EAGLE: Evasion Attacks Guided by Local
Explanations against Android Malware
Classification

Zhan Shu, Guanhua Yan, Member, IEEE

Abstract—With machine learning techniques widely used to automate
Android malware detection, it is important to investigate the robustness
of these methods against evasion attacks. A recent work has proposed
a novel problem-space attack on Android malware classifiers, where
adversarial examples are generated by transforming Android malware
samples while satisfying practical constraints. Aimed to address its
limitations, we propose a new attack called EAGLE (Evasion Attacks
Guided by Local Explanations), whose key idea is to leverage local
explanations to guide the search for adversarial examples. We present
a generic algorithmic framework for EAGLE attacks, which can be cus-
tomized with specific feature increase and decrease operations to evade
Android malware classifiers trained on different types of count features.
We overcome practical challenges in implementing these operations for
four different types of Android malware classifiers. Using two Android
malware datasets, our results show that EAGLE attacks can be highly
effective at finding functionable adversarial examples. We study the
attack transferrability of malware variants created by EAGLE attacks
across classifiers built with different classification models or trained on
different types of count features. Our research further demonstrates
that ensemble classifiers trained from multiple types of count features
are not immune to EAGLE attacks. We also discuss possible defense
mechanisms against EAGLE attacks.

Keywords—Malware, mobile security, adversarial machine learning

1 INTRODUCTION

The popularity of Android devices has made them favor-
able targets by 98% of mobile malware attacks according
to a recent cyber threat report [46]. The numerous An-
droid malware attacks have motivated an abundance of
research efforts that apply machine learning to detect
malicious Android applications [31], [44], [33], [51], [34],
[41], [10], [59], [57], [24], [29], [37]. Among the plethora of
efforts investigating the robustness of machine learning
in an adversarial environment [32], [40], [17], some fo-
cused on generation of adversarial samples for evading
Android malware classifiers [27], [21], [62]. Particularly,
the seminal work by Pierazzi et al. [45] proposed a
novel problem-space attack on Android malware clas-
sifiers, where adversarial examples are generated by
transforming Android malware samples while satisfying

Z. Shu and G. Yan are with the Department of Computer Science, Binghamton
University, State University of New York, Binghamton, NY, 13902, USA.
Email: {zshul, ghyan}@binghamton.edu.

practical constraints such as available transformations
and preserved semantics.

Although the method in [45] addresses the feature-
mapping problem by generating practical samples ca-
pable of evading the DREBIN malware classifier [20]
and its hardened variant [21], it has the following three
limitations. First, as it attacks only malware classifiers
trained on binary features, when the target malware
classifier is trained on non-binary features (e.g., those
considered in [51], [35], [39], [34]), the attack method
becomes ineffective. Second, the method requires the
attacker to know the internal parameters of the target
classifier in order to identify the top benign features
for the evasion attacks. Last, it poses inconvenience to
the attacker as a significant number of benign Android
applications are needed to extract gadgets with the top
benign features through program slicing operations.

Inspired by these challenges, the goal of this work is
to develop a generic approach called EAGLE (Evasion
Attacks Guided by Local Explanations) to generate prac-
tical samples that can evade Android malware classi-
fiers trained on arbitrary count features. Count features,
which can be deemed as an extension of binary features,
capture not only whether a feature exists in an Android
sample but also how many times it appears in it. EAGLE
attacks apply local explanation tools such as LIME (Local
Interpretable Model-agnostic Explanations) [47] to inter-
pret why a malware sample is classified as malicious
in its local neighborhood. Given the important count
features which are found by local explanation tools
to have positively contributed to the target classifier’s
detection of the original sample, new variants are created
by perturbing their values, in hopes that some of them
may cross the decision boundary used by the classifier.
As EAGLE attacks apply local perturbation to search for
adversarial examples, they do not require the attacker to
transplant gadgets with good features that can separate
benign Android applications from malicious ones.

In this work we present a generic algorithmic frame-
work for EAGLE attacks against Android malware clas-
sifiers trained on arbitrary count features. For each type
of count features used by the target classifier, EAGLE

attacks can be customized with two types of operations
to increase and decrease the values of those important
features identified by local explanations, respectively.
Our framework also adopts a hill-climbing strategy to
search for variants mutated from the original malware
sample whose malicious scores are gradually increased
until an evasive example is found. As the attack strategy
is decoupled from the specific machine learning model
used by the target Android malware classifier, our at-
tack framework is model agnostic. To demonstrate the
feasibility of EAGLE attacks, we construct four types of
count features which have been well received for An-
droid malware detection in the literature. They include
permissions included in Android manifest files [31], n-
gram opcode sequences extracted from disassembled
Android applications [34], API calls which are highly
informative of malware behaviors [10], and function call
graphs (FCGs) containing structural information [24].
For each of these count features, we design and imple-
ment operations to increase and decrease selected feature
values based on LIME'’s explanation results.

To evaluate the performance of EAGLE attacks, we
use two datasets obtained from different sources, each
containing thousands of benign/malicious Android ap-
plications. We also consider two types of classification
models, Random Forest (RF) and Multilayer Perceptron
(MP). Based on these datasets and classification models,
we conduct multiple sets of experiments. In the first
set of experiments, we apply EAGLE attacks against
different combinations of classification models and count
features. The experimental results show that their suc-
cessful rates are high for both evaluation datasets, irre-
spective of the classification model or the type of count
features used. Further comparison experiments show
that EAGLE attacks consistently outperform two other
alternative attack methods in generating adversarial ex-
amples against both the RF and MP classifiers.

In the second set of experiments, we investigate the
transferability of EAGLE attacks across different clas-
sification models and count feature types. Particularly,
we observe that attack transferability across classification
models is asymmetric: adversarial examples generated
from attacking the RF models can be transferred to attack
the corresponding MP models with an average success-
ful rate of 66.3% while those obtained from attacking the
MP models succeed in attacking the corresponding RF
models with a miserably successful rate of 8.38%.

In the third set of experiments, we study the robust-
ness of ensemble classifiers which combine the predic-
tion results from multiple classification models, each
trained on a particular type of count features. Our results
show that in direct attacks where surrogate and target
classifiers are trained with the same model and the
same type of features, the successful rate can as high
as between 78.7% and 100%, suggesting that ensemble
classifiers trained on a set of count features are not
immune to successful EAGLE attacks.

We perform the final set of experiments to study the

effectiveness of the adversarial training defense mecha-
nism against EAGLE attacks. We observe that malware
classifiers built upon permission and API call features
can be robust against EAGLE attacks if they are trained
with additional adversarial examples. As these features
can be easily obfuscated, they may not seem useful to
train robust Android malware detectors [55]. However,
our experimental results show that malware classifiers
trained on such features can still help improve the
overall robustness of an ensemble detection approach
after they are hardened by adversarial training.

In a nutshell, our main contributions can be summa-
rized as follows: (1) We develop a generic algorithmic
framework for EAGLE attacks against Android malware
classifiers, which can be customized with specific feature
increase and decrease operations based on what count
features are used by the target classifier. (2) We im-
plement EAGLE attacks against four Android malware
classifiers trained on different types of count features.
For each of these attacks, we overcome the practical
challenges in generating practical samples with targeted
feature values. (3) Using two Android malware datasets,
we demonstrate the feasibility of EAGLE attacks in cre-
ating adversarial samples against the four count feature-
based Android malware classifiers, all with high suc-
cessful evasion rates. We also compare the performance
of EAGLE attacks against those of two alternative at-
tack methods. (4) We investigate attack transferrability
of adversarial samples produced from EAGLE attacks
across classifiers built with different classification mod-
els or feature types. (5) We demonstrate that ensemble
classifiers may still be vulnerable to EAGLE attacks. (6)
We investigate the effectiveness of adversarial training
in defending against EAGLE attacks.

The remaining of this paper is organized as follows.
Section 2 surveys related work. Section 3 introduces
background knowledge about Android malware classi-
fiers and LIME. Section 4 presents the problem formu-
lation. Section 5 describes the algorithmic framework
of EAGLE attacks and Section 6 elaborates on their
implementation details. We show experimental results
in Sections 7-9. We discuss the defense implications in
Section 10. Section 11 makes concluding remarks and
discusses the limitations of this work.

2 RELATED WORK
2.1 Machine learning for Android malware detection

Previous works have explored a variety of features
extracted from Android applications, including permis-
sions [31], [44], [33], opcodes [34], [41], API calls [10],
[59], [57], and ECGs [24], [29], [37], to detect Android
malware. The features used in these works for Android
malware detection are either binary or non-binary. Al-
though some works have shown that the binary fea-
tures can be used to build highly predictive Android
malware detection models (e.g., [20], [55]), others have
demonstrated that non-binary ones, such as counts of

N-gram API call sequences [51], occurrences of string
literals [35], numbers of different loops sharing the same
semantic tags [39], and frequencies of N-gram opcode
sequences [34], also possess high discriminatory power.
Some of these malware classifiers can be potentially
targeted by EAGLE attacks as they use count features.

Noticing that some malware features can be easily ob-
fuscated, the work in [55] advocates inclusion of different
application characteristics features which indicate either
structural inconsistencies or logical inconsistencies for
detection of obfuscated Android malware. Admittedly,
malware variants created by EAGLE attacks in this work
may be still detectable by the classifiers proposed in [55].
However, if the attacker knows that the application
characteristics features proposed in [55] have been used
by the target malware classifier, EAGLE attacks can still
be performed to identify which of them have played
the most important roles in malware detection and then
perturb their values to search for evasive variants.

A few works apply ensemble learning to classifying
Android applications for either malware detection or
family identification. The EC2 algorithm combines su-
pervised learning and unsupervised clustering to clas-
sify a malware sample into both large and small fami-
lies [18]. The malware features considered in their work
include both static ones (e.g., permissions, authors and
application components) and dynamic ones (i.e., n-gram
count features belonging to four groups: read/write
operations, system-related operations, network-related
operations, and SMS-related operations). As these are
all count features, in principle the supervised malware
classification module in EC2 is not immune to EAGLE
attacks. Ficco’s approach [23] stacks multiple malware
detectors, including both specialized ones that detect
individual malware families and generic ones that dis-
tinguish malware from benign applications to optimize
malware detection accuracy. These malware detectors
use diverse feature types, some of which are count
features (e.g., API call frequency and network traffic
characteristics) while others are not. Therefore, EAGLE
attacks can be launched against some individual classi-
fiers used in the ensemble detector but not all of them.

2.2 Evasion attacks against malware classifiers

The robustness of machine learning methods against
evasion attacks has been studied for PDF malware [16],
[54], [60], PE malware [12], [14], [36], IoT malware [11],
and Android malware [27], [62]. Among these efforts, a
few have considered the practical challenges in generat-
ing adversarial examples against PE malware classifiers
in the problem space [14], [36], [38], [53]. However, the
technical challenges involved evading machine learning-
based PE malware detectors differ from those in evasion
attacks against Android malware classifiers, which are
the primary focus of this work.

To evade Android malware classifiers. the work in [27]
applies the attack method proposed in [43] on classifiers

trained on binary features while keeping the malware
program’s malicious functionality. Its reported misclassi-
fication rate ranges between 63% and 69% on the Drebin
dataset [9]. Compared with the work in [27], ours has
made the following improvements. First, EAGLE attacks
are model agnostic but the method proposed in [27]
is not because it relies on the target model’s Jacobian
matrix to identify what features should be modified. Due
to this constraint, it cannot be directly applied to evade
the Random Forest classifier considered in this work.
Second, EAGLE attacks can be performed on Android
malware classifiers trained on arbitrary count features,
but the method proposed in [27] works only on those
with binary features. Third, the successful misclassifi-
cation rates seen from EAGLE attacks are significantly
higher than those results achieved in [43].

Closely related to our work is the recent effort by
Pierazzi et al. [45]. To overcome the so-called inverse
feature-mapping problem, their approach identifies prac-
tical constraints in constructing functionable Android
malware variants for evading Android malware classi-
fiers. The key idea of their proposed method is to extract
gadgets with benign features from legitimate Android
applications and then transplant them into malware
programs, allowing the modified ones to bypass the
detection of a target malware classifier. The gadgets are
carefully added to the malware program to preserve
its original semantics while ensuring that the modified
programs are robust against preprocessing techniques.
EAGLE attacks address the three limitations of Pierazzi’s
approach. First, they can be used to evade any Android
malware classifier which is trained on arbitrary count
features, as long as it is plausible to construct methods
that can increase and/or decrease their occurrences in
the problem space. Second, EAGLE attacks allow the
attacker to treat the target classifier as a blackbox and
thus do not need him to know its internal parameters.
In contrast, the work in [45] assumes that the attacker
knows the top benign features based on the negative
weights in the target classifier. Finally, EAGLE attacks
do not need a significant number of benign Android
applications to extract gadgets with benign features.

2.3 XAl applications in malware classification

Explainable Artifical Intelligence (XAI) methods have
been used to explain predictions made by malware
classifiers [28], [42], [30]. The work in [20] investigated
various binary feature sets extracted from Android man-
ifest files and disassembled code, which are used by
a linear SVM model to detect Android malware with
high accuracy. The features with the largest weights
in the linear SVM model are used to explain why an
application is detected as malicious. This explanation
method is neither model-agnostic nor a local explanation
approach needed by EAGLE attacks.

Closely related to our work are two recent efforts
which have also applied XAI methods in creation of
adversarial examples against malware classifiers. The

work in [48] uses an XAl-based algorithm to select
important features in PE malware classification by a
substitute model and then modifies “easily modifiable”
features with predefined feature values to create evasive
samples; their successful evasion rates however seem to
be poor (below 38%). In comparison, our work targets
evasion of Android malware classifiers with a much
higher successful rate. The work in [50] applies XAI
methods to find a greedy combination of important
features for perturbation in poisoning attacks against
malware classifiers. Different from our work, it focuses
on poisoning attacks instead of evasion attacks. In terms
of XAI methods, common to both works in [48], [50]
is the use of SHAP (SHapley Additive exPlanations),
which can also be used for local explanations. As SHAP
requires global permutations to achieve high local expla-
nation accuracy, its high computational overhead makes
it a less appropriate method for EAGLE attacks than
LIME (see Section 7.5).

3 BACKGROUND
3.1 Android malware classifiers

In this work we consider the following Android malware
classifiers, each trained on a type of count features.

Permission classifier. Permissions requested by an
Android application can be extracted from its manifest
file. These permissions have been used as Boolean fea-
tures to train Android malware classifiers [31], [44], [33].

N-gram opcode classifier. Opcodes disassembled from
malware executable files have been widely used in ma-
chine learning-based malware detection [61], [34], [41],
[63]. Particularly, n-gram opcode classifiers train predic-
tion models from counts or frequencies of any n-gram
opcode sequences contained in consecutive instructions.

API call classifier. API calls are useful for malware
detection because they can reveal malicious behaviors
of suspicious Android applications [10], [59], [49], [57].
In this work, we consider an API call classifier similar
to Droid APIMiner [10], which is trained from dangerous
API calls extracted through static analysis.

Function call graph classifier. Structural informa-
tion contained within malware’s FCGs has also been
used for Android malware classification [24], [29], [37].
Particularly, the pioneering Android malware classifier
proposed by Gascon et al. works as follows. Through
static analysis, each Android application is represented
as a labelled FCG, denoted as a 4-tuple G = (V, E, L,1),
where V' includes all functions in the application and F
call relationships among these functions. With L repre-
senting a multiset of labels for the FCG, [: V — Lis a
labelling function which assigns a label to each node in
the graph. The label of each function node in G is a m-bit
vector, where m is the number of instruction categories
considered (e.g., branch, move, and invoke). For each of
these categories, if a function contains any instruction
that belongs to this category, the corresponding bit in
the vector is set to 1; otherwise it is 0.

The structural information contained within an FCG
is considered when computing the hash for each node
v € V and its neighboring nodes V, as follows:

h(v) = r(l(v)) @ (@ l(z)) :)

z€eV,

where r denotes a single-bit left rotation. We call I(v) and
h(v) the original label and the hash label of v, respectively.

The neighborhood hash of graph G, denoted by Gj =
(V,E, Ly, h(-)), is derived by replacing the original label
of each node v € V with its hash value calculated
according to Eq. (1). Lj is the multiset of labels in G/,.
Given two FCGs G}, and G, the graph kernel K (G, G),)
can be defined as the size of the intersections of their
label multisets, L;, and L), That is to say, K(G},G},) =
|Lp N L.

Let H = {a1,...,an} be the histogram of multiset L;,
with where a; is the occurrence of the i-th hash in Gj,.
Given that IV is the number of bins in histogram H and
M is the maximum number among all bins, histogram
H can be mapped to an N M-dimensional vector ¢(H):

d)(H) = (111170]\17(11110,270]»{7(127 AR laN70M7aN)? (2)

where 1, and 0, denote k consecutive 1’s and O0’s,
respectively. Assuming that H and H’ are the histogram
of multiset L, and Lj, respectively, it is easy to see that
K (G, GY,) is equal to the dot product of ¢(H) and ¢(H'),
ie, K(Gn,G}) =< ¢(H),p(H') >.

With the above kernel function, a linear SVC (Support
Vector Classifier) classifies G}, as malicious or benign.

3.2 LIME

Consider a binary classification model like malware
detection, f : R? — R, where f(x) gives the probability
that = belongs to the relevant class. Explanation of its
predictions is also defined as a model g € G, where G is
a class of potentially interpretable models (e.g., decision
trees). The domain of g is {0,1}%, so explanations are
presented as the absence or presence of the d’' inter-
pretable components.

For any data point z, LIME finds the optimal local
explanation for the prediction by model f by solving:

é(r) = argmin, ;L(f,9.T2) + Q). 3)

where II,(z) measures the distance between z and «z,
L(f,g,1I;) measures how closely the explanation model
g approximates the original model f in the neighborhood
defined by II,, and Q(g) measures the complexity of the
explanation model g.

LIME uniformly samples the area around the binar
representation of z, perturbs it to get 2/ € {0,1}¢,
recovers the sample in the original representation space
z € R, and uses f(z) as the label for the explanation
model. Using a perturbed dataset Z’ constructed as
above, LIME solves the optimization problem in Eq. (3)
to get an explanation &(z).

LIME uses sparse linear models for local explanations
with ¢g(2’) = wy - 2. A locally weighted square loss
function is used for L:

L(f,9,1) = > Ma(2)(f(2) — g(z)% 4)

z,2'€Z

where I1,(2) = exp(—D(z,2)?/0?) is an exponential
smoothing kernel for some distance function D.

LIME solves the optimization problem in Eq. (3) with
the K-LASSO algorithm, which selects K interpretable
components for local explanation with their weights
indicating their relative relevance.

The continuous data for each feature in the perturbed
dataset Z’ are first discretized into bins, each containing
a range of values. By default a quartile discretizer is
used. Next a corresponding binary interpretable compo-
nent is defined for each feature to indicate whether an
instance’s feature value falls into the same bin as instance
2 whose prediction result is to be explained.

Given model f, the set of features extracted from
instance x, which is denoted by ()., and explanation
length K, the LIME tool produces a set of K weighted
feature rules, each in the form of (¢;, [0, 67%®) w;)
where t; gives the feature identity selected at the i-th
place (e, 1 < t; < |Q.]), [0, 6m%) is the value
range that this feature falls into for instance z after
discretization, and w; is this feature’s weight learned
by the K-LASSO algorithm. Moreover, having weight
w; > 0 means that the i-th feature’s value supports the
model’s classification result while weight w; < 0 sug-
gests otherwise. For ease of presentation, we use notation
LIME(f,Qg, K) to represent the set of weighted feature
rules produced by LIME.

4 PROBLEM FORMULATION

Consider an Android malware detector, f : R — R,
which, given a d-dimensional count feature vector ex-
tracted from an Android application, predicts the proba-
bility of its being malicious (i.e, malicious probability score).
Let Q. denote the count feature vector extracted from
any instance z. Without loss of generality, = is detected
to be malicious if f(Q,) > 0.5 or benign otherwise.

Given an Android malware sample z, that can be
successfully detected by model f as malicious (ie.,
f(Qz,) > 0.5), the attacker’s goal is to obfuscate z(into
a different instance 2’ such that f(Q,) < 0.5, where
x’ should be functionally equivalent to xo. Informally
speaking, functional equivalence means that when z’
and z(are executed in the same environment, their be-
haviors perceived by the environment should be almost
always the same. Precise functional equivalence may be
hard to achieve due to non-determinism of execution
environments or side effects of obfuscation (e.g., changes
of file sizes), but from the attacker’s perspective, as long
as the new instance z’ can cause the same damage to the
environment as xo while evading detection of model f,
it is deemed as successful.

Classification model f

Original
instance x @,

Perturbed

Local approximation < .
PP 7 O instance X’

L~
S

Fig. 1. Intuition behind an EAGLE attack

Threat model. We make the following assumptions
about the attacker: (1) Source code unavailable: Without
the source code of the original sample z, the attacker
needs to disassemble/decompile it first, make appropri-
ate modifications, and then reassemble/recompile the
code to generate a new variant which hopefully can
bypass the detection of model f. (2) Soft-label blackbox
attack: We assume that the internal details of the model
are not revealed to the attacker, but the attacker can make
queries to acquire the corresponding soft-label decisions
(i.e., output probabilities) from the model [19]. (3) Ability
to evade query-based anomaly detection: As the attacker
needs to query the target malware classifier for soft
labels, it is possible that an anomaly detection module
can be deployed to catch and thereby suspend suspi-
cious queries. We assume that the attacker is capable of
deploying countermeasures to evade such query-based
anomaly detection. For example, the attacker can spread
these queries over multiple attack machines to avoid
excessive queries originating from a single one.

5 ALGORITHM DESCRIPTION

In this section, we explain the intuition behind EAGLE
attacks, their workflow, and their algorithmic details.

5.1

EAGLE attacks use local explanations to guide mutations
of the original Android malware instance z, within its
neighboring feature space into variants that are likely to
evade malware classifier f. The attack algorithm is built
upon the LIME tool, although other similar methods
are also applicable as long as they can identify the
most important K features in classifying any individual
instance in its neighborhood by model f.

Our key intuition, which is illustrated in Figure 1, is
that we can use the local approximation model as the
surrogate to perturb the features of the original instance
x for evasion attacks. As the explanation provided by
LIME includes the top K features and their value ranges,
if we perturb those that have positively contributed to
classification of x as malicious and perturb their values
outside their respective ranges, the new variant 2’ may
cross the decision boundary of the local approximation

Intuition

model, thus flipping its prediction result. If this surro-
gate model can approximate the decision boundary of
classification model f closely in the locality of instance
z, it is likely that the perturbed instance z’ can evade
the detection by classification model f.

5.2 Workflow

The workflow of an EAGLE attack is illustrated in
Figure 2. It repeatedly performs mutation operations on
variants of the original sample z, until one is found to
evade classification model f or the maximum number
of iterations is reached. A working instance z is first
initialized as the original sample z4. Also, parameter K,
the number of top features selected by the LIME tool, is
initialized to be Kj.

In each iteration, the EAGLE attack first extracts the
count feature vector (), from APK z as the input for clas-
sifier f. Given the explanation length K, count feature
vector @, and model f, the LIME tool outputs the top K
count features along with their weights and value ranges
(see Section 3.2). Based on these outputs, the mutation
module searches for a best variant 2’ whose probability
of being malicious (ie., f(Q.)) is the lowest. If the
mutation module fails to find a better candidate 2’ than
the current instance z, the original one z is still used but
parameter K is increased by J for the next iteration. For
the best candidate z’ returned by the mutation module, if
the classification model f still detects it as malicious (i.e.,
f(Qz > 0.5), the working sample x is replaced by 2’ and
the above process is repeated; otherwise, the algorithm
simply returns z’.

The single DEX (Dalvik Executable) file called
classes.dex contained in APK z includes the original mal-
ware’s application logic compiled into Dalvik bytecode,
which is executable within a Dalvik Virtual Machine
(VM). Due to lack of source code, the mutation module
in Figure 2 first disassembles this DEX file in APK =z
into Smali code using Apktool [1], a popular reverse
engineering tool for Android APKs. Based on the type
of features used by classification model f, the mutation
module further modifies the Smali code disassembled
from APK z appropriately, reassembles the changed
Smali code into an APK using Apktool again, and signs
this new APK file with the attacker’s own key (or any
other fake key) using the jarsigner tool. Finally, this
signed APK file is executed within an emulated Android
device to test whether it is functionable or not.

5.3 Mutation algorithm

Although the technique used by the mutation module
to modify Smali code varies with the type of features
needed by model f, it follows a similar skeleton as
described in Algorithm 1. The mutation algorithm takes
a list of Inc-Dec function pairs, denoted by I, as input.
For each Inc-Dec function pair in I', the algorithm
searches for a better variant whose malicious probability
score is lower than the current one = with increasing
perturbation ranges (Lines 3-20).

Within its inner loop (Lines 6-16), n variants, each
denoted by 2", are generated from the working instance
x within the current perturbation range controlled by
variable z, which is initialized to be « (Line 4). If any of
these n variants has a lower malicious probability score
output by model f than the working instance z, it is
returned by the mutation module (Line 18); otherwise,
the current perturbation range controlled by parameter
z is enlarged by a factor of a (Line 20) and the process
is repeated until parameter z becomes greater than a
predefined value zp,q,. If no better candidate is found
than instance z after z exceeds z,,qz, the next Inc-Dec
function pair in I' is used to repeat the above process.
If no better candidate is found than instance z after all
Inc-Dec function pairs in I' have been tried, the original
sample x is returned but parameter K, the number of
top features found by LIME, is increased by ¢ (Line 21).

Algorithm 1: Mutation algorithm

Input: z: (working instance), (),: feature vector,
R: LIME output (i.e.,
R=LIME(f,Q., K)), f: classification
model, n: mutation count, a: perturbation
scale factor, zq,: maximum perturbation
scale, I': list of Inc-Dec function pairs to be
applied in mutation, J: increase step size
for parameter K used by LIME

Output: 2': best variant found, Ag: increase in K

1 function mutate(z, Q., R, f,n, @, Zmaz, [,)

2 x T, Smin < f(Q.L)
3 for [+ 1,|T'| do
4 z < «a, Inc < T[l][1], Dec « I'[l][2]
5 while z < 2,4, do
6 for i< 1,n do
7 2 —x
8 for j + 1,|R| do
9 if R[j][3] > 0 then
10 r < perturb(R[j][2], 2)
1 if Q. [R[j][1]] < r then
12 "« Inc(z”, R[j|[1]],r —
Q. [RL)I1))
13 else
14 "
Dec(a, RI)[1]], Qu[RIj][1]]—
)
15 if f(Qz) < Smin then
16 | Smin « [(Qar), 2/ 2"
17 if smin < f(Qy) then
18 | return (2/,Ag =0)
19 else
20 L z4+ az
21 return (z/, Ag = 0)

For each variant z”, it is modified from the current

working sample x by perturbing selected features in R,

o K=Ko _/ Explanation /¢ K+= A
length K Top K features
t,, (elmin' elmax]' W,
! min max
Feature ty (8,7, 8,7, w, Best
vector i - v :
X =X Q b (6™, 6], wy / variant
K _0> 2il—s Featu.re X LIME s{ Mutation X
extraction (f, Q,, K)
Original Working _ -
malware malware Fitness function
APKXo APK X Classification model f
p— ’ YESA
X=X
f(Q,) > 0.5 <
\l, No
)

£ | Return APK X’

Fig. 2. Workflow of a EAGLE attack against classification model f

which is returned from the LIME tool (Lines 8-14). Recall
that the LIME tool returns a set of triples including
the selected feature id, its feature value range after
discretization, and its weight (see Section 3.2); if a feature
has a positive (negative) weight, it supports (contradicts)
the classification of sample x into the malicious category.
As the goal of mutation is to flip classification model f’s
prediction from malicious to benign, the mutation module
randomly perturbs the value of each of those top K
features with only positive weights (Line 9) to ensure
that its new value falls outside the original range. This
is done by calling the perturb function (Line 10).

The pseudocode of the perturb function is given in
Algorithm 2. It takes an integer value range [Vmin, Umaz),
where vp,in and vpmq. can be oo, and perturbation scale
factor z as input, and returns a non-negative integer
value. If vyq, is +00, then the perturbed value is uni-
formly chosen from [0, vy, — 1] (Lines 2-3). Perturbation
considers only non-negative integer values to simplify
creation of real samples. Hence, v, if negative, is
reassigned to be 0 (Lines 4-5). Within a perturbation
range whose size is z - (Umaz — Umin), @ random number,
r, is uniformly chosen (Line 6) to indicate the devia-
tion from the original range [vnin, Umae). Depending on
the relationships among 7, Vmin, and Vmaez — Umin, the
perturbed value can be chosen from either side of the
original value range (Lines 7-12).

For each of those count features whose values are per-
turbed, we define two types of procedures, Inc(z,t,d)
and Dec(z,t,d), which produce a variant of instance
x whose t-th feature value in @, is increased and de-
creased by d, respectively. As the implementations of
these two procedures vary with the feature types used by
classification model f, we leave their details to Section 6.

Algorithm 2: Perturbation algorithm

Input: Integer value range V' = [Umin, Vmaz),
perturbation scale factor z
Output: A perturbed non-negative integer value
function perturb(V, z)
if v,00 = +00 then
| return uniform([0, vmin —
if v, < 0 then
‘ Umin < 0
r <= uni form([0, z - (Vimaz — Vmin) —
if (Vmaz — Umin)/2 <7 < Ui, then
| return v, — 1 — 1
else if r > v, then
| return vmaz + 7 — Umin
else
L return Umaaz T (Umaz - Umin)

1])

1])

—-Tr

Complexity analysis. Assuming that a random num-
ber can be generated within O(1) time, the time com-
plexity of the perturb function shown in Algorithm 2
is O(1). Therefore, the time complexity of the mutate
function in Algorithm 1 is O(n - |T'| - 1094 Zmag - | R|)-

5.4 Search strategy

Even the best variant 2’ found by the mutation module
may not evade the detection of classification model f
due to the following reasons. First, perturbing the top
K features may not be sufficient to sway the decision
by classification model f. We explain this with a simple
linear classification model y = wyx1 + woxs + ... + WpTy
with x; € {-1,1} for each ¢ € [1,...,n] and w1 > wo >

... > wy,. The model predicts malicious if y > 0 or benign
otherwise. Considering K = 1, obviously feature z; is
the most important one because its weight is the largest.
Suppose that a malware sample has all of its features
to be 1. Perturbing the value of its feature x; from 1
to -1 does not change the model’s prediction result if
wy < Yoo w.

Second, LIME uses a sparse linear model to approx-
imate the prediction by model f in the locality of an
individual instance z. It is possible that a perturbed
instance 2’ can evade the local approximate model but
not the classification model f.

Third, each iteration of the mutation algorithm aims
to perturb the working sample z to achieve a targeted
feature value r for one of those top K count features. As
we shall see in Section 6, there are practical constraints
when modifying disassembled Smali code to match the
targeted feature value r. Hence, it is possible that the
features extracted from the best variant z’ returned do
not match their targeted values.

When variant «’ fails to flip the prediction by classifi-
cation model f, our method replaces the working sample
x with 2’ and then repeats the mutation process. As
the mutation algorithm always finds a variant 2’ whose
fitness score is at least as good as that of the current
working sample z, it applies a hill-climbing strategy to
search for an optimal evasive sample. As this strategy
may get stuck at a local optimum, the workflow can be
repeated multiple times to circumvent this issue.

6 PRACTICAL IMPLEMENTATIONS

This section presents the implementation details of EA-
GLE attacks against four Android malware classifiers.

6.1

For the permission classifier, we extract the list of per-
missions requested by each Android application in its
manifest file. Let P = {P;},<;<|p| denote an ordered
set of Android permissions that can be requested by an
Android app. The binary feature vector Q¥ is constructed
in such way that Q?*[t] = 1 if permission P, is present in
APK instance z’s manifest file or Q2*[t] = 0 otherwise.
To evade the permission classifier, we define list I" in
Algorithm 1 to be [(Inc, Null)], where the Null function
does nothing. We consider only additions of new but un-
necessary permissions into the manifest file for evasion
attacks as removing those permissions requested by the
original malware may break its functionality.
Implementation of Inc(x,t,d): When evading the
permission classifier, d must be one because Qé’.’b is a
binary feature vector. Calling Inc(z,t,d) simply adds
permission P; to x’s manifest file if it is not included.

Permission classifier

6.2 2-gram opcode classifier

We consider feature vectors constructed as follows for
APK z. Let O be the entire set of opcodes used by Dalvik

bytecode [2]. For each method in APK z’s disassembled
Smali code, we count the occurrence of each 2-gram op-
code sequence. The count feature vector Q%° is constructed
by aggregating these counts over all the methods in the
Smali code for each 2-gram opcode sequence. Let the ¢-
th feature of Q2 be (a¢,b:), where a; € O and b; € O.
To evade the 2-gram opcode classifier, we define list
I in Algorithm 1 to be [(Inc, Dec), (Inc, Null)], where
function Null does nothing.

Implementation of Inc(z,t,d): We add d new meth-
ods with different names into the Smali code disassem-
bled from instance z. Each of these d new methods
contains two dummy instructions with opcodes a; and
b;, respectively. For either of these dummy instructions,
its dependant data are also provided within the same
method if necessary.

Implementation of Dec(x,t,d): We search for d con-
secutive instructions with opcodes a; and b; in the Smali
code of instance =z and for each one found, a NOP
instruction is added between them. If either a; or b; is
already NOP, this procedure is ignored.

The Dec procedure described above has the side effect
of increasing the occurrences of (a;, NOP) and (NOP, b;)
in the new variant, suggesting that the feature vector
of the new variant may not match exactly the intended
value. To address this issue, the mutation algorithm
performs another round of search with the same Inc
function but replacing Dec with the Nuil function.

6.3 API call classifier

For the API call classifier, we consider those types
of APIs providing significant semantic information
about Android applications’ behaviors, which include
application-specific resources APIs, Android framework
resources APIs, DVM related resources APIs, system
resources APIs, and utilities APIs [10]. For each of these
APIs, the count feature vector Q% extracted from instance
x includes the number of times it has been called in z’s
disassembled Smali code. Let A = {A;},<;<|4 denote an
ordered set of significant APIs considered for training the
API call classifier. Q%°[t] then gives the number of times
API A, has been called by instance z in its Smali code.

To evade the API call classifier, we define list T in
Algorithm 1 to be [(Inc, Dec)].

Implementation of Inc(z,t,d): We add a new method,
which makes d calls to API A;.

Implementation of Dec(z,t,d): We search for d calls
to API A; in instance z’s Smali code and for each one dis-
covered, we apply the reflection obfuscation technique to
obscure the call. According to the study in [22], reflection
has been applied by 48.3% of Android applications in
Google Play, 49.7% of those downloaded from third-
party markets, and 51.0% of Android malware, suggest-
ing that its use is not a strong malware indicator.

Reflection can be performed through a sequence of
Class.ForName (), getMethod(), and invoke () op-
erations, each of which is called by invoke-static or

invoke-virtual in the added Smali code [22]. How-
ever, using invoke-kind directly for these operations,
where kind indicates the kind of invocation (i.e., virtual,
static, super, direct, or interface), is constrained because
the numeric register indices for their arguments must
fit within four bits. For example, consider the following
simple Smali code (mut is the class name):

.method public static a(I)V
.locals 100

invoke-static{p0O}, Lmut;->b(I)V

The above Smali code cannot be assembled because reg-
ister p0 storing the input argument provided to method
a is equivalent to register v100, whose register index
cannot fit within four bits.

Therefore, when we construct arguments for the
invoke-kind calls needed by reflection, the use of extra
registers to store them may violate the aforementioned
constraint. To circumvent this issue our implementation
uses invoke-kind/range, which allows the register
index to be as large as 65535 (i.e., 16 bits). A call to
invoke-kind/range takes registers with a continuous
range of indices as its input arguments. When prepar-
ing the arguments for getMethod () and invoke ()
in reflection, we use new-array, which requires one
extra register whose index can be fit within four bits.
Due to this, our current implementation can obfuscate
any calls to API A, in the original Smali code that are
done through invoke-static or invoke-virtual
and made by the methods using at most 15 registers. It
is thus better than obfuscapk, which requires four extra
4-bit registers to reflect an API call [15].

6.4 FCG classifier

Given the FCG of instance z, the hash label of each node
is computed according to Eq. (1). The count feature vector
Q% includes the occurrence of each hash label derived
from the FCG of instance z. To evade the FCG classifier,
we define list " in Algorithm 1 to be [(Inc, Dec)).

Implementation of Inc(x,t,d): This procedure in-
creases the occurrences of the t-th hash label by d.
Examination of the FCG classifier’s source code [25]
reveals that the neighboring nodes of v, V,, includes
only those following outgoing edges in the FCG (i.e., the
methods called by v). Our implementation of the evasion
attack is faithful to this definition.

For ease of presentation, let I, denote a label rep-
resented by a bit vector with all 0’s except its k-th
element being 1. The original work [24] defined 15 label
categories. For each category, we define a separate label
method. For example, for the move category (bit 2), we add
the following label method whose method name label2
indicates bit 2 used for this category:

.method public static label2 ()V
.locals 50
.prologue
move v0, vl

.end method

As it does not call any other methods, its label is I>.
The following method has an empty hash label:

.method static public emptylabel ()V
.locals 2
invoke-static {},

.end method

Lmut; —>dupld () V

As it calls another method with invoke-static, which
belongs to category invoke (bit 13), its original label
is I;3. Method dupl4 is a duplicate of label method
labell4 with a different name. According to Eq. (1)
its new label after hashing is given by: r(I13) & I14 = 0.

We can adapt method emptylabel to achieve any
target label h; after the hashing operation given in
Eq. (1): if its i-th bit is 1, meaning presence of instructions
falling into the i-th label category, we add the following
code after the invoke-static instruction in the code
body of method emptylabel:

invoke-static {}, Lmut;->label[i] ()V

where [i] is substituted with the value of i (1 < i < 15).
The purpose of using dupl4 in method emptylabel
is to deal with the complication when bit 13 (invoke) is
set in target label h;: using dup14 ensures that the new
method adapted from emptylabel has one outgoing
edge to dupl4 and another one to label14. Otherwise,
if 1abell4 is used at both places, only one outgoing
edge is added to 1abell4, which does not achieve the
effect of an empty original label. It is easy to verify
that the hash label of the new method adapted from
emptylabel must be h;. To increase the occurrence of h;
by d, we can duplicate this method with different names.
Implementation of Dec(x,t,d): Let h, be the t-th hash
label for H. We first search the FCG of instance z to
find d methods whose hash labels are all h;. For each of
these methods discovered, we inject some dummy code
to change its hash label to an insignificant hash label.
An insignificant hash label means any one that does not
belong to the top K ones found by the LIME tool.

Consider method v whose hash label is h;. Suppose
that our goal is to change its hash label to a target
insignificant label, hy. Given the way in which the
hash label is calculated in Eq. (1), we make up for
the difference between h; and hy, which is h; @ hy as
follows: for each bit in h; ® hy that is set, we invoke
a corresponding label function as discussed earlier. For
instance, if the eighth bit in h;@hy is 1, we invoke a label
method containing an instruction that falls into category
jump in method v.

However, we need to deal with a couple of compli-
cations. First, the added code should never be executed
so it is unable to change the behavior of the original
malware. This can be achieved by adding a check before
the new code block whose precondition is never satis-
fied. Second, the original label of method v is changed
because it calls extra label methods and adds the check
to ensure that these label methods are never executed.

In our implementation, we use the following code
snippet to address these two issues:

const/4 v0, 0x5
if-egz v0, :cond_mutation
:cond_mutation

invoke-static {},
invoke-static {},
invoke-static {},

Lmut; ->dup3 () V
Lmut; —>dupl0 () V
Lmut; —>dupld () V

The code after the if-eqgz instruction is never ex-
ecuted because the value stored in register v0 is not
zero. The label category bits set for the above code block
include 2 (move), 9 (branch), and 13 (invoke). If the
original code of method v does not include any instruc-
tions falling into these categories, adding the above code
changes the original label of method v. After the rotate
operation in Eq. (1), these bits become 3, 10, and 14.
Therefore, if adding the above code flips a bit in the
original label of method v, we invoke a corresponding
label method (i.e., 1abel3, labell0, or labell4) to
cancel out the side effect with the XOR operation.

Following the above code snippet, we can invoke the
other label methods based on h;®h; as discussed earlier.
As the precondition for checking is never satisfied, these
added label methods are not executed at run time. Note
that in the above code snippet methods dup3, dupl0,
and dupl4 are duplicates of label methods label3,
labell0, and labell4, respectively, with different
names. This ensures that separate edges are added from
method v to these newly inserted label methods in the
FCG of the new variant.

7 EVASION OF INDIVIDUAL CLASSIFIERS

To evaluate the effectiveness of EAGLE attacks, we use
two Android APK datasets, whose statistics are summa-
rized in Table 1. The Android malware in Dataset I are
obtained from work [62], and those in Dataset II from
work [58]. The details about how the malware samples
were collected can be found in the original papers, re-
spectively. Benign samples were randomly chosen from
a dataset downloaded from Google Play. We train two
types of classifiers: (1) Random Forest (RF): We use scikit-
learn’s implementation with its default settings [3]; (2)
Multilayer Perceptron (MP): We use PyTorch [4] to build
a multilayer perceptron neural network with one input
layer, four hidden layers, and one output layer. The
four hidden layers have 512, 256, 128, and 64 neurons,
respectively. The loss function is BCEWithLogitsLoss
and the optimizer is the Adam algorithm. Each model is
trained with five epochs.

The classification performances of both RF and MP
models on the two datasets are presented in Table 2.
From the results, we can see that both models lead to
F1 scores higher than 0.91 in all scenarios with only one
exception (the F1 score of the MP model on the 2-gram
opcode features for Dataset II is 0.8873). Moreover, the
RF model outperforms the MP model in all cases. The

10

2000-
%1750
2
51500
3
< 1250

EEl Feature extraction

Z EEH LIME
Bl Mutation

-
o
IS
=)

750
500
250

Execution tim

Target Classifier

Fig. 3. Execution time breakdown in EAGLE attacks
(QP*: PERM, Q°¢: OPCODE, Q*°: API, Q9: FCG)

classification results for Dataset I are better than those
for Dataset II, probably because the malware samples in
the latter (71 families) are more diverse than those in the
former (47 families).

In all our experiments, the default settings of the
parameters in a EAGLE attack (see Figure 2 and Algo-
rithm 1) are given as follows: n = 10, Ko = 100, § = 100,
a =2, and 2,4, = 16.

7.1 Evasion effectiveness

For each malware family we randomly choose 10 sam-
ples for EAGLE attacks. If there are fewer than 10
samples in a family all of them are chosen. Hence, for
Dataset I and II, 253 and 630 malware samples are chosen
to perform the attacks, respectively. Table 3 shows the
evasion results of EAGLE attacks against the RF and
MP models for the four types of count features extracted.
We observe that for both datasets, the successful evasion
rates are high, ranging from 92.4% to 100%. For all
classifier types except FCG, the evasion rate on Dataset
I is higher than that on Dataset II, possibly because the
latter contains more malware families than the former.

Recall that the mutation module is invoked iteratively
to search for evasive variants (see Figure 2). Table 3
includes the mean number of iterations needed to find an
evasive variant as well as its standard deviation. In most
cases it takes more iterations to evade a RF classifier than
its MP counterpart, regardless of the type of features
used for classification. Also in most cases it takes more
iterations to evade a malware classifier trained from 2-
gram opcode features than those from other features,
regardless of the classification model used.

7.2 [Execution time

We next study how much time is spent on each of the
three modules in an EAGLE attack shown in Figure 2:
feature extraction, LIME, and mutation. We randomly
choose a malware sample from Dataset I and the evasion
attack is launched against eight classifiers trained with
two classification models (RF and MP) and four feature
types. Each EAGLE attack is performed five times using
a commodity workstation that has an AMD Ryzen 7 2700
8-Core Processor and 16GB RAM.

11

Dataset | Number of samples | Malware Number of Features
Benign | Malicious | Families | Permission (QP'?) | 2-gram opcode (Q°°) | API Call (Q%°) | FCG (Q9°)
I 2000 1260 47 457 20192 961 32768
1I 2000 1530 71 457 21773 1142 32768
TABLE 1
Statistics of the two datasets used in our experiments
Model Permission (QP-?) 2-Gram Opcode (Q° ‘) API Call (Q*©) Function Call Graph (Q9°)
Precision | Recall F1 Precision | Recall Precision | Recall F1 Precision | Recall F1
I RF 0.9773 0.9563 | 0.9667 0.9974 0.9546 0.9755 0.9975 0.9694 | 0.9832 0.9965 0.9190 | 0.9561
MP 0.9085 0.9456 | 0.9267 0.8886 0.9493 | 0.9136 0.8828 0.9515 | 0.9129 0.9261 0.9468 | 0.9360
il RF 0.9350 0.9348 | 0.9348 0.9257 0.9684 | 0.9464 0.9623 0.9700 | 0.9661 0.8675 0.9750 | 0.9166
MP 0.9203 0.9280 | 0.9241 0.8385 0.9562 | 0.8873 0.9199 0.9475 | 0.9329 0.8845 0.9478 | 09113
TABLE 2
Classification performances of individual classifiers trained from both datasets
Model Permission (QP'?) 2-Gram Opcode (Q°) API Call (Q*°) FCG (Q9°)
EvasionRate | #iterations | EvasionRate | #iterations | EvasionRate | #iterations | EvasionRate | #iterations
I RF 100% 7.94/4.00 100% 16.00/6.84 100% 3.92/1.46 93.2% 10.52/7.42
MP 100% 2.64/0.99 98.0% 4.04/3.41 96.0% 2.79/0.49 92.4% 3.71/1.63
il RF 97.6% 10.50/3.29 94.7% 2.90/1.30 95.3% 13.07/6.13 95.3% 7.52/4.87
MP 97.6% 2.73/1.04 95.2% 13.29/9.26 94.2% 2.93/0.42 94.7% 7.65/7.76
TABLE 3

Evasion results of individual classifiers. For "#iterations”, 2:/y gives mean = and standard deviation .

0.8

baseline
Zmax=64
a=4

n=20
6=50

AERE

Probility
o
o

0.5 \(

0 3 6 9 12 15 18
Iteration Number

(1) Random Forest

baseline
Zmax=64
a=4
n=20
6=50

Probility

0.5 A) ® X

o 5 10 15 20 25 30 35
Iteration Number

(2) Multilayer Perceptron

Fig. 4. Effects of algorithm parameters on search for evasive samples. Iteration 0 means the original malware sample.

The average execution time taken by each of these
EAGLE attacks is depicted in Figure 3. Clearly, even
using the same malware instance, the execution time of
each attack varies significantly with the target classifier.
The attack against the RF model trained from FCG
features takes an average execution time that is two
orders of magnitude longer than that taken against the
MP model trained from API call features. Generally
speaking, attacking the RF model takes longer time than
doing it against the MP model, when the same type of
malware features is used to train the model. Moreover,
the order of average execution time in attacking the
target classifier trained from the four types of malware
features is consistent over the two classification models.

Regarding the execution time used by each compo-
nent, we make the following observations. First, the time
spent on feature extraction, which varies from about 2.35
seconds (MP/API) to 47.22 seconds (RF/OPCODE), is

short with respect to the times spent on the other two
modules in all cases. Second, in the three longest EAGLE
attacks (i.e., RF/OPCODE, RF/FCG, and MP/ECQG),
LIME takes the majority of the execution time. Partic-
ularly in the attack against the RF/FCG classifier, 66.4%
of the execution time is used by the LIME tool to find the
top count features in explaining the prediction results of
the current working instances.

7.3 Parameter effects

To study the effects of algorithm parameters, we ran-
domly pick a malware sample from Dataset II to evade
both RF and MP classifiers trained from 2-gram opcode
features. Table 3 tells us that on average it takes a
relatively large number of iterations to find an evasive
variant in both cases. In each experiment, we vary only
one parameter in the baseline case while keeping the
others intact. Figure 4 shows how the malicious proba-

bility score of the best variant found in an EAGLE attack
evolves with the iteration number.

From the results we make the following observations.
First, increasing parameter n in the mutation algorithm
from 10 to 20 helps reduce the number of iterations
needed to find successful evasive variants, irrespective
of the target classification model. This agrees with our
intuition because testing more variants in each itera-
tion improves the chance of finding a best one with a
lower malicious probability score by the target model.
Second, increasing parameter 2., from 16 to 64 also
helps reduce the number of iterations needed to find
a successful evasive sample. The reason is similar as in
the previous case: a larger z,,, allows each iteration
of the mutation algorithm to test more variants whose
features are perturbed from a larger range. Third, the
effects of increasing parameter o can be mixed. On one
hand, a larger o perturbs the selected features of the
current instance within a larger range at each round
of the while loop at Line 5 of Algorithm 1, suggesting
that it is possible to find a better variant with a lower
malicious probability score, which is returned if it is
better than the current working instance z (Lines 17-
18). On the other hand, a larger o means that fewer
ranges are considered in each iteration of the mutation
algorithm given the same z,,q,. Figure 4(1) shows that
for the RF model, increasing « from 2 to 4 helps reduce
the malicious probability score of the best variant found
in each iteration more quickly until an evasive sample
is discovered successfully, but for the MP model, doing
so only helps for the first 25 iterations. Fourth, when
an iteration fails to find a better variant with a lower
malicious probability score than the current working
instance, the mutation module indicates that the next
iteration should increase the number of top features
returned by the LIME tool by § so that more features
can be perturbed on the same working instance. For both
RF and MP, reducing ¢ from 100 to 50 slows down the
search for a variant that can bypass the detection.

7.4 Comparison of attack strategies

We next perform experiments to compare the perfor-
mances of EAGLE attacks against those of two alterna-
tive approaches, Random and Top-N.

Random: In each iteration, we randomly choose 100
features. For each of these features, we randomly set
their values between 0 and 100. We then mutate the
current malware sample to match the targeted feature
values, using the same implementation methods as dis-
cussed in Section 6 to generate practical malware vari-
ants. As in the EAGLE attacks, each iteration generates
10 such variants randomly and picks the one with the
lowest malicious probability score. If the current iteration
fails to generate a practical sample for a successful
evasion attack, the aforementioned process repeats by
continuing to mutate this best variant.

Top-N: We first rank all the features based on their
importance. More specifically, for the Random Forest

12

classifier, we rank features based on mean decrease in
impurity [5] and for the MLP classifier, we rank features
based on their permutation importance [6]. In each iter-
ation, we select the top 100 features that have not been
mutated yet. When a feature is chosen for mutation, its
value is randomly chosen between 0 and 100. As in the
EAGLE attacks, each iteration generates 10 such variants
randomly and picks the one with the lowest malicious
probability score. If the current iteration fails to find a
successful evasion attack, the next top 100 features will
be considered in the new iteration, which continues to
mutate the best variant found from the previous round.

It is noted that for the Top-N mutation strategy, the
attacker needs to access malware and benign application
datasets for ranking the features. In our experiment we
consider the best case where the attacker uses exactly
the same dataset from which the classification models
are trained. For both the Random mutation strategy and
the EAGLE attacks, there is no such restriction.

For performance comparison, we use the same two
datasets shown in Table 1. To reduce the effects of
random noise, for each malware family considered, we
randomly select five samples for evasion attacks (if a
malware family contains fewer than five samples in the
dataset, we use all of them). In total, we have used 161
original malware samples from Dataset I and 350 ones
from Dataset II for evasion attacks.

For each malware sample, if an attack method consid-
ered fails to find a variant to evade the target classifier
successfully within 24 hours, we terminate the exper-
iment and treat the attack as unsuccessful. Moreover,
as shown in Section 6, our implementation adds new
methods to the original sample. However, the Dalvik
Executable specification limits the total number of meth-
ods that can be referenced within a single DEX file to
be at most 65,536 [7]. Therefore, when searching for a
practical adversarial example for evasion attacks, if the
total number of methods in the mutated variant exceeds
this limit, we also treat it as an unsuccessful attack.

Table 4 summarizes the performance results of the
three attack strategies on both datasets. We make the
following observations from Table 4. First, for Dataset
II, none of the attack methods can achieve a successful
evasion rate of 100%, regardless of the target classifiers.
Close examination reveals that there are 10 malware
samples whose Smali code cannot be recompiled to
generate practical variants. Hence, in the best case where
successful evasion attacks can be carried out for all other
samples, the successful evasion rate is at most 97.1%
(i.e., 340 out of 350). Second, for some feature types their
corresponding classifiers are easier to evade than others.
For permission features, each attack method can always
find a successful evasion attack, except for those samples
in Dataset II whose Smali code cannot be recompiled.
Classifiers trained on API call features are also relatively
easy to evade: in all the cases the successful evasion rates
are higher than 90%, except one exception where the
Top-N attack method is applied on the Random Forest

13

Successful evasion rates of EAGLE attacks and two alternative attack strategies.

Model Permission (QP-?) 2-Gram Opcode (Q°:€) API Call (Q*°) Function Call Graph (Q9°°)

Random | Top-N [EAGLE | Random | Top-N [EAGLE | Random | Top-N [EAGLE | Random [Top-N [EAGLE

I RF 100% 100% 100% 15.5% 80.1% 100% 99.4% 98.8% 100% 6.8% 5.0% 95.0%

MP 100% 100% 100% 100% 100% 100% 100% 100% 100% 95.0% 19.3% 95.0%

I RF 97.1% 97.1% 97.1% 13.4% 86.0% 94.6% 94.6% 52.9% 96.2% 8.9% 90.6% 96.3%

MP 97.1% 97.1% 97.1% 90.3% 92.9% 93.1% 94.9% 91.1% 97.1% 43.4% 22.0% 94.6%
TABLE 4

classifier for Dataset II and the successful evasion rate is
achieved at only 52.9%. In contrast, classifiers trained
on opcode features and FCG features can be difficult
to evade; in some cases the successful evasion rate can
be even lower than 10.0%. Third, in most cases, the MP
classifier is not harder to evade than the RF classifier,
regardless of the attack method or the feature type.
One exception is the Top-N attack method, which has
a much higher successful evasion rate against the RF
classifier (90.6%) than against the MP classifier (22.0%)
when applied on Dataset II.

More importantly, the EAGLE attack can achieve high
successful evasion rates consistently, regardless of the
target classifier or the dataset used. In all cases, its
successful evasion rate is always higher than 90%. In
comparison, both the other two attack methods have
poor performances in some cases. For easy explanation,
those under-performing cases with successful evasion
rates lower than 90% are highlighted in bold in Table 4.
Among all 16 cases for each attack method (i.e., four
feature types, two datasets, and two classification mod-
els), both the Random and the Top-N attack methods
have five under-performing scenarios. In some of them,
the successful evasion rate can be as low as 6.8% and
5.0% for the Random and the Top-N attack methods,
respectively. These results demonstrate that the EAGLE
attack is indeed a more effective method for evasion
attacks than the other two.

7.5 LIME vs. SHAP

The EAGLE attacks leverage local explanation results to
perturb malware samples in search for evasive variants.
Although LIME is used in this work, in principle other
local explanation tools can also be used for EAGLE
attacks. In a new set of experiments we replace LIME
with SHAP [8] in our implementation of EAGLE attacks.
When calling SHAP for local explanations, we use its
default permutation explainer and set the maximum
number of evaluations to be 2 x n + 1, where n is
the number of features, as recommended by the tool’s
manual. As the explanation result returned by SHAP
does not include a range for each feature, we randomly
perturb the value of a feature between 0 and 100 if it is
ranked among the top K important ones by the tool.
The experiments are set up in the same manner as
in Section 7.4. From the experimental results, we make
the following observations. First, when the number of
features is large, the execution performance of SHAP
is poor, which is consistent with the observations made

Tool Random Forest Multilayer Perceptron
Permission | API Call | Permission | API Call
1 LIME 100% 100% 100% 100%
SHAP 100% 98.1% 100% 40.1%
II | LIME 97.1% 96.2% 97.1% 97.1%
SHAP 39.7% 971% 971% 93.7%
TABLE 5

Comparison of successful evasion rates with different
local explanation tools. The results of using LIME are
copied from the EAGLE column in Table 4.

in [28]. Even using a machine with 132G RAM we are
unable to run the SHAP tool when the target malware
classifier uses 2-gram opcode or FCG features due to lack
of memory. Second, when target malware classifier uses
the permission or the API call features, the comparison
results on successful evasion rates using SHAP and
LIME are reported in Table 5. We observe that while
LIME performs consistently well in all the four cases,
SHAP performs poorly in two of them (the MP classi-
fier trained on API call features for Dataset I and the
RF classifier trained on permission features for Dataset
II). The poor performance of SHAP may result from
the following two key differences. First, unlike LIME,
it does not include the range of feature values in its
explanation results, which thus lacks guidance on how
an EAGLE attack should perturb an important feature.
Second, the SHAP explainer is trained globally through
averaging the features” marginal contributions across all
permutations and then applied for local explanations
at individual samples. However, perturbing the most
important features globally may not be the most effective
way in flipping the classifier’s decision on detecting the
malware sample in its local neighborhood.

8 ATTACK TRANSFERABILITY

In the previous section we have evaluated the robustness
of RF or MP classifiers trained from QP*, Q°¢, Q*¢, and
Q7 ¢ against EAGLE attacks. For the latter three, we can
derive the following feature types with dependencies
among individual features:

« For each counter feature type O%¢, where t €
{0,a, g}, we can also construct a corresponding fre-
quency feature vector Q%Y for APK instance z, where
QL) = OL°li]/ 32, Okel5). Hence, the frequency
feature vectors introduce dependencies among indi-
vidual feature values with a common normalization
factor, which is their sum.

e Given the FCG of instance z, the hash label of each
of its nodes is computed according to Eq. (1). The

14

Surrogate Target classifier
Classifier Random Forest Multilayer Perceptron SVC
Qo,c Qo,j Qa,c Qa,f Qg,c Qg,j Qo,c Qo,f Qa,c Qa,f Qg,c Qg,f Qg,b
RF/Q°¢ - (27/47 5/47 1/47 32/47 | 45/47 | 147/47 | 47/47 2/47 2/47 38/47 | 47/47 | 12/47
RF/Q%° 1/47 11/47 — (25/47 3/47 18/47 | 20/47 | 23/47 | [44/47 | 43/47 | 22/47 | 15/47 0/47
I RF/Q9¢ 1/47 16/47 5/47 1/47 — (33747 | 34/47 | 40/47 2/47 2/47 [33/47 | 47/47 | 13747
MP/Q°c | {1/47 4/47 5/47 1/47 8/47 11/47 — (35/47 2/47 2/47 30/47 | 29/47 2/47
MP/Q%c 1/47 11747 | {12/47 | 28/47 2/47 20/47 | 20/47 | 21/47 — (d6/47 | 21/47 | 11/47 0/47
MP/Q9° 1/47 4/47 5/47 1/47 {6/47 | 16/47 | 36/47 | 33/47 2/47 2/47 — (34747 0/47
RF/Q°¢ — (19/71 2/71 0/71 49/71 | 65/71 [8/71 1/71 8/71 4/71 57/71 | 44/71 | 26/71
RF/Q%° 2/71 4/71 — (32/71 1/71 12/71 7771 2/71 [61/71 1/71 14/71 7/71 0/71
II [RF/Q9° 2/71 4771 1/71 0/71 — 25/71 | 8/71 2/71 7771 3/71 [26/71 | 36/71 | 13/71
MP/Q°° | {4/71 5/71 2/71 0/71 11/71 | 19/71 — (14/71 7/71 4771 30/71 | 27/71 4771
MP/Q%*° 2/71 0/71 {2/711 0/71 6/71 1/71 8/71 3/71 — (64/71 | 13/71 1/71 0/71
MP/Q9° 2/71 4/71 2/71 0/71 {171 9/71 8/71 2/71 7771 4/71 — (53/71 8/71

TABLE 6

Number of successful cases in transferred EAGLE attacks. The bracket symbol indicates the attack type as follows.
‘(’: count-to-frequency attacks; ‘[': RF-to-MP attacks; ‘{’: MP-to-RF attacks.

Random Forest Multilayer Perceptron SVC

Qo7 Q™7 Q9T Qo7 Q™7 Q97T Q9°

I] 09583 | 0.9708 | 0.9532 | 0.9558 | 0.9399 | 0.9310 | 0.9481

II | 09257 | 0.9556 | 0.8531 | 0.9057 | 0.9129 | 0.8907 | 0.9199
TABLE 7

F-1 scores of classifiers trained from dependent features

original classifier in [24] uses a binary representation
of vector H as shown in Eq. (2). Let Q% be this
binary feature vector used by the original approach.
The unique coding scheme for vector H allows
dependencies among feature values in Q%°.

Table 7 presents the F-1 scores of different classifiers
trained from dependent feature types discussed above.
We observe that these classification performances are
comparable to those models trained from count feature
vectors shown in Table 2. Compared with counter fea-
ture vectors, dependent feature vectors make it difficult
to perturb the feature values within targeted ranges
through Inc or Dec operations. Consider an example
where the LIME result suggests that it is necessary to
increase the frequencies of both API calls A and B
above 64 and 6p, respectively. Suppose that we first
add more API calls of A to make its frequency higher
than 04. If we next add more API calls of B to make
its frequency higher than 6, these added calls increase
the total number of API calls and may bring down the
frequency of API call A below 64.

We next study the transferability of attacks across
different malware classifiers. Although it is difficult to
attack classifiers trained from dependent features, we
can use one trained from counter feature vectors as a
surrogate model to generate evasive samples, which are
further used to attack another classifier. Due to the large
number of experiments, for both datasets, we randomly
choose one malware sample from each family to perform
EAGLE attacks. Table 6 shows the transferability of
evasion attacks across different malware classifiers.

Count-to-frequency attacks: These attacks use a sur-
rogate model trained from count feature vectors to find
evasive samples, which are further used to attack the
classifier trained from the corresponding frequency fea-

ture vectors. We observe that the transferability of count-
to-frequency attacks is modest with an average success-
ful rate of 58.6% over all cases. These results show that
although classifiers trained from frequency feature vec-
tors are hard to attack directly by our proposed scheme,
it is possible to evade them indirectly with a modest
successful rate through count-to-frequency attacks.

Cross-model attacks. We consider malware classifiers
trained from counter feature vectors with two different
models, RF and MP. In RF-to-MP attacks, the evasion
attack is performed against a surrogate RF model to
find evasive samples, which are further used to attack
the corresponding MP model. The evasion results of
RE-to-MP attacks shown in Table 6 have an average
successful rate of 66.3% over all cases. On the other side,
in MP-to-RF attacks, the evasion attack uses a surrogate
MP model to find evasive samples and then use these
samples to attack the corresponding RF model. The
average successful rate of MP-to-RF attacks, which is
miserably 8.4%, is much lower than that of RF-to-MP
attacks. Our results demonstrate that RF is superior to
MP for Android malware classification: RF has a slight
classification performance advantage over MP (Table 2),
it takes longer time and more iterations to attack an RF
classifier than its MP counterpart (Table 3 and Figure 3),
and RF is more robust than MP against cross-model
attacks (Table 6).

Cross-feature-type attacks. We consider a target mal-
ware classifier trained from feature type Q"¢ where
t € {o,a,g}. The evasive samples are obtained from
attacking a surrogate model trained from feature type
Q"¢ where t' # t. When the target classifier uses the
RF model, such cross-feature-type attacks mostly have
low successful rates except the case with ¢ = g, where
evasive samples found to attack a surrogate RF model
trained from Q¢ can evade the target RF model trained
from Q9¢ with a relatively high successful rate (68.1%
for Dataset I and 69.0% for Dataset II).

When the target classifier uses the MP model, such
cross-feature-type attacks can have high successful rates
for both ¢ = o0 and ¢t = g. For example, a target MP
classifier trained from Q¢ can be indirectly attacked

15

Surrogate Target Classifier: Random Forest Target Classifier: Multilayer Perceptron
Classifier Qp’b, QO’C, Qa,c’ Qg,c Qp’b, Qo,j’ Qa,j" Qg,j‘ Qp’b, QO’C, Qa,c’ Qg,c Qp,b’ QOJ, Qa,f’ ngf
RF/QP?-Q°°-Q%¢-Q9° 37/41/47 (20/41/47 [35/41/47 37/41/47
I [RF/Q9°-Q%°-Q°%°-QP? 44/44/47 (21/44/47 [41/44/47 40/44/47
MP/QPP-Qoc-Q%c-Q-° {0/47/47 8/47/47 47/47]47 (38/47/47
MP/Q9-¢-Q%°-Q°°-QP-° {0/47/47 10/47/47 47/47/47 (36/47/47
RE/QPP-Q°c-Q%°-Q9-° 62/67/71 (8167171 [5/67/71 0/67/71
II | RF/Q9°-Q%°-Q%°-QPP 65/67/71 (10/67/71 [6/67/71 0/67/71
MP/QP?-Q°°-Q%°-Q9-¢ {0/66/71 0/66/71 50/66/71 (3/66/71
MP/Q9-°-Q%°-Q°°-QP° {0/64/71 0/64/71 53/64/71 (3/64/71
TABLE 8

Evasion attacks against ensemble classifiers. =/y/z in each entry means: x = number of successful evasion attacks

against the target ensembile classifier; y = number of successful sequential attacks against the surrogate ensemble

classifier; z = number of original malware instances. The bracket symbol indicates the attack type as follows. None:
direct attacks; ‘(’: count-to-frequency attacks; ': RF-to-MP attacks; ‘{’: MP-to-RF attacks.

with evasive samples found to attack a surrogate MP
model trained from Q9¢ with a successful rate of 76.60%
for Dataset I, a target MP classifier trained from Q9°
can be indirectly attacked by evasive samples found to
attack a surrogate MP model trained from Q¢ with
a successful rate of 63.8% for Dataset I and with a
successful rate of 42.3% for Dataset II.

These results suggest that it is difficult to evade
API call classifiers through cross-feature-type attacks,
which agrees well with our intuition. This also holds
for permission classifiers because permission features are
extracted separately from manifest files. In contrast, 2-
gram opcode classifiers and FCG classifiers both rely
on instruction-level features, which may lead to strong
correlations among their prediction results.

Table 6 reveals that the original classifier [24], which is
a linear SVC classifier trained on binary feature vector
Q9*, is relatively robust against attack samples trans-
ferred from other models. In best cases, the successful
rate is 27.7% when a surrogate RF model trained from
Q7¢ is used for Dataset I and 36.6% when a surrogate
RF model trained from Q°° is used for Dataset II.

9 EVASION OF ENSEMBLE CLASSIFIER

In this section we study the robustness of ensem-
ble classifiers against EAGLE attacks. We consider
two sets of feature vectors, Q,. = {QP°, Q°°,
Q*¢,Q9°} (permissions and count features) and Q,; =
{QP*,Q*F,Q+7,Q97} (permissions and frequency fea-
tures). For each Q where Q € {Q,., Q,.}, the ensemble
classifier is trained with model f as follows: for each
feature type in Q, we train an individual classifier of
model f; given APK instance z, if and only if any of
these individual classifiers detects it to be malicious,
the ensemble classifier reports it as malicious. Hence, in
order to fly under the radar against such an ensemble
classifier, the adversarial sample has to evade the detec-
tion of every individual classifier involved.

To study the robustness of ensemble classifiers as
constructed, we consider evasion attacks performed in
a sequential manner against the individual classifiers
trained from Q. as follows. We use EAGLE attacks to
mutate the original sample zy to find an adversarial

sample z; that can evade the first classifier in the se-
quence, mutate z; to find an adversarial sample z, that
can evade the second classifier in the sequence, and so
on. In our experiments, we consider the following two
sequences: QPP-Q%¢-Q°-Q%¢ and QI°-Q¥°-Q%c-QPP.

For both datasets, we randomly choose a malware
sample from each family to perform EAGLE attacks
against ensemble classifiers. Table 8 summarizes our
results of evasion attacks.

Direct attacks. In a direct attack the surrogate and
target classifiers are trained with the same model and
the same set of features. The results of direct attacks are
shown in green in Table 8. Clearly, the successful rates
of direct attacks are high in all cases, varying from 78.7%
to 100%. It is also noted that using the attack sequence
QI°-Q¥°-Q2°-QP* leads to a slightly higher successful
rate than using its reverse sequence.

Count-to-frequency attacks. In a count-to-frequency
attack the surrogate classifier is trained from permis-
sion/count features while the target classifier uses the
same model but is trained from permission/frequency
features. The results of count-to-frequency attacks are
shown in blue in Table 8. We observe that the successful
rates with Dataset I, varying from 42.6% to 80.9%, are
much higher than those with Dataset II, which vary from
4.2% to 14.1%. These results are consistent with what
we have observed from Table 5: the successful rates of
for count-to-frequency attacks are higher with Dataset I
than those with Dataset II. When the attack transferabil-
ity over individual classifiers is poor (e.g., 19/71 and
14/71 for the RF and MP classifier, respectively, with
Dataset II), their accumulative effects further reduce the
successful rate of evading the ensemble classifier.

Cross-model attacks. In a cross-model attack, the sur-
rogate and target classifiers are trained from the same
set of features but with different models. In RF-to-MP
attacks, the surrogate classifier uses RF while the target
classifiers uses MP. The attack effects of RF-to-MP attacks
are shown in purple in Table 8. Clearly, Dataset I has
a much higher successful rate of RF-to-MP attacks than
Dataset II. This is unsurprising because from Table 5, we
observe that Dataset II has a poor successful rate of RF-
to-MP attacks for O%¢ (11.3%) and O9%¢ (36.6%), while

16

Random Forest

Multilayer Perceptron

Qp,b Qo,c Qa,c Qg,c

Qp,b QD’C Qa,c Qg,c

1/47 (2.1%) | 43/47 (91.5%) | 6/47 (12.8%) | 45/47 (95.7%)

19747 (404%) | 24747 (51.1%) | 12747 (25.5%) | 43/47 (91.5%)

I
T | 5/71 (7.0%) | 18/71 (254) | 0/71 (0.0%) | 34/71 (47.9%)

1771 (5.6%) | 53/71 (74.6%) | 5/71 (7.0%) | 53/71 (74.6%)

TABLE 9
Successful evasions against classifiers enhanced with adversarial training

Dataset I has a high successful rate of RF-to-MP attacks
in all cases, varying from 72.2% to 100%.

The results of MP-to-RF attacks, where the surrogate
classifiers use MP but the target classifiers use RF, are
shown in orange in Table 8. Our observation that none
of these MP-to-RF attacks have been successful is consis-
tent with poor transferability of MP-to-RF attacks with
individual classifiers as seen in Table 6.

10 DEFENSE IMPLICATIONS

EAGLE attacks focus on count features that can be
extracted from Android applications and use customized
Inc/Dec operations to modify original malware samples
in evasion attacks. Hence, one defense strategy against
EAGLE attacks is to use non-count features, or count
features whose values are hard to manipulate through
Inc/Dec operations. For instance, our experimental re-
sults in Section 8 show that simply using frequency
features can reduce the effectiveness of EAGLE attacks
significantly as the count-to-frequency attack transfer-
ability is only modest at an average successful evasion
rate of 58.6% in all cases. Moreover, the original FCG
classifier proposed in [24] does not use count features
due to its coding scheme for histogram H in Eq. (2). The
results shown in the last column of Table 6 suggests that
the performance of evading this classifier using EAGLE
attacks is poor with an average successful rate of only
12.3% among all cases. In addition to using dependent
feature values, another way of avoiding straightforward
count features is to increase uncertainty in extracted
feature values through randomization [13].

As shown in Section 6, EAGLE attacks rely upon
various obfuscation techniques to generate practical ad-
versarial examples. Previous work [55] has revealed that
obfuscations can leave ample traces useful for accurate
detection and family identification of Android malware.
It is thus possible to detect EAGLE attacks through
their obfuscation artifacts. For instance, when applying
EAGLE attacks against permission-based Android mal-
ware classifiers, they may lead to an issue of bloated
permissions due to addition of irrelevant permissions.
Similarly, as discussed in Section 6.4, the implementation
of EAGLE attacks against the FCG classifier introduces
extra labelling methods, which may be used as signa-
tures to detect the resulting adversarial examples.

Aside from enhanced features for defenses against EA-
GLE attacks, we can also improve the robustness of the
machine learning models used in Android malware clas-
sification. Our results presented in Sections 7 and 8 have
shown that different classifiers do not behave equally
well when faced with EAGLE attacks: the RF classifier

requires more time and iterations for a successful EAGLE
attack than the MP classifier and it is also more robust
against cross-model attacks than the latter.

Many defense methods against adversarial machine
learning attacks have been proposed previously. Due to
limited space we consider only adversarial training [56],
[26] as it can be applied directly on both the RF and MP
classifiers. In a new set of experiments, for each type
of malware classifiers trained, we add all the evasive
samples discovered by the EAGLE attacks against it
from the experiments done in Section 7.4 (i.e., Table 4)
to the corresponding training dataset and then retrain
the classification model. For each of these retrained
classifiers, we randomly choose a malware sample from
each family and perform the EAGLE attack against it.
Each experiment lasts at most 24 hours. Therefore if the
EAGLE attack cannot find an adversarial example within
24 hours, it is deemed as unsuccessful.

Table 9 depicts the effectiveness of adversarial training
in defending against EAGLE attacks. Clearly, for both
datasets, the adversarial training defense mechanism
is more effective against the permission and API call
classifiers than it against the 2-gram opcode and FCG
classifiers, regardless of the classification model used.
In contrast, the choices of classification model (RF or
MP) and dataset used for evaluation (I or II) have
mixed effects on the effectiveness of adversarial training
in defending against EAGLE attacks. From a defense
perspective, the results shown in Table 9 confirm the
importance of an ensemble approach to malware detec-
tion: although permission and API call features are easy
to obfuscate, the classifiers trained from such features
can still improve the overall robustness of the ensemble
classifier when hardened with adversarial training.

11

In this work we explore how EAGLE attacks leverage
local explanations to generate adversarial examples ca-
pable of evading Android malware classifiers trained on
count features. Using two Android malware datasets, we
extract four types of count features and train multiple
Android malware classifiers based on RF and MP mod-
els. Our results show that EAGLE attacks can be highly
effective at finding adversarial examples to evade these
classifiers. We also find that some of these evasive vari-
ants can be transferred to attack other malware classifiers
trained with different features or models successfully. We
further demonstrate that ensemble classifiers may still
be vulnerable to EAGLE attacks. We finally discuss the
defense implications against EAGLE attacks.

CONCLUSIONS AND FUTURE WORK

In the future we plan to address the limitations of
this work as follows. First, this study has considered
only four types of count features extracted from Android
applications. The rich information included with An-
droid applications suggest that a variety of other count
features, such as API sequences representing Complex-
Flows [51], can also be used for malware detection.
We will continue to study the effectiveness of EAGLE
attacks in evading these other malware classifiers. Sec-
ond, due to constant evolution of Android malware
attacks, predictive power of old malware classifiers may
deteriorate over time, leading to a so-called concept
drift phenomenon [52]. This work has evaluated the
effectiveness of EAGLE attacks with only two Android
malware datasets [62], [58]. We plan to investigate the
performance of such attacks with new Android malware
samples collected in the wild. Third, we have discussed
some defense strategies against EAGLE attacks and
shown the effectiveness of adversarial training. We plan
to conduct a systematic study on the performances of
other possible defense strategies in our future work.
Fourth, this work considers only EAGLE attacks against
malware classifiers trained from arbitrary count features.
For malware classifiers trained on feature embeddings
(e.g., node embeddings in Graph Neural Network mod-
els), although local explanation methods can also be used
to explain the importance of feature embeddings in indi-
vidual malware classifications, it is not straightforward
to map the suggested changes in feature embeddings
by local explanations to the practical modifications of
the original malware sample in evasion attacks. We plan
to explore this issue in depth in our future work. Fifth,
this work assumes that the attacker is able to evade any
anomaly detection method aimed to catch excessive soft
label queries generated by the local explanation tool in
an EAGLE attack. In our future work, we plan to investi-
gate how to make EAGLE attacks effective while limiting
the number of soft label queries requested by each attack
machine. Potential solutions include reuse of soft label
query results across different local explanations, distri-
bution of soft label queries to multiple attack machines,
and training of local surrogate models to replace the
targeted malware classifier. Last but not least, this study
has adopted LIME for EAGLE attacks. As explained in
Section 3.2, LIME needs to sample the neighborhood of
the data point to create a perturbed dataset, from which a
sparse linear model is trained for local explanation. Such
sampling-based local explanations can incur significant
overhead, as shown in Figure 3. In principle other local
explanation tools can also be used in EAGLE attacks.
For example, using LEMNA [28] instead of LIME may
provide more accurate guidance in sample mutation as
it groups adjacent features and trains a non-linear mix-
ture regression model. However, its local approximation
model is more complex and thus can take even longer
time to train. In the future we plan to study other local
explanation methods to further improve the efficiency of
EAGLE attacks.

17

ACKNOWLEDGMENTS

We thank the editors and the anonymous reviewers
for their constructive feedback. This work is partially
supported by the US National Science Foundation under
awards CNS-1943079 and CNS-1618631.

REFERENCES

[1] https://ibotpeaches.github.io/Apktool/.

[2] https://source.android.com/devices/tech/dalvik/dalvik-bytecode.

[3]1 https://scikit-learn.org/.

[4] https://pytorch.org.

[5] https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_
importances.html.

[6] https://eli5.readthedocs.io/en/latest/blackbox/permutation_importance.html.

[7]1 https://developer.android.com/studio/build/multidex.

[8] https://shap.readthedocs.io/en/latest/index.html.

[9] The Drebin Dataset. https://purplesec.us/resources/cyber-security-
statistics/.

[10] Y. Aafer, W. Du, and H. Yin. DroidAPIMiner: Mining API-level
features for robust malware detection in Android. In International
Conference on Security and Privacy in Communication Systems, pages
86-103. Springer, 2013.

[11] A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar,
and A. Mohaisen. Adversarial learning attacks on graph-based
iot malware detection systems. In International Conference on
Distributed Computing Systems (ICDCS’19). 1EEE, 2019.

[12] A. Al-Dujaili, A. Huang, E. Hemberg, and U.-M. O'Reilly. Ad-
versarial deep learning for robust detection of binary encoded
malware. In IEEE Security and Privacy Workshops (SPW’18), 2018.

[13] H. Alasmary, A. Abusnaina, R. Jang, M. Abuhamad, A. Anwar,
D. Nyang, and D. Mohaisen. Soteria: Detecting adversarial
examples in control flow graph-based malware classifiers. In
International Conference on Distributed Computing Systems, 2020.

[14] H. S. Anderson, A. Kharkar, B. Filar, D. Evans, and P. Roth.
Learning to evade static PE machine learning malware models
via reinforcement learning. arXiv preprint arXiv:1801.08917, 2018.

[15] S. Aonzo, G. C. Georgiu, L. Verderame, and A. Merlo. Obfuscapk:
An open-source black-box obfuscation tool for Android apps.
SoftwareX, 11:100403, 2020.

[16] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndi¢, P. Laskov,
G. Giacinto, and F. Roli. Evasion attacks against machine learning
at test time. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 387—402. Springer, 2013.

[17] B. Biggio and F. Roli. Wild patterns: Ten years after the rise of
adversarial machine learning. Pattern Recognition, 84, 2018.

[18] T. Chakraborty, F. Pierazzi, and V. Subrahmanian. Ec2: Ensem-
ble clustering and classification for predicting android malware
families. IEEE Transactions on Dependable and Secure Computing,
17(2):262-277, 2017.

[19] M. Cheng, T. Le, P-Y. Chen, J. Yi, H. Zhang, and C.-]. Hsieh.
Query-efficient hard-label black-box attack: An optimization-
based approach. arXiv preprint arXiv:1807.04457, 2018.

[20] A. Daniel, S. Michael, G. Hugo, and R. Konrad. Drebin: Efficient
and explainable detection of Android malware in your pocket”.
In Network and Distributed System Security Symposium, 2014.

[21] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, and F. Roli. Yes, machine learning can be
more secure! a case study on Android malware detection. IEEE
Transactions on Dependable and Secure Computing, 16(4), 2017.

[22] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, E Xu, K. Chen,
X. Wang, and K. Zhang. Understanding Android obfuscation
techniques: A large-scale investigation in the wild. In Interna-
tional Conference on Security and Privacy in Communication Systems.
Springer, 2018.

[23] M. Ficco. Malware analysis by combining multiple detectors and
observation windows. IEEE Transactions on Computers, 71(6), 2022.

[24] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck. Structural
detection of Android malware using embedded call graphs. In
ACM Workshop on Artificial Intelligence and Security, 2013.

[25] Github. Source code for paper ”Structural Analysis and Detection of
Android Malware”. https://github.com/hgascon/adagio.

[26] I]J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[27]

[28]

[29]

(30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

(44]

[45]

[46]

[47]

(48]

[49]

K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. Mc-
Daniel. Adversarial examples for malware detection. In European
Symposium on Research in Computer Security. Springer, 2017.

W. Guo, D. My, J. Xu, P. Su, G. Wang, and X. Xing. LEMNA:
Explaining deep learning based security applications. In ACM
Conference on Computer and Communications Security, 2018.

M. Hassen and P. K. Chan. Scalable function call graph-based
malware classification. In ACM Conference on Data and Application
Security and Privacy, 2017.

J. D. Herath, P. P. Wakodikar, P. Yang, and G. Yan. CFGExplainer:
Explaining Graph Neural Network-based malware classification
from control flow graphs. In Proceedings of the IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, 2022.

C.-Y. Huang, Y.-T. Tsai, and C.-H. Hsu. Performance evaluation
on permission-based detection for Android malware. In Advances
in Intelligent Systems and Applications: Volume II. Springer, 2013.
L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D.
Tygar. Adversarial machine learning. In Proceedings of the 4th
ACM Workshop on Security and Artificial Intelligence, 2011.

F. Idrees, M. Rajarajan, M. Conti, T. M. Chen, and Y. Rahulamath-
avan. Pindroid: A novel Android malware detection system using
ensemble learning methods. Computers & Security, 68:36—46, 2017.
B. Kang, S. Y. Yerima, K. McLaughlin, and S. Sezer. N-opcode
analysis for android malware classification and categorization. In
International Conference on Cyber Security and Protection of Digital
Services, pages 1-7. IEEE, 2016.

R. Killam, P. Cook, and N. Stakhanova. Android malware classifi-
cation through analysis of string literals. In Workshop Programme,
page 27, 2016.

Y. Kucuk and G. Yan. Deceiving portable executable malware
classifiers into targeted misclassification with practical adversarial
examples. In ACM Conference on Data and Application Security and
Privacy, 2020.

P. Liu, W. Wang, X. Luo, H. Wang, and C. Liu. Nsdroid: effi-
cient multi-classification of Android malware using neighborhood
signature in local function call graphs. International Journal of
Information Security, 20(1), 2021.

K. Lucas, M. Sharif, L. Bauer, M. K. Reiter, and S. Shintre. Mal-
ware makeover: breaking ml-based static analysis by modifying
executable bytes. In Proceedings of the 2021 ACM Asia Conference
on Computer and Communications Security, pages 744-758, 2021.
A. Machiry, N. Redini, E. Gustafson, Y. Fratantonio, Y. R. Choe,
C. Kruegel, and G. Vigna. Using loops for malware classification
resilient to feature-unaware perturbations. In Annual Computer
Security Applications Conference, 2018.

P. McDaniel, N. Papernot, and Z. B. Celik. Machine learning in
adversarial settings. IEEE Security & Privacy, 14(3):68-72, 2016.
N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima,
P. Miller, S. Sezer, Y. Safaei, E. Trickel, Z. Zhao, A. Doupé, and
G. J. Ahn. Deep android malware detection. In ACM Conference
on Data and Application Security and Privacy, 2017.

M. Melis, D. Maiorca, B. Biggio, G. Giacinto, and F. Roli. Ex-
plaining black-box Android malware detection. In European Signal
Processing Conference. IEEE, 2018.

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami. The limitations of deep learning in adversarial settings.
In European Symposium on Security and Privacy. IEEE, 2016.

N. Peiravian and X. Zhu. Machine learning for Android malware
detection using permission and API calls. In IEEE International
Conference on Tools with Artificial Intelligence. IEEE, 2013.

E. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro. Intrigu-
ing properties of adversarial ml attacks in the problem space. In
IEEE Symposium on Security and Privacy. IEEE, 2020.
PurpleSec. 2021 Cyber Security
https://purplesec.us/resources/cyber-security-statistics/, 2021.
M. T. Ribeiro, S. Singh, and C. Guestrin. “why should I trust you?”
Explaining the predictions of any classifier. In ACM Conference on
Knowledge Discovery and Data Mining (KDD’16), 2016.

I. Rosenberg, S. Meir, J. Berrebi, I. Gordon, G. Sicard, and E. O.
David. Generating end-to-end adversarial examples for malware
classifiers using explainability. In 2020 International Joint Confer-
ence on Neural Networks (I[CNN). IEEE, 2020.

A. Sami, B. Yadegari, H. Rahimi, N. Peiravian, S. Hashemi, and
A. Hamze. Malware detection based on mining api calls. In ACM
Symposium on Applied Computing, 2010.

Statistics.

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

18

G. Severi, J. Meyer, S. Coull, and A. Oprea. Explanation-
guided backdoor poisoning attacks against malware classifiers.
In USENIX Security Symposium, 2021.

F. Shen, J. Del Vecchio, A. Mohaisen, S. Y. Ko, and L. Ziarek. An-
droid malware detection using complex-flows. IEEE Transactions
on Mobile Computing, 18(6):1231-1245, 2018.

A. Singh, A. Walenstein, and A. Lakhotia. Tracking concept drift
in malware families. In Proceedings of the 5th ACM Workshop on
Security and Artificial Intelligence, pages 81-92, 2012.

W. Song, X. Li, S. Afroz, D. Garg, D. Kuznetsov, and H. Yin.
Mab-malware: A reinforcement learning framework for attacking
static malware classifiers. ACM Asia Conference on Computer and
Communications Security, 2022.

N. Srndi¢ and P. Laskov. Practical evasion of a learning-based
classifier: A case study. In IEEE Symposium on Security and Privacy,
pages 197-211. IEEE, 2014.

G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto,
and L. Cavallaro. Droidsieve: Fast and accurate classification of
obfuscated android malware. In ACM Conference on Data and
Application Security and Privacy, 2017.

C. Szegedy, W. Zaremba, L. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199, 2013.

L. Taheri, A. F. A. Kadir, and A. H. Lashkari. Extensible Android
malware detection and family classification using network-flows
and api-calls. In International Carnahan Conference on Security
Technology, pages 1-8. IEEE, 2019.

E. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou. Deep ground truth
analysis of current Android malware. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 252-276. Springer, 2017.

D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu. Droid-
mat: Android malware detection through manifest and API calls
tracing. In 2012 Seventh Asia Joint Conference on Information
Security, pages 62—-69. IEEE, 2012.

W. Xu, Y. Qi, and D. Evans. Automatically evading classifiers. In
Network and Distributed Systems Symposium, 2016.

G. Yan, N. Brown, and D. Kong. Exploring discriminatory features
for automated malware classification. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 41-61. Springer, 2013.

W. Yang, D. Kong, T. Xie, and C. A. Gunter. Malware detection
in adversarial settings: Exploiting feature evolutions and confu-
sions in Android apps. In Annual Computer Security Applications
Conference, pages 288-302, 2017.

H. Zhang, X. Xiao, F. Mercaldo, S. Ni, F. Martinelli, and A. K.
Sangaiah. Classification of ransomware families with machine
learning based on n-gram of opcodes. Future Generation Computer
Systems, 90:211-221, 2019.

Zhan Shu received the BE degree in Network
Engineering from Jinan University, Shandong
Province, in China in 2006 and the MS degree in
Computer Science from Binghamton University,
State University of New York, in 2016. He earned
the PhD degree in Computer Science from Bing-
hamton University in 2022. His research focuses
on proactive cybersecurity for large-scale dis-
tributed and networked systems.

Guanhua Yan received the PhD degree in com-
puter science from Dartmouth College, Hanover,
New Hampshire, in 2005. After working at Los
Alamos National Laboratory in New Mexico for
nine years, he joined Binghamton University,
State University of New York as a faculty mem-
ber in 2014. His research interests span cyber-
security, networking, and large-scale modeling
and simulation. He has made contributions to
about 80 articles in these fields.

