation:

_ >oiny Greedy Throughput;

POA = 2
0 >-r, Default Throughput;’ @

where Greedy Throughput; is the throughput that client ¢
enjoys when everyone is using the greedy strategy and
Default Throughput; is the corresponding throughput of
client ¢ when everyone is using the default settings.

We experimentally examine the network wide perfor-
mance when all clients decide to act greedily. Table 1
presents the price of anarchy as computed from (2) and
our experimental results for the cases of 2, 3, and 4 clients.
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TABLE 1
POA Decreases as We Increase the Number of Clients
# Clients | POA
2 0.19
3 0.13
4 0.11

The degradation observed is significant as compared to the
case with the default settings. In addition, we observe that
the POE decreases—and the corresponding degradation
increases—as we increase the number of clients affiliated
with the AP. All clients ignore the signals of each other,
resulting in many simultaneous transmissions; conse-
quently there is a large number of collisions at the AP
and the network performance is significantly degraded.

6 DETECTION SYSTEM

In this section, we describe our scheme for detecting nodes
that increase their CCA thresholds to gain an unfair
throughput advantage in WLANs. We call our scheme
CMD for Carrier sensing Misbehavior Detection system.

CMD is comprised of two subcomponent modules: the
first module, which we call TMM for Throughput
Monitoring Module, aims to identify the set of potential
cheating clients; note here that this set consists of those
clients that are suspected of cheating but may not
necessarily be real misbehaviors.

The second module Low power Probing Module (for
LPM) tries to identify the real misbehaving clients. The
key insight that motivates the design of LPM is that nodes
that have increased their CCA thresholds may not be able
to correctly decode low-power probes. As we will see in
what follows, TMM significantly reduces the overhead that
LPM can introduce.

6.1 The Throughput Monitoring Module

As alluded to earlier, CMD sends probes in order to achieve
its goal of detecting misbehaving users. Sending probes to
all the clients associated with an AP can be prohibitive in
terms of overhead. The goal of TMM is to identify the nodes
that could be potentially cheating by increasing their CCA
thresholds. Since the IEEE 802.11 is inherently fair, a node
that gets a higher share of the available bandwidth could
be a potential cheater. Note that it is not necessary that a
node that gets a higher share of the bandwidth is essentially
a cheater since different clients might have different traffic
demands; the only conclusion that one can make is that
such a possibility exists.

In order to identify the nodes that have a higher share of
the medium, TMM monitors the volume of uplink traffic
from each and every client. A node that is able to send a
much larger volume of traffic is identified as a potential
miscreant.

In order to demonstrate the effectiveness of this
approach in terms of including misbehaving nodes in the
set output by TMM, we perform the following experiment.
We set up node 31 as an AP and include three associated
clients (nodes 14, 22, and 37); each client sends saturated
traffic to the AP. We measure the number of packets
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TABLE 2
TMM s Effective with Saturated Traffic
Client 14 22 37
Benign 9833 | 10521 | 10461
Cheating 320 521 21333

transmitted from each client to the AP for a period of
10 seconds under two different scenarios: 1) when no
client cheats and, 2) when client 37 cheats. The results are
presented in Table 2.

These results suggest that monitoring the traffic can be
effective in identifying misbehaving nodes. However, recall
that in our experiments all clients have fully saturated
uplink traffic. If the clients do not have saturated traffic they
may not all have the same throughput under normal
operations. In particular, if one of the clients produces a
higher volume of uplink traffic, it will be mistakenly
classified as a cheater if we were to just use TMM to
identify the misbehaving nodes. To illustrate this we
perform another experiment in which the same topology
as in the previous case is used. The clients are now all
benign. However, they have different application data rates:
client 37 sends traffic at 2 Mbps, client 22 sends at 1 Mbps,
and client 14 at 24 Mbps.

Table 3 presents the results from this experiment. We
observe that if TMM was used to classify nodes as cheaters,
it would falsely conclude that client 14 is one. Thus, we
need to further check if the nodes that are identified by
TMM as potential cheaters are indeed cheaters or are
legitimate recipients of higher throughputs; we do this
using LPM (described later).

Implementation of TMM. We implement TMM in the
user space. We develop a C application using libpcap
[23]; the application is run at the AP and captures all the
packets that arrive at its wireless interface. It internally
maintains statistics in terms of how many packets are seen
from each client in a Z second time window (we will refer
to Z as the monitoring window size). It then compares the
number of packets from each client in order to identify the
potential cheaters; if the number of packets that a client
transmits, exceeds its fair share by X percent (we will
refer to X as the deviation value), it is considered to be a
possible cheater. We defer a discussion on how to choose
the values of X and Z to Section 8.

Algorithm 1. Pseudocode for TMM.

Data: IP addresses of the AP’s clients
Result: A potential cheater
begin
Every Z seconds do:
for i =1 to num_clients do
if packets(i) > (1+ 7) - (Lelakpackets ) thepn
‘ Invoke LPM towards Client i
end
end
end

W N =

When the potential cheaters have been identified, TMM
calls LPM (described in the next section) to determine
whether or not a “potential cheater” is indeed a “cheater.”
This implementation of TMM does not rely on an already

1093

TABLE 3
TMM can be Mislead with Unsaturated Traffic

Client 37 22 14
# Packets | 1702 | 852 | 20322

available network monitoring system (for example, Ethereal
or tcpdump). Instead, it computes the statistics online. In
Algorithm 1, we give the high-level pseudocode of TMM.

The periodic monitoring employed by TMM, can leave
an open backdoor for short bursts of unfair access to the
cheater. As an example, if the cheater has unsaturated,
uplink traffic (which however appears in saturated bursts)
it can employ the cheating strategy for these short bursts
and potentially stay undetected. This is true, especially
when Z is large. For small values of Z (e.g., a couple of
seconds), such strategies cannot be successful, since the
period over which the average throughput is computed is
short. Nevertheless, in such cases of an undetected event,
we are assured that the node does not get more than X
percent of its fair share of the medium for that period
(line 3 of Algorithm 2). Thus, monitoring the average
throughput enjoyed by the clients is seemingly sufficient
as a first level of detection, if the monitoring window is
kept fairly small. We will experimentally find the right
values for Z in Section 8.

Algorithm 2. Pseudocode for LPM.

Data: Client : which has been flagged as a potential
cheater by TMM

Result: Whether to declare it as a cheater

begin
1 Ping(i,10, Powerprobe)
2 if more than W% of reply packets are missing then

| Declare Client i as a cheater
end

end

()

6.2 The Low Power Probing Module

The design of LPM is motivated by the observation that all
the signals that arrive at the circuitry of a receiver with a
received signal strength lower than the CCA threshold, are
treated as noise; the receiver does not attempt to reconstruct
packets from such signals [2]. Thus, a node that increases
its CCA with the objective of increasing its throughput will
not be able to correctly decode packets that are received
with low powers. Thus, by having the AP probe the
potential cheaters (determined by TMM) with low power
packet transmissions, LPM achieves its goal of accurately
identifying the real misbehaving clients.

A cheating node that increases its CCA toward
obtaining a larger share of the available bandwidth, is
likely to pick the maximum possible CCA without
compromising on its connectivity with the AP.” The larger
the CCA threshold, the higher are the number of possible
ongoing transmissions that the carrier sensing logic
ignores. If the CCA threshold is only increased slightly,
the selfish node will not be able to achieve significant

5. We assume this to be the selfish behavior for now; other possible
variants are discussed in Section 9.
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TABLE 4
Overhead with LPM

# Clients 3 5
Probing 26.1 | 21.8
No Probing | 28.0 | 24.1

performance gains. Note here that due to this very reason,
it is unlikely that nodes that are either distant from the AP
(or have poor quality links) will be able to effectively
launch the attack under consideration; they will not be
able to increase their CCA thresholds significantly without
compromising their connectivity to the AP.

Design of LPM. The new CCA threshold (chosen by a
selfish node) is based on the RSSI from the AP under
default operating conditions. If the AP transmits with lower
powers (as compared with default settings), the RSSI value
at a receiver is reduced. Going further, if this transmission
power is considerably lowered, packets may arrive at the
misbehaving node’s antenna with an RSSI that is smaller
than its increased CCA threshold. This is the key idea that
drives LPM. The AP, using a reduced transmission power,
sends a probe packet to each client that has been flagged as
a potential misbehaving client by TMM. If a client node has
increased its CCA to the extent that it exceeds the RSSI of
the received probe packet, the client node cannot respond
to the AP. The latter waits for a preset period of time for the
client’s response; if no response is received, the AP flags the
client as a misbehaving node. To reduce the possibility of
false alarms, LPM challenges the potential cheaters (listed
by TMM) with successive ICMP_ECHO_REQUEST packets
(64 bytes), sent using a reduced transmission power. The
client is expected to reply to each probing packet that is
received from the AP. If more than W percent of the reply
packets are missing from a particular client, the AP
declares the client as a misbehaving client. In Section 7,
we discuss how we choose W and the probing power such
that there is a good tradeoff between the false positive rate
and accurate detection with our system.

TMM reduces the probing overhead due to LPM. We point
out that LPM increases the overhead by sending probe
packets on the medium. If the AP were to probe all the
clients, then the performance degradation could be sig-
nificant, especially when the number of clients is large.
Table 4 shows the degradation in the aggregate throughput
of an AP when 1) all the clients had fully saturated uplink
traffic and 2) the AP was constantly probing the clients in a
round robin fashion with 10 probe packets sent to each
client during a probe cycle.

We observe that if there are three clients associated with
the AP the degradation is about 7 percent; when there are
five clients, the degradation is about 9.5 percent. As the
number of clients increases, the degradation is higher;
therefore, it is crucial to reduce the number of clients that
LPM checks for real cheaters. Based on this, it is clear that
TMM plays an important role in our system.

Note also that currently, we use the 64 byte ICMP_
ECHO_REQUEST messages as probes; it is possible to
reduce the overhead by creating special probe messages
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that are of smaller size. However, this will increase the
complexity of the implementation (the current implementa-
tion is described below) and may require modifications to
the 802.11 driver/firmware.

Implementation details of LPM. We have implemented
LPM in the user space, on top of the wireless NIC’s driver.
It is run at the access point. Our implementation uses a shell
script that invokes the ping application [24] to probe the
clients. More specifically, the script consists of a loop which
parses the list of clients that are flagged as potential cheaters
by TMM. We set the transmission power of the “ping”
packets using the iwconfig command. Based on the results of
the ping trials, LPM decides on whether a client is a cheater.
This implementation is generic in that it can be run in
conjunction with most commodity wireless NIC drivers.

For our Atheros cards, which use the MadWifi driver,
we have also implemented our own probing utility using
the Click Modular Router [25]. We use the ICMPPing-
Source and ICMPPingResponder elements to imple-
ment a probe sender and a probe receiver, respectively. The
SetTXPower element enables us to set the transmission
power for each ICMP packet sent out by LPM. This
element simply sets the Wifi TXPower Annotation flag on
the packet to be sent, and we do not need to subsequently
call iwconfig to set the power.

7 AN ANALYTICAL MODEL TO DERIVE SYSTEM
PARAMETERS

The design of LPM is based on the observation that a
cheating node with an increased CCA is unlikely to
respond to probe packets sent by the AP with a low
transmission power. There are two cases, however, where
LPM may not lead to correct diagnosis: 1) Benign clients
located at the border of the AP’s coverage area may not be
able to respond to low-power probe packets sent from the
AP; these packets are likely to arrive at their circuitry with
an RSSI lower than the default threshold CCAg ;. This
results in what we call false positives. (Note here that even
though the links to such clients are likely to be poor, some
of these clients may be getting a higher share of throughput
in unsaturated traffic conditions). 2) Misbehaving nodes
could be so close to the AP that in spite of the AP using
reduced transmission powers, probe packets can still reach
their circuitry with an RSSI higher than their increased
CCA value. In this case, the misbehaving node is not
identified, i.e., we have a false negative. In this section, we
analyze the performance of our system to determine
various parametric inputs to CMD such that the false
positive and false negative rates are kept low.
Propagation model. In order to analytically determine
the false positive and the false negative rates, we need to
assume a propagation model. We calculate the received
power P, at distance r with transmission power P to be
P
P = o Y, (3)
where « is the path loss exponent and Y is a random
variable that is log-normally distributed. The random
variable Y models the shadow fading effects and it has a
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Fig. 11. f(P,r) = Pr{signal(P,r) < CCAgey}.

mean value of one and a standard deviation equal to the
shadow fading variation (obtained from measurements).
The above model has been shown to be fairly accurate in
indoor settings [26], [27].

False positives. We first compute the false-positive rate.

The probability f(P,r) that a probe packet from the
AP arrives at distance r with an RSSI below CCAgy is
given by

P
f(P7T):Pr{F : Y<CCAdef}:PT{Y <

CCAgepr™
11 l"(%r) —p @)

=—+_-er s
AP NG

CCAur .
7]3 T

where ;1 and o are the parameters of the log-normal
distribution (computed from the mean and the measured
standard deviation). We plot this probability in Fig. 11. In
generating this probability, the following values are used to
derive the results: 1) CCAyy = —80 dBm, 2) the shadow
fading variation is 5 dBm (as measured from our testbed),
and 3) o =5, which is a typical value for the path loss
exponent for an indoor environment [26], [28]. The figure
shows that with extreme low power operations (1.5 mW),
the probability of violating the default CCA threshold is
extremely high (false positive); with moderately low
powers (3 mW), this same probability is almost zero up to
distances of 50 meters.
Equation (4) gives the probability that a packet arrives at
the client’s circuitry, after traveling distance r, with power
less than CCAg,y. Let us assume that LPM transmits
10 probe packets and expects n replies. Let pr***(P,r,n)
denote the probability that fewer than n probe packets®
arrive at a distance r with an RSSI greater than CC A4y This
probability is given by
P (Pyrn) = 3 (1= f(Pr) - f(Pr) T (5)

k=1
In order to calculate the false detection rate at distance r
when the transmission power is P, we need the spatial
distribution of nodes s(r). As discussed in Section 5, nodes
tend to stay close to the AP in reality. In order to get
numerical results, a possible spatial distribution that can

. . . . _ 1

be used based on the previous observation is s(r) = 75577,
6. We assume that the channel is reciprocal and thus, if the probe

message is correctly received, the corresponding ICMP_ECHO_REPLY

packet will be received with very high probability; this assumption ensures

the tractability of our analysis.
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for 1 <r <50 m and zero otherwise’ (the constant W is

chosen to assure that function s is a valid probability density
function). With this spatial distribution model, the false
positive rate 7*°*(P,r,n) at a distance r, when the transmis-
sion power is P is given by

75 (P, 7, n) = pr*®* (P,r,n) - s(r) - Ar|, - (6)

We can then compute the overall false positive rate
mp(P,n) when the AP is using transmission power P and
when LPM expects n replies to its probes by integrating
over the area of the cell:

mp(P,n) = / pr®(P,r,n) - s(r) dr. (7)
0
False negatives. Similar steps as above are taken in order
to compute the false negative rate. However, we first need
to estimate the CCA threshold, that a cheating node at
distance r is likely to use. The goal of the selfish client is to
avoid as many transmissions as possible by increasing its
CCA while maintaining its connectivity with the AP (note
that this is when the AP is using the default power Py, i.e.,
under default operations). The CCA chosen according to
this strategy can be computed by solving the following
optimization problem:

maximize

CCAcheat (’I“) (8)
subject to Pr{% Y > CCApheat(r)} =1 9)

CCAgear(r) € {~80,-79,...,1,0} dBm. (10)

Solving the above optimization problem for various
distances r, we obtain the results shown in Fig. 12. We
present in the same figure, the corresponding CCA jcq(7)
(the CCA threshold tuned as per the same strategy)
measured from our testbed; for a given location of the
cheater we increase the CCA threshold to the extent
possible without compromising the connectivity with the
AP. The results indicate that the analytical results match
reasonably well with the measurement results; the coeffi-
cient of determination R? [29] is calculated to be equal to 0.71.

Having computed CCAgpeqt(r), we now proceed to
calculate the false negative rate. We first calculate the
probability h(P,r) that a signal transmitted from the AP
with power P arrives at distance r with a RSSI greater than
CCAcheat (T)

7. Nodes are expected to have a minimum distance—e.g., 1 m—from the
AP which in commercial hotspots are deployed mainly on ceilings. Note
that our analysis can incorporate any other spatial distribution.
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In Fig. 13 we plot h(P,r) for various AP transmission
powers and distances from the AP (using the same
parameters as previously) and CCAgeq.(r) computed as
the solution to the optimization problem defined in (8-10).
We observe that if the cheater is extremely close to the AP
(=1 m), there is no way of detecting it with low power
probes. However, if the cheater is further than 1.5 meters,
the use of a transmission power that is lower than say
3.5 mW can lead to an extremely high probability of
detection, i.e., the probability that the signal is higher than
the CCA set by the cheater is almost zero.

Given h(P, r), we now calculate the probability pr"*(P, r, n)
that no fewer than n packets arrive at distance r with an RSSI
greater than CCAgpear (1)

10
pr"(P,r,m) =Y h(P,r)" - (1= h(P,r)"".
k=n

(12)

Using the spatial distribution of the nodes s(r), we can
calculate 7"9(P,r,n), the false negative rate at distance r
when the transmission power of the AP is P to be

7"(P,r,n) = pr"(P,r,n) - s(r) - Ar|x,_0- (13)

Integrating over the whole area, we get the overall false
negative rate m,(P,n) when the AP transmits with power P
and LPM expects n responses to its probes

mn(P,n) = / pr*(P,r,n) - s(r) dr. (14)
0

Equations (7) and (14) provide the false positive and
false negative rates of our system. These results also
provide insights on the appropriate values for Power.o.
and n; these values should be chosen so as to satisfy a
specific performance criterion. In short, we seek to
minimize these probabilities; however, it is unlikely that
they are both minimized together. Hence, we minimize the
sum 7, (P, n) + m, (P, n). Solving this minimization problem
yields n =9 and Powery,qe = 3.3 mW. This means that in
the LPM engine we need to set W = 10% (since 10 probes
were sent) and Powerpqp. = 3.3 mW. In (Fig. 14) we present
the Receiver Operating Characteristics curve (ROC) for the
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Fig. 14. The analytical ROC curve of our system.

case n =9 and we point out the operating point which
corresponds to Poweryqpe = 3.3 mW. Each point on this
curve corresponds to a different Powerp. .. Increasing
Powery,q increases false negatives; decreasing it will
increase false positives. The operating point is the one that
minimizes the aforementioned objective function. The
corresponding false positive rate and false negative rates
are: m, =0.0053 and m, =0.054. Note that with these
settings, our detection system is able to achieve high
detection accuracy.

8 EvaLuAaTiON OF CMD

In this section, we evaluate CMD.

Evaluation of the TMM module. First, we perform
experiments to evaluate how TMM performs with various
combinations of its input parameters; in particular, we
consider 1) the monitoring window size Z and, 2) the
deviation value X percent. Ideally, we want TMM to 1) flag
all cheating nodes as potential cheaters and 2) minimize the
number of well-behaved nodes that are included in the set
of potential cheaters. To evaluate the performance of TMM,
we conduct the following two sets of experiments.

1. Monitoring legitimate traffic. In this set of experi-
ments we monitor the traffic at the AP when no clients
cheat and all of them have fully saturated uplink traffic.
We vary both the monitoring window size Z and the
deviation X percent. The false alert rate, which represents
the probability that a well-behaved client is flagged as a
potential cheater, is depicted in Figs. 15, 16, and 17; in
these experiments, the numbers of clients associated with
the AP are 2, 3, and 4, respectively.

From the results, we observe that when the deviation is
chosen to be smaller than 20 percent the false alert rate can
be very high, especially when the monitoring window size
is small. For instance, when the deviation is set to 10 percent

deviation 10%

deviation 20%
© 0.75 deviation 30%
T deviation 40%
E deviation 50% ESSIEEN
@
< 0.5
(]
@
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0 = #
1 2 3
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Fig. 15. TMM false alert rate when there is no selfish user (2 clients).
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Fig. 16. TMM false alert rate when there is no selfish user (3 clients).
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Fig. 17. TMM false alert rate when there is no selfish user (4 clients).
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Fig. 18. TMM flagging rate of cheaters when there is a greedy client
(2 clients).

and the monitoring window size is 1 second, a well-
behaved client is mistakenly flagged as a potential cheater
with a likelihood higher than 30 percent. However, if we
increase the deviation, the false alert rate decreases. When
the deviation is set to 30 percent or higher, the false alert
rate is very small. The results are somewhat expected since
small deviations in the expected fair share of throughput
are likely; furthermore, transients are possible if the
monitoring window size is not sufficiently large. Reducing
the false alert rate will reduce the overhead incurred due to
probing with LPM.

2. Monitoring the cheating nodes’ traffic. In this set of
experiments we monitor the traffic at the AP under the
presence of cheating nodes. Again, all clients have fully
saturated uplink traffic. In this case, we are interested in
the false negative rates of TMM; in other words, we seek
to measure the probability that TMM does not include a
real cheater in its output set. Figs. 18, 19, and 20 depict the
probabilities that a cheating node is successfully identified
as a potential cheater. From the results, we observe that
when we use relatively small deviations (smaller than
30 percent) the TMM module almost always flags the
cheating node as a potential cheater. If however, a
deviation value higher than 30 percent is used, the false
negative rate increases.
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Fig. 19. TMM flagging rate of cheaters when there is a greedy client
(3 clients).
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Fig. 20. TMM flagging rate of cheaters when there is a greedy client
(4 clients).

The experimental results with both scenarios suggest that
there is a tradeoff between the detection accuracy and the
deviation value. Small deviation values help identify the
cheating nodes but they may lead to high false alert rates
under benign conditions; on the other hand, large deviation
values help reduce the false alert rate but may result in
missing some cheating nodes. In the current version of TMM,
we set the monitoring window size to be 1 second and the
deviation value to be 30 percent. Based on the experimental
results, these values achieve a good balance between the false
alert rate and the false negative rate of TMM.

Evaluation of the LPM module. LPM determines
whether a potential cheater reported by TMM is indeed a
cheater. We perform another set of experiments to quantify
its detection accuracy. We experiment with a variety of
configurations that take into account both saturated and
unsaturated uplink traffic. In particular, we experimented
with 132 configuration tuples. We utilize iperf to generate
uplink traffic. The cheating node always has saturated
traffic and misbehaves shortly after the initiation of the
experiment (8-10 seconds approximately). Each experiment
lasts for 1 minute. We vary the transmission power of the
probe packets among 3, 4, and 5 dBm. Recall that our
analysis in Section 7 suggests a probe power of 3.3 mW; this
corresponds to approximately 5 dBm. We compute the false
positive and false negative rates with the LPM module.
Note that since LPM takes the output of TMM as its input,
these rates are the false detection rates for the whole system
(the output of LPM is the output of CMD).? The results are
presented in Table 5.

8. We refer the reader to the Appendix, which can be found on the
Computer Society Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TMC.2011.131, for a derivation of the false positive/negative
probabilities of CMD.
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TABLE 5
Detection Accuracy of CMD
Powery, e | False positive rate | False negative rate
5dBm 0.015 0.060
4dBm 0.015 0.030
3dBm 0.045 0.015

From Table 5, we note that our system produces low
false positive rates and low false negative rates in real
experiments; even when the transmission power of the
probe packets is varied, the maximum false positive and
the maximum false negative rates are no higher than 4.5
and 6 percent, respectively. We also observe the tradeoff
between false positive rates and false negative rates as we
reduce (or increase) the probing power; if we keep
reducing the probing power, the false positive rate
increases while the false negative rate decreases. From
among the three probing powers used, the sum of false
positive rate and the false negative rate is minimized when
Poweryqpe is 4 dBm. This value is slightly lower than the
one derived with the analysis in Section 7. The reason for
this is that the assumed propagation model and its
parameters (i.e., path loss exponent) or the spatial distribu-
tion of nodes s(r) with the analysis, may not fit with the
characteristics of our testbed with very high fidelity.
Furthermore, in our analysis we focus on the performance
of LPM, without considering the impact of TMM. It is hard,
if not impossible, to model the interactions between the two
modules accurately. This would require s(r) - Ar to capture
the probability of TMM reporting a node, at distance r, as a
potential cheater; this is difficult because it requires the
knowledge of the traffic patterns of all clients (whether they
send saturated traffic or not and their application data
rates) at each location. In spite of these limitations, note that
the false positive rate and the false negative rate analytically
derived (i.e., m, and m, in Section 7) are very close to what is
observed with experimental results on the real testbed.

In our experiments LPM mistakenly declares a few well-
behaved nodes as cheaters; this happens especially when
some of the clients have unsaturated uplink traffic. As
discussed in Section 5, clients far away from the AP cannot
gain much by applying the considered selfish strategy
because they cannot increase their CCA thresholds to a
significant extent. In the presence of unsaturated traffic,
some well-behaved clients that are far away from the AP are
wrongly flagged as potential cheaters by TMM if their
application data rates are higher than that of those that are
closer to the AP. Consequently with LPM, the probe packets
from the AP may reach these clients with a RSSI below
CCAgy = —80 dBm. Thus, these well-behaved clients are
unable to recognize these packets and send responses to the
AP. However, our experiments demonstrate that such
occurrences are rare given that the poor quality of the links
to such clients limits the throughput that they can achieve.

We observe that the false negative rate is about 6 percent
when the transmission power of probe packets is 5 dBm.
As we reduce this power, the false negative rate decreases
significantly. For instance, when probe packets are trans-
mitted with power 3 dBm, the false negative rate drops to
about 1.5 percent. Interestingly, if we further reduce the
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Fig. 21. A cheating node that escapes detection can gain up to
47 percent of its faire share.

transmission power of probe packets to 1 dBm, all cheating
nodes flagged by TMM are successfully reported as
cheaters.’

Selfish gain under false negative detection. Since there
are cases where false negatives appear, we are interested in
finding the actual gain of a cheating node that avoids
detection. This essentially reflects the effect of false
negatives in the network. Recall that currently CMD is
configured with X =30% and Z =1 seconds. Fig. 21
presents the empirical CDF of the selfish gain (percentile
deviation from the fair share) in the case of false negatives.
The same 132 configuration tuples as above were used with
the three different Powerp.. levels (in 396 trials). We
observe that the cheating gains range between 16 and
47 percent. Scenarios with gains smaller than 30 percent
correspond to cases where LPM was not triggered by TMM.
Once TMM flags a cheating node, LPM is responsible for
detecting actual selfish users, and as alluded to above,
reducing the probing power increases the efficiency of our
system with regards to the false negatives. Note here that,
even though a cheating gain of 47 percent appears to be
fairly high, the occurrences of this event are rare. In
particular, there were in total 14 scenarios (out of 396)
where false negatives were observed. TMM was responsible
for three of them, while LPM was responsible for the other
11 occurrences.'® We defer a discussion on the effects of the
false positives on the total network throughput to the next
section, after describing possible mitigation schemes.

9 MISCELLANEOUS ISSUES

Mitigating the effect of selfish tuning of the CCA. The
goal of our work is to detect users that selfishly increase
their CCA thresholds in order to obtain throughput gain.
Mitigating the effects of such misbehaving nodes is not the
focus of our study; however, we deliberate on possible
ways of overcoming the adverse effects of such cheaters.
The most aggressive, yet the simplest, solution is to
punish a cheating client by disassociating it completely
from the AP. There are other mitigation approaches that
are less harsh. As an example, the AP can choose to
reduce its transmission power, which forces the cheating
client to decrease its CCA threshold if it wants to further

9. However, we expect that such a low Power,,q. can lead to a high false
positive rate.

10. TMM contributes to the first term of the right hand side of (2) in the
Appendix, available in the online supplemental material, while LPM
contributes to the second term.
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Fig. 22. Reducing the transmission power can restore throughput in well-
behaved clients.

communicate with the AP. Alternatively the AP may
intentionally drive down the throughput of such misbe-
having clients. In particular, the AP could choose to “not
send” MAC layer ACKs to the cheating node for some of
its frames. As a result, the cheating node has to back off
with a larger contention window; this in turn, increases
the opportunity of access to the well-behaved nodes.
Implementation of this approach is challenging because
currently most commodity NICs implement MAC layer
acknowledgments in the firmware.

Clearly, all of the above proposed approaches can
alleviate the effect of a cheating node. It is up to the
network administrator to choose the appropriate strategy.
Note that each possible strategy has its pros and cons. For
example, at one extreme is the approach of disassociating
the selfish user upon detection. A much milder approach is
the filtering of the MAC layer ACKs. In this case, the
misbehaving node still enjoys some throughput and more
importantly is not forced to decrease its CCA threshold.
Between the two above extreme schemes is the transmission
power control scheme. With this approach the selfish user
will be forced to decrease its CCA threshold in order to stay
connected with the AP.

We perform experiments by tuning the transmission
power of the AP. In the representative time trace presented
in Fig. 22, node 51 is set as an AP, while backlogged nodes
58 (selfish), 32, and 34 are associated with it. For the first
6 seconds of our experiment every client uses the default
CCA thresholds, and the AP uses the maximum transmis-
sion power (18 dBm). After the 6th second, and for the next
6 seconds, node 58 increases its CCA threshold; during this
time AP 51 still uses the maximum transmission power. At
t = 13 seconds, the AP, 51 reduces the transmission power
to 1 dBm. As our results show, reducing the transmission
power used by the AP causes the greedy client to
disassociate from the cell. If the greedy user increases its
CCA value it will be able to reassociate with the AP and
enjoy its fair share. This scheme can be thought of as a
passive scheme because of this.

Note here that, reducing the transmission power of the
AP, can have an impact on the well-behaved clients as
compared with the performance under benign settings. This
is due to the fact that the link “AP to client,” might
experience a degradation due to the lower transmission
power. If we take a closer look at the time trace for node 32,
we see that despite the fact that it enjoys an improved
performance with regards to the “selfish behavior” period,
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Fig. 23. Less aggressive cheating strategies result in lower gains.

it does not obtain the throughput that is enjoyed in benign
settings. This effect can be overcome by performing power
control in a finer granularity (e.g., per client).

The effects of false positive detection. When a selfish
node is detected, the mitigation scheme will be triggered.
The same is true in the case of a false positive. The
difference is that in the latter case the mitigation system will
take action against a well-behaved node. Depending on the
semantics of the scheme deployed, the effects of a false
positive detection will be different.

With the aforementioned transmission power control
scheme, the throughput of the falsely classified node will
be disassociated. However, the other nodes will not be
affected and they will enjoy at least the same throughput
prior to the activation of the mitigation scheme. In fact,
when there is a saturated traffic demand, the throughput
that each of them enjoys will increase. This is because they
will fairly share the spare capacity available. Note here that,
the disassociated node can possibly reassociate with the AP
by decreasing its CCA. However, this may not be possible
for some of the clients at the edge of the cell. Recall,
however, that given the extremely low false positives rate,
the chances of this are extremely low.

Other cheating strategies. Throughout our study, we
have assumed that a cheating node always chooses the
maximum CCA threshold that guarantees its connectivity
with the AP. This assumption is reasonable only if the
cheating node is extremely greedy (the strategy enables
the node to ignore as many transmissions as possible). If the
misbehaving node knows that CMD has been deployed, it
might set a CCA threshold lower than that to evade
detection. A less significant increase in CCA will however
have a lower impact on the network, as seen in Fig. 23. In
this figure, we plot the selfish gains for two different
representative scenarios and for different CCA thresholds
employed by the misbehaving node. Scenario A refers to
node 51 being set as an AP and nodes 32 and 34 being the
associated clients (node 32 is the cheating node). Scenario B
refers to node 31 being the AP and nodes 37 and 22 being its
clients (node 22 is the selfish user). For scenario A, any
value different from CCA peq; (~—45 dBm), will result in
significantly lower gain.11 When we set CCA < CCApeat,
the selfish user cannot ignore ongoing transmissions to the
extent desired; if we use CCA > CCAcpear, the link quality
to the AP is degraded. For extremely high CCA values (e.g.,

11. Since our measurements are taken using steps of 5 dBm, the actual
value for CCA is within 5 dBm from the one measured.
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—35 dBm) the connectivity is completely compromised and
thus, the throughput is nullified (translating to a negative
gain). Thus, there is an inherent tradeoff between the
performance gain and the possibility of detection that
the cheater has to consider.

For scenario B, the cheating node can use slightly lower
values for CCA as compared with CCA .. The range of
these values is ~15 dBm. In such cases, the selfish user might
keep its CCA lower than the CCA_j.q, in order to decrease
the probability of being detected. Note however that, it is
still possible to detect the misbehavior by further reducing
the transmission power of the probe packets. Of course,
this may lead to higher false positive rates. However, from
Fig. 14 we notice that even if we use the lowest transmission
power considered, the false positive rate is still very low
(relative to the specific spatial distribution).

From the results from Figs. 6 and 23, it is clear that a
priori estimation of the CCA value that will provide the
optimal tradeoff for the cheater is extremely complicated.
Fine tuning the CCA threshold to achieve a specific
selfish gain and/or guarantee detection avoidance is hard
due to the wireless propagation effects and the depen-
dency on the topological properties.

Finally, we would like to point out that, a one-size-fits-all
solution is hard to design. Our system, cannot deal with
attacks that are more sophisticated than direct CCA
manipulations. For instance, a user who utilizes two
different CCA thresholds, one for data transmissions and
one for probe receptions cannot be detected. However,
note that such intelligent strategies are not easy to
implement on commodity cards. Rapid switches between
thresholds introduce large overheads. Moreover, it is
difficult for the cheater to know when probes are being
sent by an AP.

10 CONCLUSIONS

In this paper, we identify a new, powerful selfish behavior
in 802.11 networks: a misbehaving node increases its CCA
to improve its chances of accessing the medium. CCA
tuning has been considered previously toward providing
network wide performance enhancements; this is the first
study that considers the misuse of this capability. With
extensive experimentation on a real testbed, we show that
the selfish behaviors considered can cause extremely
unfair allocations of the wireless medium. We develop a
detection scheme for WLANs that we call CMD for
Carrier sensing Misbehavior Detection. We mathematically
analyze its detection accuracy. We also implement CMD
on an indoor wireless testbed. Through experiments we
demonstrate that CMD detects such selfish clients in
WLANSs with extremely high accuracy and with low false
positive rates.
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